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Introduction
At first when I was introduced to DTrace at WWDC in 2006, I honestly didnʼt know what 
to make of it. Apple mainly showed it off as a Kernel Debugging facility which DTrace 
definitely excels at, but it took a couple of people and articles before I started to get the 
idea in my head that DTrace could be much more than for low level OS and kernel 
debugging. Once I started to get interested in DTrace I started looking for anything 
about how I could use it with my Cocoa apps. Once you really get used to DTrace there 
is really no excuse to not know what is happening in your system anymore. Take as an 
example one day I was at work browsing random sites and for some reason I had to 
load one in Firefox 3, well I did so and then went on my merry little way. A while later I 
came back and found my CPU was being eaten up by something, after looking at 
activity monitor I found the problem was Firefox. What was it doing? Well I knew DTrace 
so I was like “Iʼll use DTrace to figure out what it was doing!” After just a little work I 
immediately figured out that Firefox 3 was spawning and killing 20 pthreads a second! I 
could have investigated further, but at that point I just decided to kill Firefox and resume 
my normal Safari usage. What amazed me about this was that I didnʼt have to dig into 
the debugger, I didnʼt have to use sampler and I got short & concise information that 
was specific to the question I was asking.

Whatʼs presented here in this paper is the accumulation of a lot of my research into 
what DTrace excels at and itʼs weaknesses with regard to debugging Cocoa 
applications. My only warning is a couple of points (1) I assume you know basic DTrace. 
Learning basic DTrace is really beyond the scope of this paper as I have already done a 
basic 35 minute video on cocoasamurai.com1 which shows the basics of DTrace. And 
(2) I assume you have some familiarity with Operating System design, knowing so will 
help you understand some examples I show you and help you understand what DTrace 
is and how it works exactly.

For this paper I am using the following hardware & software

MacBook Pro
Core 2 Duo @ 2.33 GHz
ATi Radeon X1600 w 256 MB VRAM
2 GB RAM
Mac OS X 10.5.6
Darwin Kernel 9.6.0
DTrace API Version: Sun D 1.2.2

If you donʼt know DTrace that well I would suggest looking at the following docs/pdfʼs
http://docs.sun.com/app/docs/doc/819-5488    
http://docs.sun.com/app/docs/doc/817-6223

1 DTrace for Cocoa Developers http://cocoasamurai.blogspot.com/2008/05/dtrace-for-cocoa-
developers.html

http://docs.sun.com/app/docs/doc/819-5488
http://docs.sun.com/app/docs/doc/819-5488
http://docs.sun.com/app/docs/doc/817-6223
http://docs.sun.com/app/docs/doc/817-6223
http://cocoasamurai.blogspot.com/2008/05/dtrace-for-cocoa-developers.html
http://cocoasamurai.blogspot.com/2008/05/dtrace-for-cocoa-developers.html
http://cocoasamurai.blogspot.com/2008/05/dtrace-for-cocoa-developers.html
http://cocoasamurai.blogspot.com/2008/05/dtrace-for-cocoa-developers.html


Chapter 1 Reintroducing DTrace
Whenever I even speak of DTrace at a Cocoaheads meeting I feel compelled to give a 
few brief points each time. For this I only give this brief DTrace introduction only to 
reacquaint you with DTrace and build on this foundation for information presented on 
later on in this paper.

DTrace was developed at Sun Microsystems by Brian Cantrill, Mike Shapiro & Adam 
Leventhal. It is referred to on Wikipedia2 as “a comprehensive dynamic tracing 
framework created by Sun Microsystems for troubleshooting kernel and application 
problems on production systems in real time.” In essence this essentially means that 
you can examine virtually anything about any aspect of your operating system or 
application running on the operating system as it happens. The only exception to this 
really is when DTrace is throwing so much information at you that the Terminal or 
Instruments really has to work at keeping up with the output.

Apple first publicly announced that they were integrating DTrace into Mac OS X at the 
WWDC 2006 conference when they announced it would be integrated into Mac OS X 
10.5 Leopard and people from Sunʼs and Apples DTrace teams met for the first time3. 
Since then DTrace has been featured on the UNIX Technology page for Mac OS X and 
has become a means of achieving custom Instruments in Instruments4.

DTrace has many strengths that make it a must have technology to be integrated into 
your operating systems kernel and has very few weaknesses. It can remove a lot of 
logging like “[yourClassName:] Reached x function” etc and can give you a lot of 
information about what code your application is triggering all the way up & down the 
operating system stack. DTrace Instruments can be used almost like Unit Testing for 
your whole app, it doesnʼt take much to write a good D Script that measures something 
in your app and then to remeasure it periodically. I can go on praising DTrace for a 
while, but I think this quote speaks volumes:

“I just wanted to let you know that I spent 24 hours trying to find a bug and after 
  learning DTrace I found the bug in 5 minutes” 

 
 
 
 
 
 - Unknown at WWDC 2008 Comments

Someone in the comments section of the DTrace session had just seen basic DTrace 
samples and figured out how to find a bug in 5 minutes that they had been chasing for 
24 hours, you canʼt get much better than that for a good success story. Now with all of 
this behind us lets examine DTrace in relation to itʼs place in Mac OS X.

2 http://en.wikipedia.org/wiki/DTrace

3 http://blogs.sun.com/ahl/entry/dtrace_on_mac_os_x

4 Apple really should rename this, having a component in an Application & having the Application be 
virtually the same name is really confusing & trips me up in DTrace talks every so often.

http://en.wikipedia.org/wiki/DTrace
http://en.wikipedia.org/wiki/DTrace
http://blogs.sun.com/ahl/entry/dtrace_on_mac_os_x
http://blogs.sun.com/ahl/entry/dtrace_on_mac_os_x


DTrace Implementation in Mac OS X

DTrace requires a close integration with the operating system Kernel in order to achieve 
itʼs desired effect, which is how itʼs been integrated into Mac OS X. On Mac OS X you 
have 2 primary interfaces to DTrace: The Terminal and Instruments...

Regardless of how you interface with DTrace you need to be root or have root privileges 
(sudo) in order to invoke DTrace because it is running at the kernel level. Obviously 
there are more than 5 dtrace providers, but I only list a few here for brevityʼs sake. The 
major components here regardless of your interface is libdtrace.dylib and the DTrace 
interpreter in the kernel along with the DTrace providers. 

Script.d
Custom 
Instrument

/usr/sbin/dtrace

libdtrace.dylib

User Space

Kernel Space

DTrace 
Interpreter

DTrace Providers

vminfo fbt plockstat syscall pid



When you write a DTrace script and invoke DTrace your script is essentially compiled 
into a safe intermediate form by libdtrace.dylib and then sent to the kernel to be invoked 
later on. Then the probes that your script is querying are enabled and the provider does 
whatever is appropriate in activating them. 

Specifically when you inspect dtrace/libdtrace/dt_cc.c in the dtrace source code you see

/*
 * DTrace D Language Compiler
 *
 * The code in this source file implements the main engine for the D language
 * compiler.  The driver routine for the compiler is dt_compile(), below.  The
 * compiler operates on either stdio FILEs or in-memory strings as its input
 * and can produce either dtrace_prog_t structures from a D program or a single
 * dtrace_difo_t structure from a D expression.  Multiple entry points are
 * provided as wrappers around dt_compile() for the various input/output pairs.
 * The compiler itself is implemented across the following source files:
 *
 * dt_lex.l - lex scanner
 * dt_grammar.y - yacc grammar
 * dt_parser.c - parse tree creation and semantic checking
 * dt_decl.c - declaration stack processing
 * dt_xlator.c - D translator lookup and creation
 * dt_ident.c - identifier and symbol table routines
 * dt_pragma.c - #pragma processing and D pragmas
 * dt_printf.c - D printf() and printa() argument checking and processing
 * dt_cc.c - compiler driver and dtrace_prog_t construction
 * dt_cg.c - DIF code generator
 * dt_as.c - DIF assembler
 * dt_dof.c - dtrace_prog_t -> DOF conversion
 *
 * Several other source files provide collections of utility routines used by
 * these major files.  The compiler itself is implemented in multiple passes:
 *
 * (1) The input program is scanned and parsed by dt_lex.l and dt_grammar.y
 *     and parse tree nodes are constructed using the routines in dt_parser.c.
 *     This node construction pass is described further in dt_parser.c.
 *
 * (2) The parse tree is "cooked" by assigning each clause a context (see the
 *     routine dt_setcontext(), below) based on its probe description and then
 *     recursively descending the tree performing semantic checking.  The cook
 *     routines are also implemented in dt_parser.c and described there.
 *
 * (3) For actions that are DIF expression statements, the DIF code generator
 *     and assembler are invoked to create a finished DIFO for the statement.
 



So in other words the /usr/sbin/dtrace command line tool is merely a shell for invoking 
libdtrace.dylib which handles the language semantics and dtrace program compilation 
which you can definitively see in /dtrace/cmd/dtrace_1.c.

Or as the Solaris Dynamic Tracing Guide states:
“The dtrace(1M) command is a generic front-end to the DTrace facility. The command 
implements a simple interface to invoke the D language compiler, the ability to 
retrieve buffered trace data from the DTrace kernel facility, and a set of basic routines 
to format and print traced data.”

* (4) The dtrace_prog_t data structures for the program clauses and actions
 *     are built, containing pointers to any DIFOs created in step (3).
 *
 * (5) The caller invokes a routine in dt_dof.c to convert the finished program
 *     into DOF format for use in anonymous tracing or enabling in the kernel.
 *
 * In the implementation, steps 2-4 are intertwined in that they are performed
 * in order for each clause as part of a loop that executes over the clauses.
 *
 * The D compiler currently implements nearly no optimization.  The compiler
 * implements integer constant folding as part of pass (1), and a set of very
 * simple peephole optimizations as part of pass (3).  As with any C compiler,
 * a large number of optimizations are possible on both the intermediate data
 * structures and the generated DIF code.  These possibilities should be
 * investigated in the context of whether they will have any substantive effect
 * on the overall DTrace probe effect before they are undertaken.
 */
 

/*
 * Open libdtrace.  If we are not actually going to be enabling any
 * instrumentation attempt to reopen libdtrace using DTRACE_O_NODEV.
 */
while ((g_dtp = dtrace_open(DTRACE_VERSION, g_oflags, &err)) == NULL) {

 if (!(g_oflags & DTRACE_O_NODEV) && !g_exec && !g_grabanon) {

 
 g_oflags |= DTRACE_O_NODEV;

 
 continue;

 }


 fatal("failed to initialize dtrace: %s\n",

     dtrace_errmsg(NULL, err));
}



Chapter 2 DTrace & the Objective-C Provider
Apple has kindly implemented a Objective-C Provider for use with Cocoa Apps and it 
works very simply like so. Lets Assume we have an instance method                               
-(void)doSomething:(id)sender; in a Class called AppController so in other words:

[appController doSomething:self];

creating an instance of that class AppController with an instance appController would 
look like this in DTrace

objc<pid> : AppController : -doSomething? : entry

as you can see above for the Objective-C Provider we require the process id of the app 
to be appended to objc so DTrace knows specifically which Objective-C App you are 
referencing. Also you may notice that we reference the doSomething:self instance 
method in DTrace as -doSomething:?. We already use colons in separating the DTrace 
sections (provider,module,method,name) so we canʼt use the colon again to indicate a 
objective-c method argument. As you can also see we donʼt care so much in DTrace 
what object you are calling a method on as we do what type of method it is and what 
arguments it takes. I should caution you to pay attention to the arguments, take as an 
example

objc<pid> : NSView : -drawRect : entry

is not the same as

objc<pid> : NSView : -drawRect? : entry

which in the first case you will not find that DTrace will match any probes becase it will 
look for an instance method -drawRect that accepts no arguments, which we know that 
drawRect does accept an argument. So the second example indicates a drawRect 
instance method that does accept an argument.

For Cocoa Developers coming to DTrace that is the biggest thing to remember. Beyond 
this to indicate interest in specific Objective-C points is fairly easy by going to the dtrace 
man page5 or “man DTrace” in the terminal. Iʼve listed off the Objective-C Provider text 
below

5 http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html

http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html


OBJECTIVE C PROVIDER EXAMPLES
objc123:NSString:-*:entry
Every instance method of class NSString in process 123.

objc123:NSString(*)::entry
Every method on every category of class NSString in process 123.

objc123:NSString(foo):+*:entry
Every class method in NSString's foo category in process 123.

objc123::-*:entry
Every instance method in every class and category in process 123.

objc123:NSString(foo):-dealloc:entry
The dealloc method in the foo category of class NSString in process 123.

objc123::method?with?many?colons:entry
The method method:with:many:colons in every class in process 123. (A ? wildcard must  
be  used to  match  colon  characters  inside  of  Objective C method names, as they 
would otherwise be parsed as the provider field separators.)

Now that was very easy, you can now very easily specify interest in any Objective-C 
area you want to know more about. Go ahead and do a “dtrace -l” as sudo or root and 
explore all the Objective-C Probe points available



However I would recommend exploring the Objective-C probe points for your apps first 
because your familiar with your own code. Filter down by the PID. Here Iʼve taken a 
listing of some of Mail.apps probe points as a quick example



Example Timing in Code vs DTrace

Here is an example I showed off at the Des Moines CocoaHeads Group that 
demonstrated how easy it is to do something in DTrace vs in code. First let me show 
you how I would do something in code

#import <Foundation/Foundation.h>
#import <stdio.h>
#import <stdarg.h>
#import <mach/mach.h>
#import <mach/mach_time.h>
#import <unistd.h>

uint64_t start = mach_absolute_time();

/* code goes here */

uint64_t end = mach_absolute_time();
 
uint64_t elapsed = end - start;
 
mach_timebase_info_data_t info;
mach_timebase_info(&info);
uint64_t nanoSeconds = elapsed * info.numer / info.denom;

printf ("elapsed time was %lld nanoseconds\n", nanoSeconds);

In this case the aim of this exercise is simple to measure exactly how long a method is 
taking to execute on the cpu. There may be other methods to achieve this, but this is 
the best method Iʼve found that gives you on a very finite level an accurate 
measurement of how long a piece of code is taking in nanoseconds. However this isnʼt 
that great a measurement method to be doing in code for several reasons: Firstly in the 
process of measuring this code we are allocating 4 64 bit unsigned integers and a 
mach_timebase_info_data_t object in our application and then (2) even when we get 
those structures we still have to perform a couple calculations at the point where we 
figure out the difference between the first mach_absolute_time() value and then the 
second value and then to figure out the elapsed time value in nanoseconds we have to 
do some multiplication and division. Not that great in the long run to do.

So how do we do the same thing in dtrace?



objc$target:NSOperation:-start:entry
{
 self->start = vtimestamp;
}

objc$target:NSOperation:-start:return
{
 printf(“%u nanosecs”,vtimestamp - self->start);
 self->start = 0;
}

Not only is this less lines of code, it also happens outside of the application itself so the 
apps memory isnʼt being increased and we are only performing 1 explicit calculation and 
only creating 1 thread local variable. In this case I chose vtimestamp to measure this 
because if we are going for the most accurate measurement for how long a block of 
code is taking to execute we shouldnʼt be factoring in the DTrace overhead. Specifically 
the Solaris Dynamic Tracing Guide6 says about the vtimestamp dtrace variable

“The current value of a nanosecond timestamp counter that is virtualized to the amount 
of time that the current thread has been running on a CPU, minus the time spent in 
DTrace predicates and actions. This counter increments from an arbitrary point in the 
past and should only be used for relative time computations.”

which is fine and exactly what we are using it for in this example. If we run this example 
weʼll get something like this:

6 http://docs.sun.com/app/docs/doc/817-6223/chp-variables-5?a=view

http://docs.sun.com/app/docs/doc/817-6223/chp-variables-5?a=view
http://docs.sun.com/app/docs/doc/817-6223/chp-variables-5?a=view


So here in this particular instance this NSOperation executed on my 2nd core and took 
about 0.008 seconds to execute. Iʼve done other examples like this where I merely 
prove that things like CFArray is faster at iterating over a similar array than NSArray.

Example Timing GC Quartz vs non GC Quartz Drawing

So this is great we now know how to get simple information like this, but I wanted to do 
something more meaningful with a timing example like this. So one topic that came up 
at a Cocoaheads meeting is wether this topic that came up right when Leopard came 
out was really true or not, and that topic was the claim that Garbage Collected Quartz 
drawing was about 25% slower at drawing than non Garbage Collected Quartz Drawing. 
So here we are at 10.5.6 and itʼs a little late to really test 10.5 as I have no interest in 
reformatting my drive to test that build specifically, but I wanted to test 10.5.6 to see if 
GC Quartz really is still 25% slower if it really was at all.

Now for this I could have written a grand suite of actions to test it and see what all I 
could do to perform some sort of intense drawing, but in the end my time is precious 
and I just didnʼt have the time to do something like that outside of my normal range of 
projects I am already working on so I decided to test 2 Apple provided developer 
examples PathDemo and Worm.

In PathDemo I simply tested the Bezier Paths because I believed it was the most 
random & hardest drawing I could get out of Quartz in that example because itʼs 
calculating arcs and doing non standard shapes



So in this example The drawing is all being done in a NSView subclass called 
DemoView so in DTrace weʼd need to write the script like so

objc$target:DemoView:-drawRect?:entry
{
 self->start = vtimestamp;
}

objc$target:DemoView:-drawRect?:return
{
 printf("-drawRect took %u nanoseconds to complete",
 (vtimestamp - self->start));
 self->start = 0;
}

So I ran this several times on non garbage collected and then flipped the garbage 
collection switch and cleaned and recompiled and ran it again and then compared the 
times and got

sh-3.2# dtrace -s drawtime.d -p 44697
dtrace: script 'drawtime.d' matched 2 probes
CPU     ID                    FUNCTION:NAME
  0  24606                -drawRect::return -drawRect took 12380896 nanoseconds to complete
  0  24606                -drawRect::return -drawRect took 12467565 nanoseconds to complete
  1  24606                -drawRect::return -drawRect took 13540899 nanoseconds to complete
  0  24606                -drawRect::return -drawRect took 17036579 nanoseconds to complete
  0  24606                -drawRect::return -drawRect took 12271642 nanoseconds to complete
  0  24606                -drawRect::return -drawRect took 12382659 nanoseconds to complete
  1  24606                -drawRect::return -drawRect took 12682816 nanoseconds to complete
dtrace: pid 44697 has exited

sh-3.2# dtrace -s drawtime.d -p 44807
dtrace: script 'drawtime.d' matched 2 probes
CPU     ID                    FUNCTION:NAME
  1  20688                -drawRect::return -drawRect took 18147876 nanoseconds to complete
  1  20688                -drawRect::return -drawRect took 13893054 nanoseconds to complete
  0  20688                -drawRect::return -drawRect took 13108404 nanoseconds to complete
  0  20688                -drawRect::return -drawRect took 14469090 nanoseconds to complete
  0  20688                -drawRect::return -drawRect took 13468790 nanoseconds to complete
  0  20688                -drawRect::return -drawRect took 13429747 nanoseconds to complete
  1  20688                -drawRect::return -drawRect took 11028140 nanoseconds to complete
dtrace: pid 44807 has exited

In this instance I got a non Garbage collected average of 13251865 ns (top batch of 
results) or 0.0132518 seconds and Garbage Collection took 13935014 ns or 0.0139350 
seconds (2nd batch of results) so I got about a roughly 5% difference between the two 
and really when you run these tests over and over you can see there is a definite range 



and both tests GC and non GC all have an outlier every so often and you could argue 
that the outlier is responsible for most of the 5% difference in the test. As always 
depending on what system you are running this on and what you have running your 
mileage may vary.

So this is great but in the PathDemo example we arenʼt doing that much. I hit the button 
and it does some random drawing once and then stops so I thought I should be fair and 
do an example that does more explicit allocations of memory and does constant 
drawing and found worm in the Developer Examples.

This does more constant drawing and explicit allocations of memory as itʼs drawing the 
view so I wanted to see if the drawRect method times would hold true. This app runs 
constantly when you tell it to go so I think itʼd only be fair to run the app GC on one run 
and non GC on another run with both runs running in the same mode and collecting the 
first n amount of samples on both runs. 



When I go about that for this example I get the following:

So using dtrace we can see both Garbage Collected Code and non Garbage Collected 
code appear to roughly run about the same most of the time. In all tests I run I 
occasionally get an outlier value in both the garbage collected code and non garbage 
collected code. In one run I got some spikes in the garbage collected code making me 
wonder if the garbage collector was running at the time of those spikes. Clearly this 
merits a deeper investigation, however at the time of this writing I simply donʼt have the 
time to give this the attention it needs so for now this question will have to remain 
unanswered. So far Iʼve just tried having dtrace also trace when 
auto_trace_phase_begin begins and havenʼt found a correlation between the function 
beginning and increase in method execution times. As always your mileage may vary.
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Chapter 3 DTrace in Instruments

Instruments is one of the big reasons Iʼve fallen in love with the Mac platform, before 
Apple introduced Instruments (formerly Xray) there was no easy way to make your own 
tools to measure app specific metrics. You pretty much had to know your code well and 
attempt to measure speculatively with the tools available to you at the time. Since then 
Apple has solved that problem and one other one with instruments (the other problem 
being that there was no easy way of getting several tools data side by side for getting a 
comprehensive overview of the session run.) Instruments makes the custom instrument 
process look deceptively simple and mostly it is, but you still need to know DTrace and 
how it works to make the most out of the experience and obtain the most accurate data 
on the behavior of your apps. 

The DTrace based Instruments
16 of the 28 Prebuilt Instruments are DTrace based which I will list here and go into 

detail the ones most relevant to Cocoa Developers:

The Core Data Instruments
 All the Core Data Instruments are DTrace based. Apple has graciously 
created a custom provider for the Core Data framework that latches on to key 



points in all Cocoa Apps that link against the Core Data framework, which is both good 
and bad. By default in Xcode if you create a plain vanilla Cocoa app project (not Core 
Data app) it will include the Core Data framework and link against Core Data. Thus 
when you do dtrace -l in the terminal and look around at the PID IDʼs itʼs possible to get 
false positives. In fact it appears that the CoreData provider latches onto any Cocoa app 
period. However as the project has no Core Data data model nor should be calling any 
Core Data classes itʼs safe to assume that none of the Core Data probes should ever 
fire on such a project. 

If you do DTrace -l in terminal and extract just the Core Data probes for 1 project you 
should get

This is obviously cleaned up for the purposes of showing you the information you care 
about. Looking through the probes itʼ obvious we get several layers of Core Data that 
we are able to peer into. 

Core Data Saves : Core Data Saves displays information about your saves during a 
run of your application or all Core Data apps running on your system at a given time. It 

BEGIN PROBES

-[NSAtomicStore(_NSInternalMethods) retainedDataForObjectID:withContext:] BeginFault
-[NSSQLCore retainedDataForObjectID:withContext:] BeginFault
-[NSMappedObjectStore retainedDataForObjectID:withContext:] BeginFault
              _PFReportFaultStart BeginFault
-[NSSQLCore fetchRowForObjectID:] BeginFaultCacheMiss
          _PFReportCacheMissStart BeginFaultCacheMiss
-[NSPersistentStoreCoordinator(_NSInternalMethods) executeRequest:withContext:] BeginFetch
-[NSSQLCore newFetchedPKsForSourceID:andRelationship:] BeginRelationshipCacheMiss
_PFReportRelationshipCacheMissStart BeginRelationshipCacheMiss
-[NSAtomicStore(_NSInternalMethods) retainedRelationshipDataWithSourceID:forRelationship:
   
 
 
 
 
 
 
 
   withContext:] BeginRelationshipFault
-[NSSQLCore retainedRelationshipDataWithSourceID:forRelationship:withContext:] BeginRelationshipFault
-[NSMappedObjectStore retainedRelationshipDataWithSourceID:forRelationship:
withContext:] BeginRelationshipFault
  _PFReportRelationshipFaultStart BeginRelationshipFault
-[NSPersistentStoreCoordinator(_NSInternalMethods) executeRequest:withContext:] BeginSave

END PROBES

 -[NSAtomicStore(_NSInternalMethods) retainedDataForObjectID:withContext:] EndFault
 -[NSSQLCore retainedDataForObjectID:withContext:] EndFault
 -[NSMappedObjectStore retainedDataForObjectID:withContext:] EndFault
 -[NSSQLCore fetchRowForObjectID:] EndFaultCacheMiss
 -[NSPersistentStoreCoordinator(_NSInternalMethods) executeRequest:withContext:] EndFetch
 -[NSSQLCore newFetchedPKsForSourceID:andRelationship:] EndRelationshipCacheMiss
 -[NSAtomicStore(_NSInternalMethods) retainedRelationshipDataWithSourceID:forRelationship:

 
 
 
 
 
 
 
 
     withContext:] EndRelationshipFault
 -[NSSQLCore retainedRelationshipDataWithSourceID:forRelationship:withContext:] EndRelationshipFault
 -[NSMappedObjectStore retainedRelationshipDataWithSourceID:forRelationship:withContext:] EndRelationshipFault
 -[NSPersistentStoreCoordinator(_NSInternalMethods) executeRequest:withContext:] EndSave



acts on the “BeginSave” label which means when this is triggered it is trapping -
[NSPersistentStoreCoordinator(_NSInternalMethods) executeRequest:withContext:] on 
entry in a save context and similar to the scripts I have written previously it employs a 
thread local variable and assigns it to vtimestamp. When it hits return on -
[NSPersistentStoreCoordinator(_NSInternalMethods) executeRequest:withContext:] it 
creates another thread local variable saveEnd and uses the current nanosecond time 
stamp counter and subtracts the first nanosecond value from that and then divides the 
result by 1000 to return the time duration in microseconds ( µs millionth of a second 
precision ) and displays the value as an integer. Additionally we get the caller 
information so we know what was called to trigger this save. If you expand into the 
detail pane itʼs also possible to get the Thread ID and stack depth.

Core Data Fetches : Core Data Fetches is very similar to Core Data Saves in that it too 
acts on -[NSPersistentStoreCoordinator(_NSInternalMethods) 
executeRequest:withContext:] however the difference being that Apple has created 
DTrace probes and labels within the source code to the Core Data framework to make it 
easy to differentiate which activity is being performed within -
executeRequest:withContext:] otherwise we would be left with only knowing that the 
method had been triggered, but no means of gaging what had actually happened 
leaving you to guess based on a intimate knowledge of the source code to your app 
which defeats the purpose of dtrace entirely. Like Core Data Saves it keeps track of the 
duration of the method activity in microseconds ( µs millionth of a second precision ) 
and displays the result as an integer, however it also returns the fetch count (the fetch 
count is the amount of objects retrieved from the particular fetch.) Additionally on 
encountering the BeginFetch label it records the (char *) string containing the name of 
the entity actually being fetched by Core Data. 

Here is a sample from my App. In this case in one point in my app it makes a fetch 
request to Core Data to see if we have a User object present in the core data store 
which we can see that the first row shows us this entity fetch, then it shows us another 
row indicating how many objects from that entity were fetched and the millisecond 
duration time of that fetch. Same with Core Data saves we get the caller information and  
in the detail pane we also get the Thread ID and stack depth.



Core Data Faults : Core Data Faults gives you a good amount of information relevant 
to faulting in your Core Data Application and uses 4 probes to show you what is faulting 
and what triggered the fault. If you donʼt know what Core Data faulting is I really canʼt 
take the time or space to dedicate to this topic here, I would suggest reading Apples 
Documentation for more information on the matter7 . The instrument first acts on the 
“BeginFault” label in the CoreData provider. When it hits this it creates a thread local 
variable faultStart and assigns it to the vtimestamp nanosecond counter, additionally it 
traces arg0 containing a (char *) string telling you the Core Data ID (in the form of 
something like x-coredata://2889E1B3-0F22-41E4-B211-6BEFA68F258E/User/p102 ) of 
the object causing the fault (Fault object.) 

When it hits the  “EndFault” label it creates another thread local variable “faultEnd” and 
subtracts the current vtimestamp counter from the faultStart variable and divides by 
1000 giving us the duration in microseconds ( µs millionth of a second precision ) and 
displays the result as an integer. Then we proceed to the “BeginRelationshipFault” 
probe, here we get more information about what is actually causing the fault like the 
previous core data probes it also keeps track of the vtimestamp and displaying for each 
relationship fault the duration in microseconds ( µs millionth of a second precision .) 
Whatʼs unique to this probe is that it keeps track of the “Relationship fault source” ((char 
*) arg0) which would the the object causing the fault and the “Relationship” ((char *) 
arg1) in the Core Data data model that we are faulting on. Upon entry to 
“EndRelationshipFault” the probe acquires the vtimestamp and calculates the duration 
of the relationship fault displaying the result in microseconds. 

This instrument acts on the following Core Data methods 
Label: BeginFault / EndFault
-[NSAtomicStore(_NSInternalMethods) retainedDataForObjectID:withContext:]

-[NSSQLCore retainedDataForObjectID:withContext:]

-[NSMappedObjectStore retainedDataForObjectID:withContext:]

 Label: BeginFault
_PFReportFaultStart

Label: BeginRelationshipFault / EndRelationshipFault
-[NSAtomicStore(_NSInternalMethods) retainedRelationshipDataWithSourceID:forRelationship:
   
 
 
 
 
 
 
 
   withContext:]
-[NSSQLCore retainedRelationshipDataWithSourceID:forRelationship:withContext:]
-[NSMappedObjectStore retainedRelationshipDataWithSourceID:

 
 
 
 
        forRelationship:

 
 
 
 
             withContext:]

Label: BeginRelationshipFault
 _PFReportRelationshipFaultStart 

7 http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CoreData/Articles/
cdFaultingUniquing.html

http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CoreData/Articles/cdFaultingUniquing.html
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CoreData/Articles/cdFaultingUniquing.html
http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CoreData/Articles/cdFaultingUniquing.html
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Here is an example of what a run with the Core Data Faults Instrument looks like.

Again like the other probes we also get the stack depth and Thread ID in the extended 
detail view pane.

Core Data Cache Misses: 

Core Data Cache Misses displays information very similar to Core Data faults but it 
directed at another area of Core Data operations/performance. Core Data Cache 
Misses are pretty much what it sounds like, but again I donʼt have the time to spend on 
it here and itʼs really out of scope for this paper, see Apples Core Data Guide8 for more 
information on the topic. Again this probe not only measures the whole cache miss but 
also gives us more finite information on the duration of specific cache misses for each 
relationship and again requires the use of 4 probes to gain this information.

The first probe triggers on encountering the label “BeginFaultCacheMiss” and declares 
a thread local var “cacheMissStart” for getting the overall duration of the cache miss. It 
also records ((char *) arg0) The Core Data ID of the object causing the cache miss. The 
second probe triggers on “EndFaultCacheMiss” and predicably declares a thread local 
var “cacheMissEnd” and diffs the 2 vtimestamps and divides by 1000 to get the 
microseconds ( µs millionth of a second precision ) for the duration of the cache miss 
(CM duration.)

8 http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CoreData/
cdProgrammingGuide.html#//apple_ref/doc/uid/TP30001200

http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html#//apple_ref/doc/uid/TP30001200
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Now we move onto the Relationship Cache Misses, the third probe triggers on 
“BeginRelationshipCacheMiss” and predicably declares a thread local var 
“relationshipCacheMissStart” and assigns it to vtimestamp. During this time the 
instrument also records ((char *) arg0) “RCM source” which is the Core Data ID of the 
object causing the relationship cache miss, and ((char *) arg1) “RCM relationship” which 
shows the relationship that is triggering the relationship cache miss. The fourth probe 
doesnʼt do much after this other than declaring the thread local var 
“relationshipCacheMissEnd” and subtracting the current vtimestamp value from it and 
then dividing the resulting value to get the duration (RCM duration) in Microseconds.

The Garbage Collection Instruments

The Mac OS X Garbage Collector known as AutoZone ( libauto.dylib ) is 
another neat new feature in Mac OS X 10.5 Leopard. As we now have 
garbage collection in Cocoa/Objective-C itʼs often helpful to know how much 
memory has been reclaimed and when itʼs been collected. As such Apple has 2 
DTrace based Instruments. As AutoZone is not Cocoa/Objective-C based it 

does not use the Objective-C provider or any custom Objecitve-C provider, but 
rather uses the pid providers which specializes in tracing the entries and returns into 
any function in a user process.

GC Total : The GC Total is a simple 1 probe instrument, it traces the entry of the 
function “auto_trace_collection_end” and records the following information (int)arg2 
Objects Reclaimed, (int)arg4 Bytes in Use, (int)arg5 Total (bytes reclaimed and still in 
use), (int)arg3 Bytes Reclaimed. Additionally it records the function that started the 
reclamation of objects and in the extended detail pane we also get the stack depth and 
stack trace information as well as the thread id. 

Garbage Collection : The originally named Garbage Collection Instrument is designed 
to show you the relevant information about what is being collected during AutoZones 
scavenge phase. The instrument uses the pid provider to trace entry into the function 
“auto_trace_phase_begin” function. 



This probe has a predicate checking for arg2 to equal 3 which is a reference to a 
auto_collection_phase_t type which if 
you look through the source code is a 
enum which in this context means itʼs 
essentially trying to check for the 
garbage collection to be in the 
AUTO_TRACE_SCAVENGING_PHASE 
mode. It also checks for arg1 to be 0 
which if we look at the source code 
declaration

void auto_trace_phase_begin(auto_zone_t *zone, boolean_t generational, 
auto_collection_phase_t phase)

means itʼs checking for the generational to be 0 . Upon passing the predicates and 
entering to the probe it declares a thread local var “starttime” and divides by 1000 to get 
the microsecond timestamp and does nothing else. The next probe traces the function 
“auto_trace_phase_end” and has the exact same predicates as the first probe. It 
records (int)arg3 (Objects Reclaimed), arg0 (Zone), (int)arg4 ( Bytes Reclaimed ), the 
duration in microseconds and arg1 ( Is Generational .) Additionally we can see the 
caller , stack depth and call stack.

Cocoa Events : This DTrace instrument monitors calls to NSApplication 
-sendEvent*. What this instrument does is uses the Objective-C provider 
and copies in the necessary information to present to you what is 

happening in your application both the NSEventType9 and a string that is 
much more relevant to you the Cocoa Developer. It does this by copying in 

the bytes from arg2 which in the Objective-C context is the first argument to a selector 
because in this context we are really matching the arguments to objc_msgSend()10. 
From there these bits are assigned to evtPointer and then we further copy in 4 bytes to 
get the event code. From there the rest of the probe is pretty much just figuring out what  
that event is and getting you a string that is much more relevant. Here is the code:

9 http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_Class/
Reference/Reference.html#//apple_ref/doc/uid/20000016-SW1

10 http://developer.apple.com/DOCUMENTATION/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/
chapter_4_section_3.html

typedef enum {
    AUTO_TRACE_SCANNING_PHASE = 0,
    AUTO_TRACE_WEAK_REFERENCE_PHASE,
    AUTO_TRACE_FINALIZING_PHASE,
    AUTO_TRACE_SCAVENGING_PHASE
} auto_collection_phase_t;

http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Classes/NSEvent_Class/Reference/Reference.html#//apple_ref/doc/uid/20000016-SW1
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Beyond the awkward (but necessary) way we copy this information in the rest of the 
probe is very easy and straightforward. It displays a Clause Local variable ( this-
>eventStr ) in the form of a String which will display something like “Left Mouse Down”, 
etc. and the Event code (self->theEvent) in the form of an Integer. 

The Rest of the Instruments

The rest of the instruments are great tools to use in your debugging and tuning of your 
application and itʼs various interactions, however right now I simply donʼt have the time 
needed to really dig into these and explain them in the detail I have given to the other 
great instruments. To go over these and sort of gloss over them in lesser detail would be 
disrespectful on my part so I have chosen to not do them now and keep to the most 
common Cocoa Developer centric tools. Perhaps I can expand on these over time in the 
future, but for now I feel itʼs my job to get this information to you and allow you to 
explore these instruments as they apply to you the reader.

self->evtPointer = (user_addr_t)arg2;
self->theEvent = (unsigned int)*(uint32_t*)copyin(self->evtPointer + 4, 4);

this->eventStr = self->theEvent == 1 ? "Left Mouse Down" : self->theEvent == 2 ? 
"Left Mouse Up" : self->theEvent == 3 ? "Right Mouse Down" : self->theEvent == 4 ? 
"Right Mouse Up" : self->theEvent == 5 ? "Mouse Moved" : self->theEvent == 6 ? 
"Left Mouse Dragged" : self->theEvent == 7 ? "Right Mouse Dragged" : self->theEvent 
== 8 ? "Mouse Entered" : self->theEvent == 9 ? "Mouse Exited" : self->theEvent == 
10 ? "Key Down" : self->theEvent == 11 ? "Key Up" : self->theEvent == 12 ? "Flags 
Changed" : self->theEvent == 13 ? "AppKit Defined" : self->theEvent == 14 ? "System 
Defined" : self->theEvent == 15 ? "Application Defined" : self->theEvent == 16 ? 
"Periodic" : self->theEvent == 17 ? "Cursor Update" : self->theEvent == 22 ? 
"Scroll Wheel" : self->theEvent == 23 ? "Tablet Point" : self->theEvent == 24 ? 
"Tablet Proximit" : self->theEvent == 25 ? "Other Mouse Down" : self->theEvent == 
26 ? "Other Mouse Up" : self->theEvent == 27 ? "Other Mouse Dragged" : "Unknown";



Chapter 4 Creating Userland Static Probes for your 
Xcode Project
DTrace can add a lot of value to our debugging cycles and give us valuable insight into 
the behavior of our applications, however there are 2 major weaknesses that DTrace 
has with regards to Objective-C and our Application logic. The first being that while 
dtrace can trace through Objective-C method calls it isnʼt aware of events in our 
application, by this I mean the specific logic that happens when the user clicks on that 
do action button. DTrace can see it triggered the method -doSomething: then -
calculateTotals: and so on and so on. In other words if we want to trace a specific critical 
event in our application the burden is on the Cocoa Developer to know all the methods 
and use that knowledge in tracing the app. The other major weakness is that DTrace 
cannot do true Objective-C object introspection. When we are tracing around Objective-
C functions in the pid or Objective-C provider we are really seeing the functions in the 
form of a string like “-[NSString isEqual:]” in the function section so really

pid<pid> Foundation -[NSString isEqual:] entry

is like an alias to 

objc<pid> NSString -isEqual? entry

which is why we know what Objective-C class and method we are in. However this does 
not translate to Objective-C objects. DTrace doesnʼt even know the structure of a basic 
Objective-C object, I am not talking about NSObject, I mean literally bare bones 
Objecitve-C without Foundation. DTrace does do pointer dereferencing so theoretically 
we could construct something to inspect some aspects of Objective-C however this 
increased complexity quickly starts to negate the benefits DTrace gave to us and really 
makes debugging with GDB more of an option in that case. 

However the DTrace inventors foresaw this type of situation. They quickly realized that 
with DTrace no matter what information they predefined and made available to you that 
you will always want more and so they created USDT Probes or Userland Statically 
Defined Tracing Probes, Apple & I refer to these as Userland Static Probes. These 
probes give you an opportunity to embed critical debug information inside your 
application that has 0 cost when not in use and when it is in use has only the most 
minimal of performance impact (mainly to the extent that is costs you to access and 
pass to dtrace the information that you want shown in a probe.)

The DTrace man page11 does list this process, but I really want to show you how easy 
this is with Xcode and what you need to know about the process along with what could 
initially trip you up in learning how to use the userland static probes.

11 http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/dtrace.1.html
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Creating the DTrace Provider file

The very first thing we start out with when creating Userland Static probes is a DTrace 
Provider file which has very simple syntax.

In this example I am going to provide DTrace information about an event and I want to 
track the progress of this event. To start out with I have a probe called action_start() 
which accepts no arguments, this is merely a indicator to me in DTrace that tracking for 
a particular chain of events around an application has begun. Also the action_* naming 
of methods allows for me to have many actions in a particular provider if I want to do so 
and to be able to filter down by that if I want to do so. Then when I am done with this 
editing I save this to a file called MyAppProvider.d in my project directory.

Once you are back in Xcode I would go to Project->Add to Project… and add the 
MyAppProvider.d file into the Xcode project. 

provider MyApp {
 probe action_start();
 probe action_phase(int,char *);
 probe action_end();
};

MyAppProvider.d



And you should now have the MyAppProvider.d file in your Xcode Project

Now we need to generate the header file. Now you can go about this several ways in 
this case DTrace has a predictable method generation pattern in this case the probe 
“action_start()” will get translated into “MYAPP_ACTION_START()” and will also 
generate “MYAPP_ACTION_START_ENABLED()” which I will get into later. Really if 
you are comfortable typing in those names by hand you donʼt need to do anything other 
than import the header file (that will eventually exist) into your project, this header file in 
this case will be “MyAppProvider.h” which is the exact same name as the .d file except 
with a .h. When you compile your project Xcode will notice that there is no header file by 
that name, but will notice that there is a .d file by that name and will automatically 
compile the .d file into a .h file and allow your project to build successfully. However I 
am a autocomplete junkie (is that even a phrase?) sometimes and so if you want 
autocomplete in your project right now all you need to do is right click on the .d file and 
select Compile from the contextual menu…



Assuming that you donʼt have any compiler errors from DTrace you will be golden. But 
wait… where is the .h file? Well this is something that trips some people up it both exists 
and yet doesnʼt. By this I mean the MyAppProvider.h file IS in your xcode project, but itʼs 
buried deep in your Build folder. In this case the actual header file is at ( /Users/colinw/
Desktop/MyApp/build/MyApp.build/Debug/MyApp.build/DerivedSources/
MyAppProvider.h ) 



The resulting header file can actually be copied into your project if you really want, but 
really from this point on we donʼt need to worry about having the actual header in our 
project. What gets generated in the header file you can actually look at, but really it is 
not meant to be the most human readable thing in the world. In this case this is what is 
generated

/*
 * Generated by dtrace(1M).
 */

#ifndef _MYAPPPROVIDER_H
#define _MYAPPPROVIDER_H

#include <unistd.h>

#ifdef __cplusplus
extern "C" {
#endif

#define MYAPP_STABILITY "___dtrace_stability$MyApp$v1$1_1_0_1_1_0_1_1_0_1_1_0_1_1_0"

#define MYAPP_TYPEDEFS "___dtrace_typedefs$MyApp$v1"

#define MYAPP_ACTION_END() \
{ \
 __asm__ volatile(".reference " MYAPP_TYPEDEFS); \
 __dtrace_probe$MyApp$action_end$v1(); \
 __asm__ volatile(".reference " MYAPP_STABILITY); \
} 
#define MYAPP_ACTION_END_ENABLED() \
 __dtrace_isenabled$MyApp$action_end$v1()
#define MYAPP_ACTION_PHASE(arg0, arg1) \
{ \
 __asm__ volatile(".reference " MYAPP_TYPEDEFS); \
 __dtrace_probe$MyApp$action_phase$v1$696e74$63686172202a(arg0, arg1); \
 __asm__ volatile(".reference " MYAPP_STABILITY); \
} 
#define MYAPP_ACTION_PHASE_ENABLED() \
 __dtrace_isenabled$MyApp$action_phase$v1()
#define MYAPP_ACTION_START() \
{ \
 __asm__ volatile(".reference " MYAPP_TYPEDEFS); \
 __dtrace_probe$MyApp$action_start$v1(); \
 __asm__ volatile(".reference " MYAPP_STABILITY); \
} 
#define MYAPP_ACTION_START_ENABLED() \
 __dtrace_isenabled$MyApp$action_start$v1()

extern void __dtrace_probe$MyApp$action_end$v1(void);
extern int __dtrace_isenabled$MyApp$action_end$v1(void);
extern void __dtrace_probe$MyApp$action_phase$v1$696e74$63686172202a(int, char *);
extern int __dtrace_isenabled$MyApp$action_phase$v1(void);
extern void __dtrace_probe$MyApp$action_start$v1(void);
extern int __dtrace_isenabled$MyApp$action_start$v1(void);

#ifdef __cplusplus
}
#endif

#endif /* _MYAPPPROVIDER_H */



However from this point on the header file source isnʼt really relevant except for our 
using the DTrace USDT probes in our application.

Utilizing the Userland Static Probes in your App

Now that weʼve got the header file generated or actually copied into our project the 
initial hurdle of getting DTrace into our Xcode project is over. Now we actually need to 
use the generated methods. In terms of the dtrace probes I mentioned earlier that for 
each probe we specified another probe got generated with the same name but with an 
added “_ENABLED()” at the end. This essentially protects our app from suffering a 
performance hit when DTrace is not in use. In terms of actually using the methods we 
really only need to be concerned with the action_phase(int, char*) probe because it will 
(1) actually require memory to be allocated (2) cause serious calculations to be 
performed and (3) data to be passed into DTrace. To protect a method like this you 
would need to use the enabled method like so 

Now in this case the Application I am demoing is really simple and the emphasis is more 
on showing usage of of the probes. The first thing we do is protect the 
ACTION_PHASE() probe with the enabled probe. The reason we do this is because we 
are creating objects, allocʼing memory,etc. and we donʼt want this to happen regardless 
of weather we are running DTrace or not. Now this example isnʼt the greatest because 
we really want to pass information about Objective-C objects in our apps, so how do we 
do this?

#import "AppController.h"
#import "MyAppProvider.h"

@implementation AppController

-(id)init
{ 
 return self;
}

-(IBAction)doSomething:(id)sender
{
 if(MYAPP_ACTION_PHASE_ENABLED()){
  int aNum = 4;
  char *msg = (char *)"a String";
  
  MYAPP_ACTION_PHASE(aNum,msg);
 }
}

@end



Notice a couple things (1) I changed aNum to being a NSInteger which means I also 
have to make sure itʼs really an int because under 64 bit mode this changes to a long. 
Also I now have a NSString that we are trying to pass into DTrace, for Objective-C 
objects the quickest way to pass information about them is to call -description on them 
which generates a NSString that provides information about the object and itʼs contents, 
for a NSString it simply contains the plain string which we then call -UTF8String on to 
turn into a null terminated C String which DTrace does understand and can use. For this 
probe the phase number is arg0 and the c string is arg1. If we just wanted to check that 
this probe is firing we could check like so in the terminal

Really my printf in the probe action is unnecessary here, but we now know that the 
probe is firing in our application. So now all we need to do is modify our script to give us 
the information that we really want to know about in the probe.

#import "AppController.h"
#import "MyAppProvider.h"

@implementation AppController

-(id)init
{ 
 return self;
}

-(IBAction)doSomething:(id)sender
{
 if(MYAPP_ACTION_PHASE_ENABLED()){
  NSInteger aNum = (int)4;
  NSString *myString = [[NSString alloc] initWithString:@"CRITICAL 
          DEBUG INFO!"];
  char *msg = (char *)[[myString description] UTF8String];
  
  MYAPP_ACTION_PHASE(aNum,msg);
 }
}

@end



dtrace -n ‘:MyApp::{printf(“Phase %i Message: %s”,arg0,copyinstr(arg1));}’

Here I am just using printf which is very similar to trace() but it allows us to control the 
formatting of the output we are interested in. In this case our probe fires with “Phase 4 
Message: CRITICAL DEBUG INFO!” This fires whenever the -doSomething method is 
triggered on the AppController class and DTrace is actively tracing that probe. If we 
want to account for all the probes weʼll need to add the start and end probes in as well 
first. 

In this case the probes with no arguments we really donʼt need to guard because what 
happens is that they get translated into NOPS12. 

12 http://en.wikipedia.org/wiki/NOP

#import "AppController.h"
#import "MyAppProvider.h"

@implementation AppController

-(id)init
{ 
 return self;
}

-(IBAction)doSomething:(id)sender
{
 MYAPP_ACTION_START();
 
 if(MYAPP_ACTION_PHASE_ENABLED()){
  NSInteger aNum = (int)4;
  NSString *myString = [[NSString alloc] initWithString:@"CRITICAL 
              DEBUG INFO!"];
  char *msg = (char *)[[myString description] UTF8String];
  
  MYAPP_ACTION_PHASE(aNum,msg);
 }
 
 MYAPP_ACTION_END();
}

@end

http://en.wikipedia.org/wiki/NOP
http://en.wikipedia.org/wiki/NOP


Recording Data from the Userland Static Probes

Now when we search for our Appʼs Providers with dtrace we see all 3 probes available 
and the Objective-C method that they are being fired in. To use this I created this quick 
script

And then made it executable and ran it and got the following

Here, with very little effort we can easily see (1) what CPU core the code is executing on 
(2) What Objective-C method the probe is in and (3) the debug information that we 
wanted to make available to DTrace. If we want to translate this into a custom 
Instruments Instrument we just need to create it like so

#!/usr/sbin/dtrace -s

:MyApp::action_start { }

:MyApp::action_phase
{
 printf("Phase %i Message: %s",arg0,copyinstr(arg1));
}

:MyApp::action_end { }



action_start probe

I opted to use the custom provider and to just look for the MyApp Module and the 
action_start label. By default Instruments wonʼt show the event so you have to record 
the name which will show “action_start.” When in these instruments custom probes we 
actually canʼt write trace() or printf, etc so we have to place that into options under 
“Record the following data:”

action_phase probe

Here again I am using a custom provider and looking for the MyApp module and then 
the action_phase label. Again it wonʼt record the name (action_phase) by default so we 
include that in the instrument. On this probe through itʼs important we record the 
message string and the phase number so the message is arg1 and the phase number is 
arg0 and we just need to tell instruments to record them and what they are (i.e. String, 
Integer.)



action_end Probe

This is exactly the same as the action_start probe with the only difference is that we are 
tracing for a different name and recording the label name. When we run this custom 
Instrument it will show us the following information for this even happening 1 time

Instruments also gives us extra information automatically like the user stack trace and 
the thread id in the extended detail pane as well. 

Tracing Strategy Terminal or Instruments?

So you have seen that with instruments we get some extra benefits that in some 
situations it can be nice to have such information, on the other hand it can be much 
quicker sometimes to write scripts and invoke them from the terminal. The answer is 
that there really is no right answer here, it partially depends which style you favor and if 
you are asking a quick question or digging into a long debug session.

Typically I find that if I am asking quick questions and trying to prove/disprove 
something itʼs much faster to use dtrace -n in the terminal or write a script file and make 
it executable. Typically I use Instruments more for storing custom instruments that i 
know Iʼll need to periodically remeasure. Additionally unless you are good at organizing 
script files on disk Instruments provides a convenient organizing facility for your 
Instruments and you can group them by Application they are for etc. The only thing I 
really wish Instruments allowed was to let me set custom Iconʼs for the instruments. The 
Instruments files so have a iconURL key, but so far I havenʼt been successful in making 
it work, but then again I havenʼt tried spectacularly hard yet. 



Chapter 5 General DTrace Tips
Tracing calls to Nil

This tip comes not from me, but from Bill Bumgarner13  and operates on essentially 
tracing objc_msgSend again, but checking that the object we are referencing is 0 or nil. 
I should note what he put in this post 

“There are [at least] two different Objective-C messagers. objc_msgSend() and 
objc_msgSend_stret(). All of what is written here applies to both however 
objc_msgSend_stret() is the problematic one when it comes to messages to nil; it is the 
one used to return structures and, thus, the one that does not necessarily guarantee a 
zero return.”

The rest of his article follows: In my last post on the subject, Adrian Milliner posted a 
short dtrace script that would log the backtrace for all invocations of objc_msgSend 
where the first paramater — the target — was nil.

The script is as follows:

pid$1::objc_msgSend:entry
/arg0==0/
{
  ustack();
}

Once saved to a file (in this case objc-nil-trace.d, the trace can be applied to any 
running Cocoa process via:

sudo dtrace -s objc-nil-trace.d <pid>

The <pid> argument should, obviously, be the process ID of the process to be traced.

It works well enough and is certainly faster than a conditional breakpoint in GDB (likely, 
orders of magnitude faster), but it is far from a complete solution.

The output will be a series of backtraces dumped upon entry into an objc_msgSend() 
call where the first argument is nil. Something like:

  0  18968               objc_msgSend:entry
              libobjc.A.dylib`objc_msgSend
              AppKit`-[NSApplication _doOpenUntitled]+0x11f
              AppKit`-[NSApplication(NSAppleEventHandling) 
_handleCoreEvent:withReplyEvent:]+0x62

13 http://www.friday.com/bbum/2008/01/03/objective-c-using-dtrace-to-trace-messages-to-nil/

http://www.friday.com/bbum/2008/01/03/objective-c-using-dtrace-to-trace-messages-to-nil/
http://www.friday.com/bbum/2008/01/03/objective-c-using-dtrace-to-trace-messages-to-nil/


              Foundation`-[NSAppleEventManager 
dispatchRawAppleEvent:withRawReply:handlerRefCon:]+0x28f
              Foundation`_NSAppleEventManagerGenericHandler+0xdf
              AE`aeDispatchAppleEvent(AEDesc const*, AEDesc*, unsigned long, unsigned 
char*)+0x90
              AE`dispatchEventAndSendReply(AEDesc const*, AEDesc*)+0x2c
              AE`aeProcessAppleEvent+0xb1
              HIToolbox`AEProcessAppleEvent+0x26
....

The first issue is that the backtrace does not dump the selector that was being 
messaged when the trace was triggered. In some cases, the line number of the original 
code may not be recoverable or, even if recoverable, you may not have the source 
available.

Now, the dtrace scripting language is misleadingly simple. It looks kinda like a subset of 
C with a bit of qualification sugar available upon function invocation.

However, the runtime is considerable more complex. When a dtrace script runs, it is 
actually running within the kernel. While introspection of the inferior is possible, it 
requires diddling the inferior from afar, using the various dtrace commands to copy over 
bits of data, as needed. Actually executing code in the client — often required to 
introspect higher level constructs — is pretty much out of the question. Given that said 
execution would happen in a quite thoroughly unexpected thread, doing so is likely to be 
highly destructive.

So, to grab the actual selector being invoked, we need to copy the selector name from 
the inferior into the dtrace interpreter within the kernel.

Specifically, taking the script and changing it to the following will dump the actual 
selector that was sent to objc_msgSend(). It treats the SEL argument as a pointer to a 
standard C string. It is, but only by coincidence (and a coincidence that is unlikely to 
change any time soon). However, predictable coincidence is just fine for debugging 
purposes.

pid$1::objc_msgSend:entry
/arg0==0/
{
    printf("[<nil> %s]", copyinstr(arg1));
    ustack();
}

Well, almost.

Dtrace scripts — running in kernel land — have some serious limitations on the memory 
in the inferior they can access. In particular, a dtrace script cannot access data on 
pages of memory that are not currently active within the process at the time the script 
executes.



Which presents a problem. The actual selectorʼs name — the C string pointed to by 
arg1, the selector passed to objc_msgSend — is located on pages of memory in the 
dyld shared region. And this trips up dtrace in that the memory appears to almost never 
be resident. I say almost never because I had the rather head scratching moment where 
it was resident for about ten minutes. That was fun. Not.

However, setting the environment variable DYLD_SHARED_REGION to avoid causes 
the process to not use the shared cache. This, in turns, causes the pages that contain 
the selectors to remain in process and, thus, allows this rather seemingly simple dtrace 
script to dump the messages to nil. (Thank you, Greg!)

While this particular script does rather verbosely dump every single nil targeted 
invocation, it also dumps the stack trace at the time of invocation. Very useful.

Aside: objc_msgSend()ʼs return cannot be traced via dtrace at this time. Not surprising 
given that the function doesnʼt actually return — as far as dtrace is concerned, it is 
nothing but preamble. [/EndArticle]

Whatʼs even better than all of this is that someone in his comments offered up a great 
script that collects a lot more information and displays aggregated information on what 
is messaging nil

#pragma D option quiet

BEGIN
{
        globalNilMsgIndex = 0;
        globalVtime = vtimestamp;
        globalWtime = walltimestamp;
}

pid$target::objc_msgSend:entry
/ arg0 == 0 /
{
        this->mIndex = ++globalNilMsgIndex;

        printf("%7d: [nil %s] (thread: %08x)\n", this->mIndex, 
copyinstr(arg1), tid);
        @nilAgg[ustack()] = count();
        @selCounter[copyinstr(arg1)] = count();
}

END
{
        printf("Nil-calling sites:\n");
        printa(@nilAgg);

        printf("Selectors frequently sent to nil:\n");
        printa(@selCounter);
}



What this script is doing is declaring 3 global vars globalNilMsgIndex, globalVtime and 
global wtime. When it hits the pid provider of your app target it traces objc_msgSend 
with the predicate that arg0 (the object being sent a message) is 0 or nil. When we have 
the right method and predicate it increments the globalNilMsgIndex counter and prints 
the message index and what message was sent to nil in addition to the thread id (tid) 
that this is being executed on. Then it aggregates the userland stack trace and the 
message that was sent to nil. When this script reaches the end it prints out all the stack 
traces of what lead to a nil message call and then shows what was most frequently sent 
to nil.

Here is a sample run of what I get when I ran it on Keynote for a little bit.

Objective-C Visual Flow Indentation from Terminal

#!/usr/sbin/dtrace -s

#pragma D option flowindent

objc$target:::entry,
objc$target:::return
{
 trace(probemod);
}



This is a really simple script Iʼve used to show how you can get Objective-C visual flow 
indentation inside the terminal. If you use the -F option or put “#pragma D option 
flowindent” in your script when invoking DTrace it will try & provide you with visual 
information of how functions are being entered and exited giving you much more 
powerful information than “function : entry” and “function : return.” When you run it on an 
objective-c target you should see something like

This technique is really a quick and dirty way to see this information if you need to. It 
could also be used with my next technique what I call “reference and traceʼ that it you 
could express interest in a specific spot in code and when you hit it set a variable to 
equal one then use the code above and add a predicate in that the variable equal in and 
you have a very quick way of seeing what was triggered by a method.

A note on objc_msgSend

Thanks to a reviewer I should note that we never really directly trace objc_msgSend 
return, this is because “There is no ʻexitʼ on objc_msgSend() is tail call optimized;   it 
figures out the IMP and JMPs to it, never returning.” If you want to track returns on 
Objective-C method calls you must use the Objective-C provider for this. To prove this I 
wrote the following script in the terminal to make sure of this.



Reference and Trace

When I saw Bryan Cantrillʼs Google Tech Talk one technique of his that I saw what 
something I call Reference and Trace, by that i mean we pick a point of Interest 
(typically itʼs something we donʼt expect to run and we want to know why) and maybe 
we want to see what happened as a result of this in the same provider or maybe what 
happens as a result of an action in the kernel or any other provider.

This is a quick example of this methodology in practice that I wrote in a minute. In 
essence what this script does is it tells DTrace to visually show what is going on as it 
gets indicators that it is entering into and exiting out of Objective-C functions in the 
Cocoa Framework. When the script is initiated it creates a thread local variable enabled 
and sets it to 0. As soon as it hits the first NSMutableArray method it sets enabled to 1 
and from there on out it traces the entering into and exiting out of Cocoa methods. I 
would use this with key points in your code that you want to quickly measure and see 
what happens afterwards. You can very easily change this to show Kernel functions, 
Core Foundation Functions, etc you just need to add the probe points for entry and 
return from those functions that you want to trace.

#!/usr/sbin/dtrace -s

#pragma D option flowindent

BEGIN
{
 self->enabled = 0;
}

objc$target:NSMutableArray::entry
{
 self->enabled = 1;
}

objc$target:::entry,
objc$target:::return
/self->enabled == 1/
{
 trace(probemod);
}

END
{
 self->enabled = 0;
}



A quick note about tracing dynamic loading & DTrace

DTrace works great in most instances except when dynamic loading is involved. Itʼs 
possible for DTrace to be slowed down by an order or magnitude because there is 
simply too much being resolved for it to not skew the timing results, you may encounter 
this for instance when a Cocoa application is just starting up.

Thanks



