
Mac OS Xploitation

Dino A. Dai Zovi
Offensive Security Researcher
ddz@theta44.org
http://trailofbits.com
http://theta44.org

http://theta44.org
mailto:ddz@theta44.org
mailto:ddz@theta44.org
http://blog.trailofbits.com
http://blog.trailofbits.com
http://theta44.org

Overview

• Shameless plug

• Safety vs. Security

• Exploiting memory corruption vulnerabilities

• Bypassing Leopard’s library randomization and non-executable stack

• Scalable Zone heap allocator and heap metadata overwrites

• Heap Feng Shei

• Exploit payloads

• Mach-O symbol resolver

• Dynamic bundle injection

• “Take a Pic of the Vic”

The Mac Hacker’s

Handbook

• Just released on March 3, 2009

• Covers Mac OS X fuzzing,
debugging, reverse
engineering, exploitation,
payloads, and rootkits

• Stack and heap exploitation,
and exploit payloads for both
PowerPC and x86

• Did I mention that there’s free
0day in it?

Safety vs. Security

• Mac OS X is not as secure as other operating systems

• Macs have been compromised with zero-day exploits at CanSecWest’s
Pwn2Own contest two years in a row (a three-peat is very likely ;))

• Lacks the level of security mitigations found in Vista and Linux

• Anti-Virus is rarely run by end-users

• Mac OS X is currently safer than some other operating systems

• Less targeted by malware

• Malware identified in the wild currently relies on social engineering to infect

• No remote or client-side exploits have been spotted in the wild yet

• As market share increases, malware will increasingly target Mac OS X

Apple Web Browser Market Share

• According to Net Applications’ February 2009 report:

• 88.41% of browsers were running on Windows

• 9.61% of browsers were running on Mac OS X

• Adam J. O’Donnell’s game theory analysis predicts that it would be
economical for malware authors to attack a platform once it garners 16%
market share

• Web-based malware typically must target a specific OS and browser version.
When Safari or Firefox on Mac OS X hits 16%, theory will be tested

Memory Corruption

Memory Corruption Vulnerabilities

• Many types of vulnerabilities that can lead to remote code execution

• Buffer overflows

• Integer overflows

• Out-of-bounds array access

• Uninitialized memory use

• Defenses have been implemented and shipped in other OSs

• Address Space Layout Randomization (ASLR)

• Non-eXecutable memory (NX)

• Stack and heap protection

Address Space Layout Randomization

• Memory corruption exploits require hardcoded memory addresses for
overwritten return addresses, pointers, etc.

• ASLR hampers exploitation of memory corruption vulnerabilities by making
addresses difficult to know or predict

• First implemented by PaX project for Linux

• Linux: Full ASLR, randomized dynamically for each process

• Vista: Full ASLR, randomized at system boot, same for all processes

• Leopard: Libraries randomized when system or apps are updated

Leopard’s Library Randomization

• Randomization performed by update_dyld_shared_cache(1)

• /var/db/dyld/shared_region_roots/*.path lists paths to executables and
libraries used as dependency graph roots

• Libraries are pre-bound in shared cache at random addresses

• Shared region cache is mapped into every process at launch time

• Shared region caches and maps stored in /var/db/dyld/
dyld_shared_cache_arch and dyld_shared_cache_arch.map

• Leopard doesn’t randomize:

• The executable itself, the runtime linker dyld, the commpage

• Stacks, heaps, mmap() regions, etc.

dyld_shared_cache_i386.map

mapping EX 112MB 0x90000000 -> 0x9708E000

mapping RW 8MB 0xA0000000 -> 0xA083E000

mapping EX 660KB 0xA0A00000 -> 0xA0AA5000

mapping RO 5MB 0x9708E000 -> 0x97630000

/System/Library/Frameworks/ApplicationServices.framework/Versions/A/Frameworks/C

olorSync.framework/Versions/A/ColorSync

 __TEXT 0x90003000 -> 0x900CF000

 __DATA 0xA0000000 -> 0xA0008000

 __IMPORT 0xA0A00000 -> 0xA0A01000

 __LINKEDIT 0x97249000 -> 0x97630000

/usr/lib/libgcc_s.1.dylib

 __TEXT 0x900CF000 -> 0x900D7000

 __DATA 0xA0008000 -> 0xA0009000

 __IMPORT 0xA0A01000 -> 0xA0A02000

 __LINKEDIT 0x97249000 -> 0x97630000

/System/Library/Frameworks/Carbon.framework/Versions/A/Carbon

 __TEXT 0x900D7000 -> 0x900D8000

 __DATA 0xA0009000 -> 0xA000A000

 __LINKEDIT 0x97249000 -> 0x97630000

Non-eXecutable Memory

• Prevent arbitrary code execution exploits by marking writable memory pages
non-executable

• Older x86 processors originally didn’t support non-executable memory

• PaX project created non-executable memory by creatively desynchronizing
data and instruction TLBs

• Linux PaX and grsecurity, Windows hardware/software DEP, OpenBSD W^X

• Intel Core and later processors support NX-bit for true non-executable pages

• Tiger and Leopard for x86 set NX bit on stack segments only

• Heap memory is still writable and executable

Stack Corruption

Library Randomization and NX Stack Bypass

• Take advantage of three “non-features”

• dyld is not randomized and always loaded at 0x8fe00000

• dyld includes implementations of standard library functions

• heap allocated memory is still executable

• Stack buffer overflows on x86 can use return-chaining to call arbitrary
sequence of functions because arguments are popped off attacker-controlled
stack memory

Saved

EIP

Return

addr 2

Return

1 arg

Return

2 arg
...

Saved

EBP

Execute Payload From Heap Stub

• Reusable stub can be reused in stack buffer overflow exploits

• Align stub with offsets of overwritten EIP and EBP

• Append arbitrary NULL-byte free payload to stub to be executed

• Stub begins with control of EIP and EBP

• Repeatedly return into setjmp() and then into jmp_buf to execute small
fragments of chosen machine code from values in controlled registers

• Finally call strdup() on payload, execute payload from heap instead

Existing Payload

EBP EIP

exec-payload-from-heap stub

...

Execute Payload From Heap Stub

1.Return into dyld’s setjmp() to copy registers to a writable address

2.Return to jmp_buf+24 to execute 4 bytes from value of EBP

Adjust ESP (stack pointer)

Execute POPA instruction to load all registers from stack

Execute RET to call next function

3.Return into setjmp() again, writing out more controlled registers

setjmp
jmpbuf

+24
jmpbuf

POPA;

RET

12 bytes x86

code

POPA;

RET

Execute Payload From Heap Stub

4.Return to jmp_buf+32 to execute 12 bytes from EDI, ESI, EBP

Adjust ESP (stack pointer)

Store ESP+0xC on stack as argument to next function

5.Return into strdup() to copy payload from ESP+0xC to heap

6.Return into a JMP/CALL EAX in dyld to transfer control to EAX, heap pointer
returned by strdup()

setjmp
jmpbuf

+32
jmpbuf... strdup

JMP

EAX

12 bytes x86

code

GCC Stack Protector

• Adds a guard variable to stack frames potentially vulnerable to stack buffer
overflows

• Guard variable (aka “canary”) is verified before returning from function

• ___stack_chk_guard() function

• Effectively stops exploitation of most stack buffer overflows

• Potentially ineffective against some vulnerabilities (i.e. ANI, MS08-067)

• Supported by OS X’s GCC, but it isn’t used for OS X shipped binaries

• QuickTime is an exception now

• Started using stack protection in an update after Leopard was released

Heap Corruption

Scalable Zone Heap Allocator

• Scalable Zone Heap’s security is so 1999

• /* Author: Bertrand Serlet, August 1999 */

• Allocations are divided by size into multiple size ranged regions:

• Tiny: <= 496 bytes, 16-byte quantum size

• Small: <= 15360 bytes, 512-byte quantum size

• Large: <= 16773120 bytes, 4k pages

• Huge: > 16773120 bytes, 4k pages

• Regions are divided into fixed-size quanta and allocations are rounded up to
multiples of the region’s quantum size

• Free blocks are stored in arrays of 32 free lists, indexed by size in quanta

Free List Arrays

0x00: previous pointer

0x04: next pointer

0x08: block size

Free Block

0x00: previous pointer

0x04: next pointer

0x08: block size

Free Block

0x00: previous pointer

0x04: next pointer

0x08: block size

Free Block

NULL

NULL

> 32 * TINY_QUANTUM

32 * TINY_QUANTUM

1 * TINY_QUANTUM

2 * TINY_QUANTUM

...

NULL

NULL

NULL

Tiny Region Free List Array

Classic Heap Metadata Exploitation

• Heap metadata is stored in first 16 bytes of free blocks

• 0x00: Previous block in free list (checksummed pointer)

• 0x04: Next block in free list (checksummed pointer)

• 0x08: This block size

• An overflown in-use heap block may overwrite free heap block on a free list

• When overwritten block is removed from free list, corrupted metadata is used

• Overwritten prev/next pointers can perform arbitrary 4-byte memory write

• Heap metadata exploits are much more reliable when an attacker can affect
memory allocation/deallocation and control sizes

Heap Metadata Overwrite

0x00: previous pointer
0x04: next pointer
0x08: block size
0x0c: empty space

Free Block

0x00: data
0x04: data
0x08: data
0x0c: data

In-Use Block

0x00: 0xdeadbeef
0x04: cksum(target)
0x08: block size
0x0c: empty space

Free Block

0x00: AAAA
0x04: AAAA
0x08: AAAA
0x0c: AAAA

In-Use Block

0xfeedface

<invalid>

Target

0xdeadbeef

Before Overflow After Overflow

Heap Pointer Checksums

• Free list pointer checksums detect accidental overwrites, not intentional ones

• cksum(ptr) = (ptr >> 2) | 0xC0000003

• verify(h) = ((h->next & h->prev & 0xC0000003) == 0xC0000003)

• uncksum(ptr) = (ptr << 2) & 0x3FFFFFFC

• Allows addresses with NULL as first or last byte to be overwritten, including:

• __IMPORT segments containing imported function pointers

• __OBJC segments with method pointers

• MALLOC regions

Classic Heap Metadata Write4

• “Third Generation Exploitation”, Halvar Flake, BlackHat USA 2002

1. A = malloc(X);

2. B = malloc(Y);

3. free(B);

overflow A into B, overwriting B->prev and B->next

4. C = malloc(Y);

B removed from free list, *(uncksum(B->next)) = B->prev

Heap Metadata Large Overwrite

• “Reliable Windows Heap Exploitation”, Horowitz and Conover, CSW 2004

1. A = malloc(X);

2. B = malloc(Y);

3. free(B);

overflow A into B, overwrite B->prev, B->next

4. C = malloc(Y);

B removed from free list, *(uncksum(B->next)) = B->prev

5. D = malloc(Y); // D == B->next

Application writes to D, to attacker chosen memory address

Heap Feng Shei

• “Heap Feng Shei”, Alexander Sotirov, BlackHat Europe 2007

• “Engineering Heap Overflows With JavaScript”, Mark Daniel, Jake Honoroff,
Charlie Miller, Workshop on Offensive Technologies (WOOT) 2008

• If the attacker has full control of heap allocations/deallocations and sizes,
they can use this fragment the heap in a controlled manner

• Reserve “holes” in the heap so that that a forced allocation of a target
object falls right after a heap block allocation that can be overflown

• Overflow into target allocation and overwrite specific areas in order to gain
execution control (i.e. function pointers, virtual function table)

Exploit Payloads

Mach-O Function Resolver

• Dyld is always loaded at 0x8fe00000, begins with mach_header

• Parse through mach_header and load commands to find LC_SYMTAB

• Hash symbol names to 32-bits with “ror 13” hash, which is only 9 instructions

• Technique similar to LSD’s Win32 Assembly Components

• Can lookup dlopen() and dlsym() in dyld, use them to load/call other libraries

• Analogous to classic LoadLibrary()/GetProcAddress() combo on Windows

• Or use linker implicitly by loading a shared library directly into memory...

Mach-O Staged Bundle Injection Payload

• First stage (remote_execution_loop, ~250 bytes)

• Establish TCP connection with attacker

• Read fragment size

• Receive fragment into mmap()’d memory

• Call fragment as a function with socket as argument

• Write function result to socket

• Repeat read/execute/write loop until read size == 0 or error

• A general purpose stage for executing arbitrary code fragments

• subsequent stages, memory modification, stack restoration

Mach-O Staged Bundle Injection Payload

• Second stage (inject_bundle, ~350 bytes)

• Read file size from socket

• Read file into mmap()’d memory

• Lookup and call NSCreateObjectFileImageFromMemory() in dyld

• Loads a memory buffer as a Mach-O object

• Lookup and call NSLinkModule() in dyld

• Links a loaded Mach-O object

• Lookup and call run(int socket) in loaded bundle

Mach-O Staged Bundle Injection Payload

• Third stage (compiled bundle, can be as large as needed)

• Does whatever you want

• Can use C, C++, Objective-C and any Frameworks

• Must export an int run(int socket_fd) function

• Pure-memory injection, not written to disk

• Bundles are relatively compact; a “hello world” bundle is ~12 KB

Injectable Bundle Skeleton

#include <stdio.h>

extern void init(void) __attribute__ ((constructor));

void init(void)

{

 // Called implicitly when loaded

}

int run(int socket_fd)

{

 // Called explicitly by inject_payload

}

extern void fini(void) __attribute__ ((destructor));

void fini(void)

{

 // Called implicitly when/if unloaded

}

Compile with:
% cc -bundle -o foo.bundle foo.c

iSight Capture Bundle (Take a Pic of the Vic)

• Use CocoaSequenceGrabber from Amit Singh’s MacFUSE procfs:

(void)camera:(CSGCamera *)aCamera didReceiveFrame:(CSGImage *)aFrame;

{

 // First, we must convert to a TIFF bitmap

 NSBitmapImageRep *imageRep =

 [NSBitmapImageRep imageRepWithData: [aFrame TIFFRepresentation]];

 NSNumber *quality = [NSNumber numberWithFloat: 0.1];

 NSDictionary *props =

 [NSDictionary dictionaryWithObject:quality

 forKey:NSImageCompressionFactor];

 // Now convert TIFF bitmap to JPEG compressed image

 NSData *jpeg =

 [imageRep representationUsingType:NSJPEGFileType

 properties:props];

 // Store JPEG image in a CFDataRef

 CFIndex jpegLen = CFDataGetLength((CFDataRef)jpeg);

 CFDataSetLength(data, jpegLen);

 CFDataReplaceBytes(data, CFRangeMake((CFIndex)0, jpegLen),

 CFDataGetBytePtr((CFDataRef)jpeg), jpegLen);

 [aCamera stop];

}

Demo

Metasploit Modules To Be Released Soon

• Exploits

• mDNSResponder UPnP Location Header Overflow (10.4.0,10.4.8 x86/ppc)

• QuickTime RTSP Content-Type Overflow (10.4.0, 10.4.8, 10.5.0 x86/ppc)

• QuickTime for Java toQTPointer() Memory Corruption (10.4.8 x86/ppc)

• Safari WebKit JavaScript Regular Expression Repetition Counts Buffer
Overflow Vulnerability (10.5.2 x86)

• Payloads

• Staged Mach-O Bundle Injection

• iSight photo capture payload

• More to follow soon...

Final

Remarks

Conclusion

• MacOS X is vulnerable to the same type of malware attacks as Windows

• Leopard lags behind Vista and Linux in memory corruption defenses

• True ASLR, full NX, stack and heap memory protections

• A potential move to pure 64-bit processes in Snow Leopard may make
exploitation more difficult

• Writing exploits for Vista is hard work, writing exploits for Mac is fun.

Questions?

