Mac OS Xploitation

Dino A. Dai Zovi

Offensive Security Researcher
ddz@theta44.org
http://trailofbits.com
http://thetad44.org

http://theta44.org
mailto:ddz@theta44.org
mailto:ddz@theta44.org
http://blog.trailofbits.com
http://blog.trailofbits.com
http://theta44.org

Overview

e Shameless plug
o Safety vs. Security
e Exploiting memory corruption vulnerabilities
e Bypassing Leopard’s library randomization and non-executable stack
e Scalable Zone heap allocator and heap metadata overwrites
e Heap Feng Shei
e Exploit payloads
e Mach-O symbol resolver
¢ Dynamic bundle injection

e “Take a Pic of the Vic”

e Just released on March 3, 2009 CK e r S

PR . | {andbook

debugging, reverse
engineering, exploitation,
payloads, and rootkits

The Mac Hacker’s r”](‘ \ I
Handbook I I l (1(

e Stack and heap exploitation,
and exploit payloads for both
PowerPC and x86

e Did | mention that there’s free
Oday in it?

Safety vs. Security

e Mac OS X is not as secure as other operating systems

e Macs have been compromised with zero-day exploits at CanSecWest’s
Pwn20wn contest two years in a row (a three-peat is very likely ;))

e |_acks the level of security mitigations found in Vista and Linux
e Anti-Virus is rarely run by end-users
e Mac OS X is currently safer than some other operating systems
¢ | ess targeted by malware
e Malware identified in the wild currently relies on social engineering to infect
* No remote or client-side exploits have been spotted in the wild yet

e As market share increases, malware will increasingly target Mac OS X

Apple Web Browser Market Share

e According to Net Applications’ February 2009 report:
e 88.41% of browsers were running on Windows
e 9.61% of browsers were running on Mac OS X

e Adam J. O’Donnell’s game theory analysis predicts that it would be

economical for malware authors to attack a platform once it garners 16%
market share

e \Web-based malware typically must target a specific OS and browser version.
When Safari or Firefox on Mac OS X hits 16%, theory will be tested

Memory Corruption

v

>~

-

Memory Corruption Vulnerabilities

e Many types of vulnerabilities that can lead to remote code execution
e Buffer overflows
* Integer overflows
e Qut-of-bounds array access
e Uninitialized memory use
e Defenses have been implemented and shipped in other OSs
e Address Space Layout Randomization (ASLR)
¢ Non-eXecutable memory (NX)

e Stack and heap protection

Address Space Layout Randomization

e Memory corruption exploits require hardcoded memory addresses for
overwritten return addresses, pointers, etc.

e ASLR hampers exploitation of memory corruption vulnerabilities by making
addresses difficult to know or predict

¢ First implemented by PaX project for Linux
e Linux: Full ASLR, randomized dynamically for each process
e Vista: Full ASLR, randomized at system boot, same for all processes

¢ | eopard: Libraries randomized when system or apps are updated

Leopard’s Library Randomization

e Randomization performed by update_dyld_shared_cache(1)

e /var/db/dyld/shared_region_roots/*.path lists paths to executables and
libraries used as dependency graph roots

e | ibraries are pre-bound in shared cache at random addresses
e Shared region cache is mapped into every process at launch time

e Shared region caches and maps stored in /var/db/dyld/
dyld_shared_cache_arch and dyld_shared_cache_arch.map

e Leopard doesn’t randomize:
* The executable itself, the runtime linker dyld, the commpage

e Stacks, heaps, mmap() regions, etc.

dyld_shared_cache_I1386.map

mapping EX 112MB 0x90000000 -> 0x9708EQ00

mapping RW 8MB 0xAQ000000 -> OxAQS3EQ0Q
mapping EX 660KB OxAQAQQQ00 -> OxAQAAS000

mapping RO S5MB 0x9708E0Q00 -> ©0x97630000
/System/Library/Frameworks/ApplicationServices. framework/Versions/A/Frameworks/C

olorSync. framework/Versions/A/ColorSync
__TEXT 0x90003000 -> 0x900CFQ00
__DATA 0xAQ000000 -> OxA000O3000
__IMPORT 0@xA0QAQ0000 -> 0xAVAQ1000
__LINKEDIT 0x97249000 -> 0x97630000
/usr/1ib/libgcc_s.1.dyl1ib
__TEXT Ox900CF000 -> 0x900D7000
__DATA 0OxAQ008000 -> OxAQ0O2000
__IMPORT OxAQAQ1000 -> OxA0QAQ2000
__LINKEDIT 0x97249000 -> 0x97630000
/System/Library/Frameworks/Carbon. framework/Versions/A/Carbon
__TEXT 0x900D7000 -> 0x900D8000
__DATA 0xAQ009000 -> OxAQOVAQVO
__LINKEDIT 0x97249000 -> 0x97630000

Non-eXecutable Memory

¢ Prevent arbitrary code execution exploits by marking writable memory pages
non-executable

e Older x86 processors originally didn’t support non-executable memory

e PaX project created non-executable memory by creatively desynchronizing
data and instruction TLBs

e Linux PaX and grsecurity, Windows hardware/software DEP, OpenBSD WAX
e Intel Core and later processors support NX-bit for true non-executable pages
e Tiger and Leopard for x86 set NX bit on stack segments only

e Heap memory is still writable and executable

Stack Corruption

Library Randomization and NX Stack Bypass

e Take advantage of three “non-features”
e dyld is not randomized and always loaded at 0x8fe00000
e dyld includes implementations of standard library functions
* heap allocated memory is still executable

e Stack buffer overflows on x86 can use return-chaining to call arbitrary
seguence of functions because arguments are popped off attacker-controlled
stack memory

Saved
—BP

—xecute Payload From Heap Stub

e Reusable stub can be reused in stack buffer overflow exploits

e Align stub with offsets of overwritten EIP and EBP

e Append arbitrary NULL-byte free payload to stub to be executed
e Stub begins with control of EIP and EBP

e Repeatedly return into setjmp() and then into jmp_buf to execute small
fragments of chosen machine code from values in controlled registers

e Finally call strdup() on payload, execute payload from heap instead

exec-payload-from-heap stub || Existing Payload

[T
vy,
U
[T
U

—xecute Payload From Heap Stub

1.Return into dyld’s setjmp() to copy registers to a writable address
2.Return to mp_buf+24 to execute 4 bytes from value of EBP
-®-Adjust ESP (stack pointer)
-&-Execute POPA instruction to load all registers from stack
-®-Execute RET to call next function

3.Return into setjmp() again, writing out more controlled registers

POPA: 12 bytes x86
RET code

—xecute Payload From Heap Stub

4.Return to jmp_buf+32 to execute 12 bytes from EDI, ESI, EBP
-®-Adjust ESP (stack pointer)
-®-Store ESP+0xC on stack as argument to next function
5.Return into strdup() to copy payload from ESP+0xC to heap

6.Return into a JMP/CALL EAX in dyld to transfer control to EAX, heap pointer
returned by strdup)

12 bytes x56
code

GCC Stack Protector

e Adds a guard variable to stack frames potentially vulnerable to stack buffer
overflows

e Guard variable (aka “canary”) is verified before returning from function
e stack_chk_guard() function
o Effectively stops exploitation of most stack buffer overflows
e Potentially ineffective against some vulnerabilities (i.e. ANI, MS08-067)
e Supported by OS X’s GCC, but it isn’t used for OS X shipped binaries
e QuickTime is an exception now

e Started using stack protection in an update after Leopard was released

eap Corruption

Scalable Zone Heap Allocator

e Scalable Zone Heap’s security is so 1999
e /* Author: Bertrand Serlet, August 1999 */
e Allocations are divided by size into multiple size ranged regions:
e Tiny: <= 496 bytes, 16-byte quantum size
e Small: <= 15360 bytes, 512-byte quantum size
e | arge: <= 16773120 bytes, 4k pages
e Huge: > 16773120 bytes, 4k pages

e Regions are divided into fixed-size quanta and allocations are rounded up to
multiples of the region’s quantum size

® Free blocks are stored in arrays of 32 free lists, indexed by size in quanta

Free List Arrays

Tiny Region Free List Array

1* TINY_QUANTUM

2 * TINY_QUANTUM

—» NULL

32 * TINY_QUANTUM

| NULL |<

> Free Block

0x00: previous pointer

NULL

>32 * TINY_QUANTUM

0x04: next pointer
0x08: block size

'y

NULL

Free Block

0x00: previous pointer

0x04: next pointer
O0x08: block size

Free Block

0x00: previous pointer
0x04: next pointer
0x08: block size

>| NULL |

Classic Heap Metadata Exploitation

e Heap metadata is stored in first 16 bytes of free blocks
e 0x00: Previous block in free list (checksummed pointer)
e 0x04: Next block in free list (checksummed pointer)
e 0Ox08: This block size
e An overflown in-use heap block may overwrite free heap block on a free list
e \When overwritten block is removed from free list, corrupted metadata is used
e Overwritten prev/next pointers can perform arbitrary 4-byte memory write

e Heap metadata exploits are much more reliable when an attacker can affect
memory allocation/deallocation and control sizes

Heap Metadata Overwrite

Before Overflow

In-Use Block

0x00: data
0x04: data
Ox08: data
OxOc: data

Free Block

0x00: previous pointer
0x04: next pointer
0x08: block size

Ox0c: empty space

After Overflow

In-Use Block

0x00: AAAA
0x04: AAAA
0x08: AAAA
Ox0c: AAAA

Oxdeadbeef

<invalid>

Free Block

0x00: Oxdeadbeef
0x04: cksum(target)
0x08: block size
Ox0c: empty space

Target

———>| Oxfeedface \

Heap Pointer Checksums

® Free list pointer checksums detect accidental overwrites, not intentional ones
e cksum(ptr) = (ptr >> 2) | 0xC0000003
e verify(h) = ((h->next & h->prev & 0xCO000003) == 0xC0000003)
e uncksum(ptr) = (ptr << 2) & OX3FFFFFFC

e Allows addresses with NULL as first or last byte to be overwritten, including:
e _IMPORT segments containing imported function pointers
e 0OBJC segments with method pointers

e MALLOC regions

Classic Heap Metadata Write4d

e “Third Generation Exploitation”, Halvar Flake, BlackHat USA 2002
l. A = malloc(X);
2. B = malloc(Y);
3. free(B);

overflow A into B, overwriting B->prev and B->next
4, C = malloc(Y);

B removed from free list, *(uncksum(B->next)) = B->prev

Heap Metadata Large Overwrite

e “Reliable Windows Heap Exploitation”, Horowitz and Conover, CSW 2004
l. A = malloc(X);
2. B = malloc(Y);
3. free(B);

overflow A into B, overwrite B->prev, B->next
4, C = malloc(Y);

B removed from free list, *(uncksum(B->next)) = B->prev
5. D = malloc(Y); // D == B->next

Application writes to D, to attacker chosen memory address

Heap Feng Shel

* “Heap Feng Shei”, Alexander Sotirov, BlackHat Europe 2007

¢ “Engineering Heap Overflows With JavaScript”, Mark Daniel, Jake Honoroff,
Charlie Miller, Workshop on Offensive Technologies (WOQOT) 2008

e |f the attacker has full control of heap allocations/deallocations and sizes,
they can use this fragment the heap in a controlled manner

e Reserve “holes” in the heap so that that a forced allocation of a target
object falls right after a heap block allocation that can be overflown

e Overflow into target allocation and overwrite specific areas in order to gain
execution control (i.e. function pointers, virtual function table)

=Xploit Payloads

Mach-O Function Resolver

e Dyld is always loaded at 0x8fe00000, begins with mach_header

e Parse through mach_header and load commands to find LC_SYMTAB

e Hash symbol names to 32-bits with “ror 13” hash, which is only 9 instructions
e Technigque similar to LSD’s Win32 Assembly Components

e Can lookup dlopen() and disym() in dyld, use them to load/call other libraries
e Analogous to classic LoadLibrary()/GetProcAddress() combo on Windows

e Or use linker implicitly by loading a shared library directly into memory...

Mach-O Staged

Sundle [njection

Payload

e First stage (remote_execution_loop, ~250 bytes)

e Establish TCP connection with attacker

* Read fragment size

e Receive fragment into mmap()’d memory

e Call fragment as a function with socket as argument

e Write function result to socket

e Repeat read/execute/write loop until read size == 0 or error

e A general purpose stage for executing arbitrary code fragments

e subsequent stages, memory modification, stack restoration

Mach-O Staged Bundle Injection Payload

e Second stage (inject_bundle, ~350 bytes)
e Read file size from socket
¢ Read file into mmap()’d memory
e | ookup and call NSCreateObjectFilelmageFromMemory() in dyld
e | oads a memory buffer as a Mach-O object
e ookup and call NSLinkModule() in dyld
¢ Links a loaded Mach-0O object

e |_ookup and call run(int socket) in loaded bundle

Mach-O Staged Bundle Injection Payload

e Third stage (compiled bundle, can be as large as needed)
e Does whatever you want
e Can use C, C++, Objective-C and any Frameworks
e Must export an 1nt run(int socket_fd) function
e Pure-memory injection, not written to disk

e Bundles are relatively compact; a “hello world” bundle is ~12 KB

Injectable Bundle Skeleton

#include <stdio.h>

extern void init(void) __attribute__ ((constructor));
void init(void)

{
// Called implicitly when loaded
¥
int run(int socket_fd)
{
// Called explicitly by inject_payload
¥

extern void fini(void) __attribute__ ((destructor));
void fini(void)

{

// Called implicitly when/if unloaded
h
Compile with:

% cc -bundle -0 foo.bundle foo.c

ISight Capture Bundle (Take a

Pic of the Vic)

e Use CocoaSequenceGrabber from Amit Singh’s MacFUSE procfs:

(void)camera: (CSGCamera *)aCamera didReceiveFrame:(CSGImage *)aFrame;

{

// First, we must convert to a TIFF bitmap
NSBitmapImageRep *imageRep =

[NSBitmapImageRep imageRepWithData: [aFrame TIFFRepresentation]];

NSNumber *quality = [NSNumber numberWithFloat: 0.1];

NSDictionary *props =
[NSDictionary dictionaryWithObject:quality
forKey:NSImageCompressionFactor];

// Now convert TIFF bitmap to JPEG compressed image
NSData *jpeg =
[imageRep representationUsingType:NSIJPEGFileType
properties:props];

// Store JPEG image in a CFDataRef

CFIndex jpegLen = CFDataGetLength((CFDataRef)jpeg);

CFDataSetLength(data, jpeglLen);

CFDataReplaceBytes(data, CFRangeMake((CFIndex)@, jpeglLen),
CFDataGetBytePtr((CFDataRef)jpeg), jpeglLen);

[aCamera stop];

Demo

Metasploit Modules To

5e

Released Soon

e Exploits

e MDNSResponder UPNnP Location Header Overflow (10.4.0,10.4.8 x86/ppc)

e QuickTime RTSP Content-Type Overflow (10.4.0, 10.4.8, 10.5.0 x86/ppc)

e QuickTime for Java toQTPointer() Memory Corruption (10.4.8 x86/ppc)

e Safari WebKit JavaScript Regular Expression Repetition Counts Buffer
Overflow Vulnerability (10.5.2 x86)

e Payloads

e Staged Mach-O Bundle Injection

¢ |Sight photo capture payload

e More to follow soon...

Jesus Christiitist afllion

-lna
Remarks

~>

.

Conclusion

e MacOS X is vulnerable to the same type of malware attacks as Windows
¢ | eopard lags behind Vista and Linux in memory corruption defenses
e True ASLR, full NX, stack and heap memory protections

e A potential move to pure 64-bit processes in Snow Leopard may make
exploitation more difficult

e \Writing exploits for Vista is hard work, writing exploits for Mac is fun.

Questions?

