
Advanced
Mac OS X Rootkits

Dino Dai Zovi
Chief Scientist

Endgame Systems

Overview

• Mac OS X and Mach
• Why use Mach for rootkits?
• User-mode Mach rootkit techniques
• Kernel Mach rootkit techniques

2

WHAT IS MACH?

3

Mac OS X System Architecture

4

Mac OS X System Architecture

5

SUP DAWG,
WE HEARD
YOU LIKE
KERNELS,
SO WE PUT
A KERNEL
IN YOUR
MICRO-
KERNEL
(SO YOU
CAN MACH
WHILE YOU
BSD)

Introduction to Mach

•Mac OS X kernel (xnu) is a hybrid between
Mach 3.0 and FreeBSD
–FreeBSD kernel top-half runs on Mach kernel
bottom-half

–Multiple system call interfaces: BSD (positive
numbers), Mach (negative)

–BSD sysctls, ioctls
–Mach in-kernel RPC servers, IOKit user
clients, etc

6

Mach Microkernel Abstractions

• Task: A resource container
– Virtual memory address space
– 1 or more Threads
– IPC port rights

• Thread: An entity that can be scheduled by the kernel to
run on a processor

• Port: An inter-task communication mechanism using
structured, reliable messages
– Think of them as sender-restricted “P.O. Boxes”
– Only exist in kernel, Tasks hold Port Rights

• Message: Data communicated between ports

7

Port Names and Rights

• A Port Name is a Task-specific 32-bit number
that refers to a given port
– Similar to file descriptors and Handles

• A Task holds unidirectional Port Rights that
determine whether they may send and or receive
messages on a Port

• Tasks may transfer Port Rights between each
other by sending them in messages
–Kernel transfers rights and allocates a new
name in the receiving task

8

Example: Bootstrap server

• Tasks are created with a set of initial ports, one is the
bootstrap port, Bootstrap server is the glue that
allows different tasks to send messages to each other

• Task X registers a port with Bootstrap server under a
string name (“foo”) by sending message on Bootstrap
port
– Transfers SEND rights to Bootstrap server

• Task Y looks up “foo” on bootstrap server by sending
message to bootstrap port, replies with server port
– Reply transfers SEND rights to Task Y

• Task Y can now send messages to Task X over that port

9

Mach Security Model

• Tasks, ports, and port rights form
Mach’s capability-based security model

• Mach has no notion of users or groups
• Obtaining SEND rights on a port may be
a privilege escalation
–SEND rights on another task’s task port gives
full control over that task

10

Mach Tasks vs. BSD Processes

• Mach Tasks own Threads, Ports, and Virtual Memory
• BSD Processes own file descriptors, etc.
• BSD Processes <=> Mach Task

– task_for_pid(), pid_for_task()
• POSIX Thread != Mach Thread

– Library functions use TLS BSD Process

Mach Task
Mach

Thread

Mach
Thread

Mach
Thread

... Virtual Memory
(mapping, permissions,

memory regions)

Mach Port
namespace

11

Mach RPC

• Mach RPC uses Mach messages for
communication, NDR for data packing

• Interface files (.defs) are compiled by MiG
into client and server stubs

• Most Mach kernel services are offered over
RPC
– i.e. thread, task, and VM control

• Mach kernel traps are minimal (it’s a
microkernel, remember?)

12

Mach Task/Thread System Calls

•Mach kernel RPC calls:
–task_create(parent_task, ledgers,
ledgers_count, inherit_memory, *child_task)

–thread_create(parent_task,
*child_activation)

–vm_allocate(task, *address, size, flags)
–vm_deallocate(task, address, size)
–vm_read(task, address, size, *data)
–vm_write(task, address, data, data_count)

13

MACH-BASED ROOTKITS

14

Why Mach-based Rootkits?

• Traditional Unix rootkit techniques are
well understood

• Mach functionality is more obscure
• Rootkits using obscure functionality are
less likely to be detected or noticed

• Mach is fun to program
–Imagine re-learning Unix all over again

15

User-mode Mach Rootkits

• Not as “sexy” as kernel mode rootkits
• Can be just as effective and harder to

detect
• Are typically application/process -specific
• Based on thread injection or executable

infection
• Would you notice an extra bundle and

thread in your web browser?

16

Injecting Mach Threads

• Get access to another task’s task port
– task_for_pid() or by exploiting a local privilege escalation

vulnerability
• Allocate memory in remote process for thread stack and

code trampoline
• Create new mach thread in remote process

– Execute trampoline with previously allocated thread
stack segment

– Trampoline code promotes Mach Thread to POSIX Thread
•Call _pthread_set_self(pthread_t) and
cthread_set_self(pthread_t)

17

Mach Exceptions

• Tasks and Threads generate exceptions on memory errors
• Another thread (possibly in another task) may register as

the exception handler for another thread or task
• Exception handling process:

1. A Thread causes a runtime error, generates an
exception

2. Exception is delivered to thread exception handler (if
exists)

3. Exception is delivered to task’s exception handler (if
exists)

4. Exception converted to Unix signal and delivered to BSD
Process

18

Injecting Mach Bundles

• Inject threads to call functions in the remote process
– Remote thread calls injected trampoline code and then

target function
– Function returns to chosen bad address, generates an

exception
– Injector handles exception, retrieves function return value

• Call dlopen(), dlsym(), dlclose() to load bundle from disk
• Inject memory, call NSCreateObjectFileImageFromMemory(),

NSLinkModule()
• Injected bundle can hook library functions, Objective-C

methods

19

inject-bundle

• inject-bundle
–Inject a bundle from disk into a running process
–Usage: inject_bundle path_to_bundle [pid]

• Sample bundles
–test: Print output on load/run/unload
–isight: Take a picture using iSight camera
–sslspy: Log SSL traffic sent through
SecureTransport

–ichat: Log IMs from within iChat

20

Hooking and Swizzling

• Hooking C functions is basically the same
as on any other platform
–see Rentzsch’s mach_override

• Objective-C runtime has hooking built-in:
–method_exchangeImplementations()
–or just switch the method pointers manually
–all due to Obj-C’s dynamic runtime
–use JRSwizzle for portability

21

Rootkitting the Web Browser

• What client system doesn’t have the web browser
open at all times?

• Will be allowed to connect to *:80 and *:443 by
host-based firewalls (i.e. Little Snitch)

• Injected bundles do not invalidate dynamic code
signatures (used by Keychain, etc)

22

INJECTED BUNDLE DEMO

23

MACHIAVELLI

24

NetMessage and NetName servers

• Network transparency of IPC was a design goal
• Old Mach releases included the NetMessage

Server
–Mach servers could register themselves on the local

NetName server
–Clients could lookup named servers on remote hosts
–Local NetMessage server would act as a proxy,

transmitting Mach IPC messages over the network
• These features no longer exist in Mac OS X
• Machiavelli adds them back

25

Machiavelli

• Mach RPC provides high-level remote
control
–vm_alloc(), vm_write(), thread_create() on
kernel or any task

• We want to still use MiG generated client
RPC stubs, don’t want to re-implement

• Machiavelli acts as a Mach RPC “bridge”,
allowing tasks on two different machines to
do RPC between them (both directions)

26

Machiavelli Architecture

• Machiavelli Proxy
– Receives messages on proxy ports and sends to remote Agent
– Replaces port names in messages received from remote Agent

with proxy ports
• Machiavelli Agent

– Receives messages over network from Proxy, sends to real
local destination

– Receives and transmits reply message if a reply is expected
• Machiavelli RPC Server

– Provides miscellaneous “glue” functionality like task_for_pid(),
sysctl(), etc.

27

Machiavelli Message Flow

28

Mach RPC
client stub

Machiavelli
Proxy

Machiavelli
Agent

Mach RPC
server stub

Mach IPC

Machiavelli Message Flow

29

Mach RPC
client stub

Machiavelli
Proxy

Machiavelli
Agent

Mach RPC
server stub

TCP

Machiavelli Message Flow

30

Mach RPC
client stub

Machiavelli
Proxy

Machiavelli
Agent

Mach RPC
server stub

Mach IPC

Machiavelli Message Flow

31

Mach RPC
client stub

Machiavelli
Proxy

Machiavelli
Agent

Mach RPC
server stub

Mach IPC

Machiavelli Message Flow

32

Mach RPC
client stub

Machiavelli
Proxy

Machiavelli
Agent

Mach RPC
server stub

TCP

Machiavelli Message Flow

33

Mach RPC
client stub

Machiavelli
Proxy

Machiavelli
Agent

Mach RPC
server stub

Mach IPC

Mach messages

• Mach messages are structured and
unidirectional

• Header:
typedef struct
{
 mach_msg_bits_t msgh_bits;
 mach_msg_size_t msgh_size;
 mach_port_t msgh_remote_port;
 mach_port_t msgh_local_port;
 mach_msg_size_t msgh_reserved;
 mach_msg_id_t msgh_id;
} mach_msg_header_t;

• Body consists of typed data items

34

Complex Mach Messages

• “Complex” Mach messages contain out-of-line
data and may transfer port rights and/or
memory pages to other tasks

• In the message body, descriptors describe the
port rights and memory pages to be transferred

• Kernel grants port rights to the receiving
process

• Kernel maps transferred pages to receiving
process, sometimes at message-specified
address

35

Proxying Mach Messages

• Proxy maintains a Mach port set
– A port set has the same interface as a single port and can

be used identically in mach_msg()
– Each proxy port in the set corresponds to the real

destination port name in the remote Agent
– Port names can be arbitrary 32-bit values, so port set

names are pointers to real destination port name values
• Received messages must be translated (local <=>

remote ports and descriptor bits)
• Messages are serialized to byte buffers and then

sent to Agent

36

Serializing Mach Messages

• Serializing “simple” messages is simple as
they don’t contain any out-of-line data

• Out-of-line data is appended to the
serialized buffer in order of the
descriptors in the body

• Port names are translated during
deserialization
–Translating to an intermediate “virtual port
name” might be cleaner

37

Deserializing Mach Messages

• Port names in the mach message must be
replaced with local port names

• On Agent, this is done to receive the reply
• On Proxy, this is done to replace transferred

port names with proxy port names
–Ensures that only the initial port must be manually

obtained from the proxy, the rest are handled
automatically

• OOL memory is mapped+copied into address
space

38

Machiavelli example

int main(int argc, char* argv[])
{
 kern_return_t kr;
 mach_port_t port;
 vm_size_t page_size;

 machiavelli_t m = machiavelli_init();
 machiavelli_connect_tcp(m, "192.168.13.37", "31337");
 port = machiavelli_host_self(m);

 if ((kr = _host_page_size(port, &page_size)) != KERN_SUCCESS) {
 errx(EXIT_FAILURE, "_host_page_size: %s", mach_error_string(kr));
 }

 printf("Remote host page size: %d\n", page_size);

 return 0;
}

39

MACHIAVELLI DEMO

40

Miscellaneous Agent services

• Agent must provide initial Mach ports:
–host port
–task_for_pid() (if pid == 0 => returns kernel
task port)

• As OS X is a Mach/Unix hybrid, just
controlling Mach is not enough
–i.e. How to list processes?

• Instead of implementing Unix functionality
in Agent, inject Mach RPC server code into

41

Network Kernel Extensions (NKEs)

•NKEs can extend or modify kernel
networking functionality via:
–Socket filters
–IP filters
–Interface filters
–Network interfaces
–Protocol plumbers

42

MACH IN THE KERNEL

43

Mac OS X Kernel Rootkits

• Most Mac OS X Kernel Rootkits do traditional
Unix-style syscall filtering

• They load as kernel extensions and remove
themselves from kmod list
–WeaponX, Mac Hacker’s Handbook, Phrack 66
–Hides the kernel extension and prevents removal

• Alternatively, code can be directly loaded into
kernel via vm_allocate(), and vm_write()

• In both cases, we have an unauthorized Mach-O
object file in the kernel

44

Uncloaking Kernel Rootkits

• Access to kernel task exposes kernel memory regions map
and gives direct access to kernel memory
– get kernel task via task_for_pid(0)

• Iterate over allocated regions, examining beginning for
Mach-O headers
– Avoid reading volatile memory, causes panic

• Multiple Mach-O headers will may be found pointing to the
same text and data segments

• Compare identified segments to segments loaded by
kernel extensions in the kmod list

• Suspicious Mach-O objects can be dumped to disk for
reverse engineering and analysis

45

UNCLOAK DEMO

46

Evasive Maneuvers

• Unix system call filtering can’t evade
Mach kernel RPC (different interface)

• There’s no reason why kernel rootkits
need to be loaded as Mach-O objects
–vm_allocate() + thread_create() on kernel task
–DKOM, return-oriented rootkits, etc.

• Alternatively, filter in-kernel Mach RPC
servers

47

Interposing on Kernel Mach RPC

• Mach system calls allow Mach RPC to in-kernel
servers which perform task, thread, and VM
operations

• RPC routines are stored in the mig_buckets hash
table by subsystem id + subroutine id

• Analogous to sysent table for Unix system calls
• Incoming Mach messages sent to a kernel-owned

port are dispatched through mig_buckets
• We can interpose on these function calls or inject

new RPC servers by modifying this hash table

48

Example: inject_subsystem

int inject_subsystem(const struct mig_subsystem * mig)
{
 mach_msg_id_t h, i, r;
 // Insert each subroutine into mig_buckets hash table
 for (i = mig->start; i < mig->end; i++) {
 mig_hash_t* bucket;
 h = MIG_HASH(i);
 do { bucket = &mig_buckets[h % MAX_MIG_ENTRIES];
 } while (mig_buckets[h++ % MAX_MIG_ENTRIES].num != 0 &&
 h < MIG_HASH(i) + MAX_MIG_ENTRIES);
 if (bucket->num == 0) { // We found a free spot
 r = mig->start - i;
 bucket->num = i;
 bucket->routine = mig->routine[r].stub_routine;
 if (mig->routine[r].max_reply_msg)
 bucket->size = mig->routine[r].max_reply_msg;
 else
 bucket->size = mig->maxsize;
 return 0;
 }
 }
 return -1;
}

49

Mach Kernel RPC servers

• In-kernel Mach RPC subsystems are
enumerated in the mig_e table and
interfaces are in /usr/include/mach/
subsystem.defs
–mach_vm, mach_port, mach_host, host_priv,
host_security, clock, clock_priv, processor,
processor_set, is_iokit, memory_object_name,
lock_set, ledger, semaphore, task, thread_act,
vm_map, UNDReply, default_pager_object,
security

50

Conclusion

• Mach is a whole lot of fun
• Mach IPC can be made network
transparent and provides a good
abstraction for remote host control

• I wish my desktop OS was as secure as
iPhone OS

• For updated slides and tools go to:
–http://trailofbits.com/

51

