
Jonathan ‘Wolf’ Rentzsch
http://rentzsch.com

Dynamically Overriding Mac OS X
Down the Rabbit Hole

Monday, February 9, 2009

“These rules are no different than
those of a computer system.

Some of them can be bent.
Others... can be broken.”

—Morpheus

Monday, February 9, 2009

The paper’s original title was “How to Hack Mac OS X”

However, “hacking” is just too abused, especially in the
Unix realm.

Really, think “trap patching”. However:

On Mac OS X, traps aren’t used nearly as often.

“Patching” also has a specific definition in the Unix
realm: applying textual differences to source code.

Thus, “dynamic overriding”.

What Happened to
How to Hack Mac OS X?

Monday, February 9, 2009

The ability to modify software at runtime...

...often in ways not originally anticipated by the
software’s original authors.

Can suppress, change or extend existing functionality.

Can add wholly new functionality to existing software.

The modifications exist only in memory:

Never written to disk (save VM swapping).

Not permanent.

Easy to rollback — restart the app.

Dynamic Overriding Defined

Monday, February 9, 2009

Dynamic Overriding
Made possible by two
techniques that work

together

Dynamic Overriding:
Made possible by two
techniques that work

together

Function
Overriding

Code
Injection

Monday, February 9, 2009

Unlike the classic Mac OS, Mac OS X does not
directly support dynamically overriding system
functions.

At best, APIs exposed with Objective C interfaces can
be overridden with categories and/or posing. Major
limitations:

Requires the API be exposed in ObjC. Excludes all of
Mach, BSD and Carbon.

Overriding an ObjC wrapper does not override the
original function. Override will not effect all of the
app if it has mixed procedural/objective code.

Function Overriding

Monday, February 9, 2009

Ideally, overriding a system function would be simple:

Discover the function’s entry in a universal table.

Save off a pointer to the original code.

Replace it with a pointer to your overriding code.

Alas, Mach’s linking model lacks any sort of centralized
bottleneck. This stands in contrast to CFM.

Function Overriding

Monday, February 9, 2009

CFM’s Model

vector table (export)

implementation block

calloc

malloc

free

malloc

calloc

free

System Module

vector table (import)

implementation block

loadPlugins

main

main

loadPlugins

App Module

malloc

vector table (import)

implementation block

main

main

Plugin Module

malloc

Exporter-Owned Vector Table (i.e. CFM)

Monday, February 9, 2009

CFM vs Mach

vector table (export)

implementation block

calloc

malloc

free

malloc

calloc

free

System Module

vector table (import)

implementation block

loadPlugins

main

main

loadPlugins

App Module

malloc

vector table (import)

implementation block

main

main

Plugin Module

malloc

Importer-Owned Vector Table (i.e. Mach)

vector table (export)

implementation block

calloc

malloc

free

malloc

calloc

free

System Module

vector table (import)

implementation block

loadPlugins

main

main

loadPlugins

App Module

malloc

vector table (import)

implementation block

main

main

Plugin Module

malloc

Exporter-Owned Vector Table (i.e. CFM)

Monday, February 9, 2009

You may think that you could walk all loaded modules
to discover and rewrite all their vector tables.

That won’t work:

Lazy binding means symbols aren’t resolved until
they’re first used. You’d have to force resolving of all
symbols before rewriting: expensive and tricky.

All the work needs to be done again when a new
module is loaded.

Won’t work for symbols looked up programatically.

Function Overriding

Monday, February 9, 2009

What will work: rewrite the original function
implementation, in memory, itself.

Basic premise: replace the original function’s first
instruction with a branch instruction to the desired
override code.

This technique is known as single-instruction
overwriting.

You may shudder now...

Function Overriding

Monday, February 9, 2009

Benefits:

Atomic replacement. Safe in the face of multiple
preemptive threads calling the original function.

Less likely to harmfully impact the original code. If you
wish to reenter the original function from the
override, you’ll need to re-execute the replaced
instruction. Moving less code around makes this
more likely to work.

Compatibility. Works with the widest variety of
function prologs and other patching
implementations (including our own!)

Single-Instruction Overwriting

Monday, February 9, 2009

Replacing a single instruction is good, but limiting.

Can’t branch to an arbitrary address, as that would
take at least three instructions.

Leaves us with branch instructions that encode their
targets:

b (branch relative)

ba (branch absolute)

bl (branch relative, update link register)

bla (branch absolute, update link regiter)

Single-Instruction Overwriting

Monday, February 9, 2009

bl and bla go away since they stomp on the link
register — that houses the caller’s return address!

b and ba embed a 4-byte-aligned, 24-bit address.

For b, that’s ±32MB relative to the current program
counter. We really can’t guarantee our override will
be within 32MB of the original function.

For ba, that’s the lowermost and uppermost 32MB of
the current address space. The lowermost 32MB
tends to be busy with loaded code and data.

That leaves ba’s uppermost 32MB of address space.

Single-Instruction Overwriting

Monday, February 9, 2009

We can allocate a single page at the end of the
address space to hold our branch island.

(Mach’s sparse memory model works nicely here.)

The branch island acts as a level of indirection,
allowing the address-limited ba to effectively target
any address.

Two uses for branch islands: escape and reentry.

The Branch Island

Monday, February 9, 2009

Escape branch island (required):

Used to jump from the original function to the
overriding function.

Allocated at the end of the address space.

What our generated ba instruction points at.

Reentry branch island:

Optional, only generated if you wish to reenter the
original function.

Houses the original function’s first instruction.

Branch Islands

Monday, February 9, 2009

C definition:
long kIslandTemplate[] = {
 0x9001FFFC,
 0x3C00DEAD,
 0x6000BEEF,
 0x7C0903A6,
 0x8001FFFC,
 0x60000000,
 0x4E800420
};

What, you guys don’t read machine language?!?

Inside the Branch Island

Monday, February 9, 2009

Branch Islands for Dummies
Opcode Assembly Comment

0x9001FFFC stw r0,-4(SP) save off original r0 into
red zone

0x3C00DEAD lis r0,0xDEAD load the high half of
address

0x6000BEEF ori r0,r0,0xBEEF load the low half of
address

0x7C0903A6 mtctr r0 load target into counter
register

0x8001FFFC lwz r0,-4(SP) restore original r0

0x60000000 nop optional original first
instruction (for
reentry)

0x4E800420 bctr branch to the target in
counter register

Monday, February 9, 2009

Lame Override Animation

malloc

malloc client

! Initial State

myMalloc

Monday, February 9, 2009

Lame Override Animation

malloc

escape island

malloc client

! Escape Island Allocated
and Targeted

myMalloc

Monday, February 9, 2009

Lame Override Animation

malloc

escape island

reentry island

malloc client

! Reentry Island Allocated,
Targeted & Engaged

myMalloc

Monday, February 9, 2009

Lame Override Animation

malloc

escape island

reentry island

malloc client

! Escape Island Atomically
Engaged

myMalloc

Monday, February 9, 2009

Discover the function’s address. Use
_dyld_lookup_and_bind[with_hint]()
and NSIsSymbolNameDefined[WithHint]().

Test the waters. Watch out for functions that start with
the mfctr instruction.

Make the original function writable. vm_protect().

Allocate the escape island. Use vm_allocate().

Target the escape island and make it executable. Use
msync().

Function Overriding Details

Monday, February 9, 2009

Build the branch instruction. Target the escape island.

Optionally allocate and engage the reentry island.

Atomically:

Insert the original function’s first instruction into the
reentry island. If reentry is desired.

Target the reentry island and make it executable. Again,
if reentry is desired.

Swap the original function’s first instruction with the
generated ba instruction. If atomic replacement fails
(unlikely), loop and try again.

Function Overriding Details

Monday, February 9, 2009

Function overriding is a powerful technique, but it’s
only attains half of our goal.

By itself, we can only override system functions in our
own software.

Code injection, on the other hand, allows us override
application and system functions in any process.

Not just override functions, but inject new Objective
C classes (example: for posing)

Code Injection Overview

Monday, February 9, 2009

Mach supplies everything we need.

It’s just not very well documented. ;)

Specifically, Mach provides APIs for:

Remote memory allocation. (vm_allocate())

Remote memory I/O. (vm_write())

Remote thread allocation. (thread_create())

Remote thread control.
(thread_create_running())

Code Injection Overview

Monday, February 9, 2009

Allocate a remote thread stack. No need to populate it
— parameters will be passed in registers.

Allocate and populate the thread’s code block. The gotcha
here is determining the thread entry’s code size. It’s
surprisingly hard, and requires a calling the dynamic
loader APIs and stat()’ing the file system!

Allocate, populate and start the thread. Set the thread
control block’s srr0 to the code block, r1 to the
stack, r3 through r10 to parameters and lr to
0xDEADBEEF (this thread should never return).

Code Injection Details

Monday, February 9, 2009

While the injected thread can stop itself, it can’t
delete itself (it would need to deallocate its own stack
and code while running).

May be work-arounds, like the injected thread
spawning another “normal” cleanup thread.

Another solution is to install a permanent “injection
manager” thread, that would start a Mach server to
handle future injections via IPC.

Bonus feature: such an “injection server” would
eliminate the need to start a new thread per
injection.

Code Injection Leakage

Monday, February 9, 2009

Two packages, both written in C:

mach_override: Implements function overriding.

http://rentzsch.com/mach_override

mach_inject: Implements code injection.

http://rentzsch.com/mach_inject

Code is hosted by Extendamac (BSD-style license)

http://extendamac.sourceforge.net

Code & Doc Availability

Monday, February 9, 2009

“Whoa.”
—Neo

Conclusion

Monday, February 9, 2009

