
FLASHBACK OS X MALWARE AQUILINO

102 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

FLASHBACK OS X MALWARE
Broderick Ian Aquilino

F-Secure Corporation, Tammasaarenkatu 7, 00181,
Helsinki, Finland

Email broderick.aquilino@f-secure.com

ABSTRACT
Windows has been the target of malware for decades. Over time,
the sustained pressure of being an attack target has forced its
evolution into a more hardened system, as well as increasing
user awareness of computer security. On the other hand, OS X
has not needed to go through all the troubles of crime fi ghting
until recently. Now, with its growing market share and lower user
awareness, it is clear that OS X is becoming more and more
attractive to malware authors.

In 2011, we saw OS X come under siege by several malware
families. Towards the end of the year, we saw new families or
variants appear almost every week, where each was more
sophisticated than the last. At the forefront of these developments
was the Flashback malware.

Flashback is the most advanced OS X malware we’ve ever seen.
It boasts a series of fi rsts for its kind. It was both the fi rst to be
VMware-aware and the fi rst to disable XProtect, OS X’s built-in
malware protection program. Both these features were removed
from later variants (the former presumably to avoid heuristic
detections, and the latter presumably once the authors realized it
was unnecessary, as XProtect was not designed to protect against
non-quarantine fi les). Their removal indicates that Flashback is
actively being reviewed and improved by its authors.

Another interesting fi rst is Flashback’s exploitation of an
unpatched vulnerability in the Java distribution of OS X, which
allowed it to infect more than 650,000 Macs around the world
[1]. This made Flashback roughly as common for Macs as
Confi cker was for Windows [2]. This means Flashback is not
only the most advanced, but also the most successful OS X
malware we’ve seen so far.

Flashback’s infection strategy is explicitly designed to select
unprotected systems and will not infect a machine if certain
security software or analysis tools are found. This implies that
Flashback’s authors are targeting less security-conscious users, at
the expense of the total number of potential targets. This turns out
to be an effective strategy, as security researchers had diffi culties
getting suffi cient samples from users. It took a mistake on the part
of Flashback’s author to alert users to the presence of an infection
and subsequently, to lead to the mass discovery of the malware.

So what is Flashback? Basically, it is a piece of malware that
modifi es targeted web pages displayed in web browsers. In older
variants, the targeted web pages and modifi cation were based on
the confi gurations retrieved from a remote server during
installation. In newer variants, the target and modifi cation have
been hard-coded into the binaries.

Flashback’s development indicates that its intended purpose was
to redirect Google results to third-party advertisers, for the

authors’ profi t. Flashback’s intended purpose and the social
engineering tactics used in its distribution are exactly the same as
those of the Mac QHost malware. Mac QHost redirected infected
users to a fake Google website that served search results
belonging to third-party advertisers. It also posed as a Flash
Player installer to spread [3]. These similarities suggest that
Flashback may be the next evolution of Mac QHost.

This paper focuses on the technical analysis of the binaries of
new Flashback variants, with brief comparisons against the older
variants. Actual network data used by Flashback is beyond the
scope of this paper; examples used here are for illustration
purposes only and do not refl ect actual data.

DISTRIBUTION
Flashback is distributed via malicious websites, usually hosted in
the ‘.rr.nu’ domains. Users infected by Flashback didn’t intend to
visit such websites, but were redirected to them on visiting
compromised legitimate websites. In the cases I encountered, the
hacked websites were running WordPress.

Figure 1: Flashback infection summary.

Early on in Flashback’s history, visitors to the malicious websites
would have seen an image – not a real event, just an image – of a
Flash Player crash. This is how Flashback got its name.

Figure 2: Fake Flash Player crash image.

FLASHBACK OS X MALWARE AQUILINO

103VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

Like most social engineering tactics, the image was meant to
fool users into believing the player had crashed, and that they
needed to download an ‘update’. In the background, a .pkg
package was downloaded.

Figure 3: Fake Flash Player installer.

Although this social engineering tactic has proven fairly
effective, alert users are still able to detect the trickery involved.
At this point in time, Flashback still needed to be manually
installed before it could infect the system, offering an escape
point for users. This weakness was effectively erased in
February 2012, when Flashback started using drive-by
downloads to infect users [4].

In this revision, the malware attempted to exploit the following
vulnerabilities in Java when a user visited a Flashback
distribution website:

• CVE-2008-5353

• CVE-2011-3544

Unfortunately for Flashback, these vulnerabilities had already
been patched by Apple in November 2011. In case a user is
already patched, Flashback simply reverts back to using social
engineering tactics. This time the malware used a self-signed
applet pretending to be from Apple.

Figure 4: Self-signed Java applet claiming to be from Apple.

The next month, however [5], Flashback started to exploit an (at
the time) unpatched vulnerability in Java: CVE-2012-0507.
Oracle, Java’s developer, had already patched this vulnerability
in the previous month but Apple had not yet released the patch
for the Java distribution of OS X. This left OS X users with Java
installed on their systems vulnerable to infection if they simply
happened to visit the wrong site at the wrong time.

When successfully exploited or when users choose to run the
signed applet, a binary is dropped to the ‘/tmp’ folder of the
system and executed. This binary is the main installer and is the
equivalent binary found inside .pkg packages of earlier variants.

INSTALLATION

Upon execution, the installer checks a list of paths that belong
to security software and analysis tools. The latest list consists of
the following:

• /Library/Little Snitch

• /Developer/Applications/Xcode.app/Contents/MacOS/
Xcode

• /Applications/VirusBarrier X6.app

• /Applications/iAntiVirus/iAntiVirus.app

• /Applications/avast!.app

• /Applications/ClamXav.app

• /Applications/HTTPScoop.app

• /Applications/Packet Peeper.app

If any of the listed paths are found, the installer skips the rest of
the routines and deletes itself. However, the latest variant of the
installer has a bug where it didn’t check the existence of the
paths during enumeration. This caused Flashback to be installed
regardless.

If the installer is cleared to proceed, it connects back to the
distribution website to obtain the installation data:

• http://%distribution_website%/counter/%Base64_encoded_
data%

The encoded data contains information about the target system.
The actual data differs between variants but the latest form
consists of the following:

• PlatformUUID

• hw.machine

• kern.osrelease

• ‘0’

• proc_cputype of the installer

• utsname.machine

• ‘1’ if installer is running as fi rst user of the target system or
daemon otherwise ‘0’.

The Base64 decoded data would look something like this:

00000000-0000-0000-0000-000000000000|i386|10.8.0|0|x86
_64|i386|1

FLASHBACK OS X MALWARE AQUILINO

104 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

The installer expects the response to be in the following format:

• Layer 1 – RC4 encrypted with the MD5 hash of the target
system’s PlatformUUID as the key

• Layer 2 – zlib packed

• Layer 3 – installation data delimited by ‘|’ where each item
is Base64 encoded.

The actual installation data differs between variants but the
latest form consists of the following:

• Filename

• Main binary

• Confi guration data

• Filter/loader binary

• Icon used in authentication dialog box (Figure 6).

There are generally two types of Flashback infection, with the
fi rst occurring if the installer has administrative privilege, and
the second occurring if it does not. In some earlier variants of
the installer, Flashback asks users for their admin password and
will only infect the system when administrative privilege is
obtained. Other earlier variants
immediately infect the system without
trying to obtain administrative privilege.
In the latest variant of the installer,
Flashback asks users for their admin

password but infects the system whether users
input their passwords or not. How the users
respond only determines the subsequent infection
type.

Figure 6: Authentication dialog box in recent
variants of the installer.

INFECTION TYPE 1:
ADMINISTRATIVE PRIVILEGE

Flashback installers that have obtained
administrative privilege drop the binaries returned
by the distribution website to the ‘Contents/
Resources’ folder of the targeted browsers. Earlier
variants targeted Firefox and Safari, while recent
ones target only Safari.

The dropped fi les use the following name format
in recent variants of the installer:

• Main binary – /Applications/Safari.app/
Contents/Resources/.%fi lename%.png

• Filter/loader binary – /Applications/Safari.app/
Contents/Resources/.%fi lename%.xsl

where %fi lename% is a variable returned by the distribution
website. In the samples I encountered, the malware used
fi lenames such as BananaSplittervxall, ALOPowerAudio and
ACDExpressv, which resemble real audio-video application
names and were probably chosen to maintain the illusion that
the installer is some kind of multimedia application.

The installer then creates a launch point by adding a DYLD_
INSERT_LIBRARIES value to the LSEnvironment dictionary
in the property list fi le of the targeted browsers. The value is the
fi lter/loader binary’s path. For variants that do not have this
component, the value is the main binary’s path.

In this infection type, Flashback is loaded by infected browsers
launched by any system users. As such, this infection type is
Flashback’s preferred method.

The installer inserts the main binary’s fi nal path into the main
binary’s own body where it is used by the binary to determine
its own location. The path is inserted after the ‘slfp’ marker.

Figure 5(a): Product check loop in earlier variants.

Figure 5(b): Product check loop in the latest variant.

Figure 7: Main binary’s path in its own body.

FLASHBACK OS X MALWARE AQUILINO

105VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

For variants that have the fi lter/loader component, the main
binary’s path is also inserted into the fi lter/loader’s body where
it is used to determine which component to load. The path is
inserted after the ‘__ldpath__’ marker.

Finally, the installer inserts the confi guration data returned by the
distribution website into the body of the main binary. The
binary’s dependence on this data will become obvious in later
sections of this paper. The data is inserted after the ‘cfi nh’ marker.

In earlier variants, the encoded confi guration data is inserted as
is. In the latest variant, the data is decoded and encrypted fi rst,
and then re-encoded again before being inserted into the main
binary’s body. The RC4 algorithm is used in the encryption with
the target system’s PlatformUUID as the key. This in effect
locks the main binary to the target system. This prevents the
sample from being analysed by researchers who have got hold
of the sample but do not know where it originally came from, or
by automated systems to which the user has submitted the
sample for analysis.

The latest variant of the installer also reports the result of the
infection attempt back to the distribution website:

• Successful – http://%distribution_website%/stat_d/

• Failed – http://%distribution_website%/stat_n/

INFECTION TYPE 2: USER PRIVILEGE
Flashback installers that didn’t get administrative privilege
simply drop the binaries to a location where the user who
executed the installer does have permission, such as the ‘/Users/
Shared’ folder [6].

The dropped fi les use the following name format in recent
variants of the installer:

• Main binary – ~/Library/Application Support/
 .%fi lename%.tmp

• Filter/loader binary – /Users/Shared/.libgmalloc.dylib

where %fi lename% is a variable returned by the distribution
website.

The installer then creates a launch point by adding a DYLD_
INSERT_LIBRARIES value to the local property list fi le of the
user running the installer. As in Type 1 infection, this value is
the fi lter/loader binary’s path. In variants without this
component, it is the main binary’s path.

In this infection type, Flashback is loaded by any application
launched in the infected user profi le. This indiscriminate launch

behaviour makes it more likely that the
malware will be loaded by an
incompatible application, and it may be
the reason why the fi lter/loader binary
was introduced in new variants.

All the fi lter/loader binary does is ensure
the main binary is loaded only by the
correct processes; however even then,
there’s an issue – the fi lter binary only
runs on Intel-based Macs. To avoid
dealing with PowerPC-based applications
running on top of Rosetta, the latest
variant of the installer refers to a list of

popular PowerPC-based or related applications and will not
infect a system if any of the following are found:

• /Applications/Microsoft Word.app

• /Applications/Microsoft Offi ce 2008

• /Applications/Microsoft Offi ce 2011

• /Applications/Skype.app

Much like Type 1 infections, the main binary’s fi nal path and
confi guration data are inserted into the binary’s body. In variants
with a fi lter/loader component, the main binary’s path is also
inserted into the component’s body.

The latest variant of the installer also reports the result of Type 2
infection attempts back to the distribution website, though only
a successful infection is reported:

• http://%distribution_website%/stat_u/

After successfully infecting a system, the installer kills the
targeted browsers to force users to restart them and activate the
malware.

Finally, regardless of whether or not infection was successful,
Flashback securely deletes itself (by writing zeros to itself)
before removing itself from the fi le system.

CONFIGURATION DATA
The main binary’s behaviour is mostly defi ned by the
confi guration data returned by the distribution website during
installation. In the latest version, the confi guration data is in the
following format:

• Layer 1 – Base64 encoded

• Layer 2 – RC4 encrypted with the infected system’s
PlatformUUID as the key

• Layer 3 – RC4 encrypted with a static key found in the
body of the main binary

• Layer 4 – zlib packed

• Layer 5 – confi guration data in plain text.

The plain text confi guration data is a series of confi guration
entries arranged in the following format:

• [0,{%confi g_entry1%},{%confi g_entry2%},…]

The confi guration entries have the following format:

• {%entry_id%:%entry_type%:%value%}

Figure 8: Main binary’s path in fi lter/loader binary.

Figure 9: Confi guration data in main binary.

FLASHBACK OS X MALWARE AQUILINO

106 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

Entry
type

Value

1 Integer (in ASCII)

2 Boolean (in string)

3 Base64 encoded string

4 Base64 encoded confi guration data (used in nested
confi guration data)

7 Array of Base64 encoded strings delimited by ‘|’

As discussed earlier, the confi guration data is embedded in the
main binary’s body; in later variants, however, this can be
overridden by an external confi guration fi le specifi ed in entry ID
1007785508 of the embedded confi guration data. In my
reference sample, the value is ‘/Users/Shared/.sbl’. If the data in
the external confi guration fi le is newer than in the embedded
one – as determined by entry ID 3702222652, which contains
the time a confi guration data is created – the embedded data is
overridden. If entry ID 3702222652 is not present in the
confi guration data, it gets the default value of 0. The
introduction of an external confi guration fi le makes it possible
for C&Cs to update the malware without needing to modify the
binaries.

UPDATE SERVERS

Flashback uses three groups of C&C servers. The fi rst group
communicates with a VM-like module in the main binary that
interprets a series of instructions returned by the C&C. In this
section, we’ll discuss the selection process of the C&C servers
in this group.

Figure 10: Flashback C&C server groups.

When an infected browser is launched, the malware creates a
thread that connects to one of the C&C servers found in its
confi guration data every 3,670 seconds:

Entry ID Description

1543152164 Total servers (n)

4294901760 (up to
4294901760 + n - 1)

Server

201539444 URI scheme (new variants only)

In my reference samples, this was
‘http://’

2907319225 Resource path

In my reference samples, this was
‘/auupdate/’

In older variants, the URI scheme was provided by a static
string in the main binary. The switch to using confi guration data
for the URI scheme in later variants may be a sign that the
authors intended to support different protocols in the future.

The fi nal URL of a C&C server would look like this:

• http://updateserver1.com/auupdate/

The user-agent in the request is a Base64 encoded string
containing details of the infected system. Specifi c details differ
between variants, but in the latest variants, the following data
was gathered:

• Malware version (specifi ed in entry ID 2279540384)

• hw.machine

• kern.osrelease

• PlatformUUID

• SHA1 of the main binary

• A series of ‘1’ or ‘0’, each representing a browser: ‘1’ if
found, ‘0’ if not

• ‘999’

• ‘1’ if the host process (which is the infected browser) is
running as root or daemon, otherwise ‘0’.

The following entry IDs are used to determine which browsers
are installed:

Entry ID Description

1829190487 Total paths (n)

3735941120 (up to 3735941120 + n - 1) Path of browser

My reference samples have the following confi guration data
entries:

Entry ID Sample entry data

1829190487 3

3735941120 /Applications/Google Chrome.app/Contents/
MacOS/Google Chrome

3735941121 /Applications/Opera.app/Contents/MacOS/
Opera

3735941122 /Applications/Firefox.app/Contents/MacOS/
fi refox

FLASHBACK OS X MALWARE AQUILINO

107VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

Taking the above entries as an example, if only Firefox is
installed, the Base64 decoded user-agent would look something
like the following:

38|i386|10.8.0|00000000-0000-0000-0000-000000000000|d7
8b0b8e15d6cde73ff23c5f58513524f6772bf1|001|999|0

After the request is sent to the C&C server, Flashback performs
a verifi cation check on the response from the server. It expects a
two-part response in the following format:

%marker1%%part1%%marker2%%part2%%marker3%

Where the various elements are:

• Markers: Special characters to parse out the relevant
contents

• Part 1: The Base64 encoded update instructions in the form
of a Flashback VM program

• Part 2: The Base64 encoded RSA signature of part 1.

The markers are determined by confi guration data entry IDs
24453559, 3138449062 and 2843125468, which in my
reference samples are ‘**’, ‘%%’ and ‘^^’, respectively.

Part 1, the Flashback VM program, is discussed in the next
section.

Part 2, the RSA signature, uses MD5 hashing and is verifi ed
using a static public key found in the main binary. This prevents
the malware from being hijacked if an unknown party (i.e. a
security researcher) gains access to the C&C server, as they still
need the corresponding private key to sign the instructions. If
the RSA signature returned by a C&C server is valid, the
malware executes the Flashback VM program.

If the RSA signature is invalid, the malware tries the next C&C
server listed in the confi guration data. If none of the servers
returned a valid RSA signature, Flashback connects to a
third-party server to obtain the URL of the next C&C server.

The third-party server location is partly determined by subentry
ID 3793486453 of entry ID 1131202474, which in my reference
samples is ‘http://mobile.twitter.com/searches?q=%23’. A string
derived from the current date is then appended to this to form
the actual URL. This string is calculated using a simple
algorithm based on the current date, where the values are IDs to
the subentries of entry ID 1131202474.

As an example, for the date 27 September 2012:

Third-party Server Location

Entry ID 1131202474, subentry ID 3793486453 http://mobile.twitter.com/
 searches?q=%23

Date-based algorithm Subentry ID of Sample Entry Data
 Entry ID 1131202474

Current day 27 rdel

Current month – 1 8 d2ir

Current year – 2000 12 xloa

The full URL for the third-party server would then be:

• http://mobile.twitter.com/searches?q=%23rdeld2irxloa

Once the URL is generated and contacted, the malware parses

the response from the third-party server to obtain the URL of
the next C&C server it will contact:

• %marker1%%server_URL%%marker2%

The markers are specifi ed in subentry IDs 2680482723 and
3938521920 of entry ID 1131202474, which in my reference
samples were ‘bumpbegin’, and ‘endbump’ respectively.
However, Flashback may fail to get the intended URL due to a
bug in its parsing routine: it subtracted the length of marker 2
instead of marker 1 while computing the length of the server
URL.

Figure 11: Bug in the parsing response of the third-party server.

Taking the response ‘bumpbeginhttp://updateserver2.com/
auupdate/endbump’ as an example, the malware would connect
to the URL ‘http://updateserver2.com/auupdate/en’ to obtain the
update program.

In new variants, an additional set of C&C servers are generated
in case none of the C&C servers returned a valid signature. The
domain names on this list are generated based on the current
date and the same algorithm used to create the appended string
for the third-party server URL. This could be a sign that the
authors intend to eliminate the need for a third-party server in
the future.

Once the domain names are generated, they are appended with a
set of TLD names specifi ed in entry ID 3078701270, which in
my reference samples were: ‘.org’, ‘.com’, ‘.co.uk’, ‘.cn’ and
‘.in’. As before, Flashback uses entry IDs 201539444 and
2907319225 for the URI scheme and resource path to form the
server URLs.

Using the previous example, the malware would connect to the
following URLs on 27 September 2012:

• http://rdeld2irxloa.org/auupdate/

• http://rdeld2irxloa.com/auupdate/

• http://rdeld2irxloa.co.uk/auupdate/

• http://rdeld2irxloa.cn/auupdate/

• http://rdeld2irxloa.in/auupdate/

FLASHBACK VM

If a valid RSA signature is returned, the malware executes the
Flashback VM program if it has not been previously executed
on the system. To track this, Flashback logs the SHA1s of
executed programs to a fi le specifi ed in confi guration data entry
ID 3982392222, which in my reference samples was either
‘{HOME}/Library/Logs/swlog’ or ‘{HOME}/Library/Logs/
vmLog’.

The Flashback VM program is RC4 encrypted confi guration
data similar to Flashback’s confi guration data. The RC4 key is

FLASHBACK OS X MALWARE AQUILINO

108 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

specifi ed in entry ID 445920421. Decrypted, it looks something
like this:

• [0,{3356105434:1:38},{432209166:1:40},{248949197:1:2
},{18446744073691529216:4:%Base64_encoded_instructi
on1%},{18446744073691529217:4:%Base64_encoded_
instruction2%}]

The Flashback VM program contains the malware’s minimum
and maximum supported version and a series of instruction
entries.

Entry ID Description

3356105434 minimum malware version
supported (must be <= entry ID
2279540384)

432209166 maximum malware version
supported (must be >= entry ID
2279540384)

248949197 number of instructions (n)

18446744073691529216

(up to
18446744073691529216
+ n – 1)

instructions

Unlike the confi guration data, the program’s instruction entries
start with the opcode instead of the static value ‘0’, followed by
entries specifying the parameters for the instruction:

• [%opcode%,{%parameter1%},{%parameter2%},…]

The following is a summary of the Flashback VM instruction
set:

Opcode Action Parameters

10 Drop fi le(s) {3326721549:3:%fi lename_
format%}

{1327789618:2:%overwrite_
existing%}

{3155285172:3:%content%}

{1843261979:1:%permission%}

{1096798383:2:%expand_
variables%}

11 Change fi le
permission

{3326721549:3:%fi lename%}

{1843261979:1:%permission%}

12 Update fi le {3326721549:3:%fi lename%}

{3448248571:3:%strings_to_
remove%}

{3736136079:3:%strings_to_
add%}

13 Does not do
anything

{1610807374:3:%value%}

{3155285172:3:%value%}

Opcode Action Parameters

14 Secure delete
fi le(s)

{3326721549:3:%fi lename_
format%}

15 Make directory(s) {3143747264:3:%directory_
name_format%}

{1843261979:1:%permission%}

16 Execute shell
command

{513266406:3:%command%}

{1096798383:2:%expand_
variables%}

17 Search and replace
fi le content

{3326721549:3:%fi lename%}

{2410934700:3:%string_to_
search%}

{2142339923:3:%search_
padding%}

{289096310:3:%string_to_
replace%}

{1096798383:2:%expand_
variables%}

18 Terminate host
process

N/A

19 Execute shell
command if a
process is found

{2410934700:3:%process_
name%}

{513266406:3:%command%}

20* Add payload C&C
server(s)

{3013044947:3:%list_of_
servers%}

*new variants only.

Though the Flashback VM may be used for other purposes, it is
most likely intended for updating the malware because:

• Programs are executed in a scheduled manner and each
program is only executed once

• Malware information (e.g. version, hash) is collected by
C&C before a program is issued

• The resource path name ‘/auupdate/’ suggests it is meant
for automatic updates.

PAYLOAD C&C SERVERS
The second group of C&C servers is used by Flashback to
execute its payload. Each time an infected browser is launched,
the malware selects a server in a process similar to the way it
contacts its update server.

Old variants use confi guration data entry IDs 2413278617 and
2718965927 for the server list and resource path respectively
when forming the URL of the server. Taking the following
entries as an example:

Entry ID Sample entry data

2718965927 /owncheck/

2413278617 oldserver1.com|oldserver2.com

FLASHBACK OS X MALWARE AQUILINO

109VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

The malware connects to the following URLs:

• http://oldserver1.com/owncheck/

• http://oldserver2.com/owncheck/

New variants use two different server lists plus server names
generated based on the current date using the same algorithm
discussed in the ‘Update servers’ section:

Entry ID Description

2718965927 Resource path

3035856777 Updateable list

2522550406 Hard-coded list

3078701270 TLD list

1131202474 Sub-confi guration data used for generating
server name based on current date

Taking the following entries as an example:

Entry ID Sample entry data

2718965927 /owncheck/

3035856777 priorityserver.com

2522550406 payloadserver1.com|payloadserver2.com

3078701270 .org|.com|.co.uk|.cn|.in

1131202474 Subentry ID Sample entry data

8 d2ir

12 xloa

27 rdel

The malware connects to the following URLs on 27 September
2012 (in the presented order):

• http://priorityserver.com/owncheck/

• http://payloadserver1.com/owncheck/

• http://payloadserver2.com/owncheck/

• http://rdeld2irxloa.org/owncheck/

• http://rdeld2irxloa.com/owncheck/

• http://rdeld2irxloa.co.uk/owncheck/

• http://rdeld2irxloa.cn/owncheck/

• http://rdeld2irxloa.in/owncheck/

Much as in the verifi cation check done for the update servers,
the response from Flashback’s payload servers is expected to
contain two parts, though this time the encoded data are
delimited by ‘|’.

Part 1 contains the Base64 encoded SHA1 of the server name
and part 2 contains the Base64 encoded RSA signature of part
1. The RSA signature again uses MD5 hashing and is verifi ed
using a static public key found in the main binary. Flashback
selects the fi rst server that returns a valid response.

If none of the servers returns a valid response, a default server is
selected. Old variants use the second server found in entry ID

2413278617. New variants use the fi rst server found in entry ID
2522550406, or ‘localhost’ if the entry does not exist. The
selected server is refreshed every 3,670 seconds.

PAYLOAD

Before executing the payload, Flashback fi rst confi rms it is
loaded by a correct process, to ensure it doesn’t cause an
application crash that may alert the user to its presence. It also
rechecks if any security applications or analysis tools have been
installed since infection took place, using the following
confi guration data entries:

Entry ID Description

3604130400 List of Safari processes

2368804422 List of Firefox processes

36406636 Total blacklisted application paths (n)

3740205056 (up to
3740205056 + n - 1)

Blacklisted application path

Flashback’s payload involves modifying the content of targeted
web pages displayed by the affected browsers. In practical
terms, Flashback redirects visitors from Google-related web
pages to third-party advertisers.

To do this, the malware creates interpose functions to hijack
APIs used by the browser to handle web traffi c. Though the
specifi c details of the modifi cations have evolved signifi cantly
during Flashback’s development, the end result remains the
same.

OLD PAYLOAD

Figure 12: Payload in old variants.

Early Flashback variants hooked the CFWriteStreamWrite() and
send() APIs to intercept outbound traffi c from the infected
browser and modify HTTP requests for Google before sending.
The modifi cations simply ask Google to reply in a format that is
parseable by the malware.

FLASHBACK OS X MALWARE AQUILINO

110 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

Flashback then hooks the CFReadStreamRead() and recv()APIs
to intercept inbound traffi c and check if the HTTP response is
from a targeted web page by checking if it contains strings
specifi ed in confi guration data entry IDs 986378308 and
3539672383. In my reference sample, these data entries are
‘google.time|Google’ and ‘/title>’ respectively, which means the
malware checks if the response is from Google.

If the response is from a targeted web page, Flashback injects
the content specifi ed in entry ID 2260730474 before handing
the response over to the browser. In addition, any ‘{DOMAIN}’
strings found in the injected content are replaced with the
selected payload C&C server, while any ‘{BSRQ}’ strings are
replaced with a Base64 encoded string containing the injected
content version (specifi ed in entry ID 2588545561) and the
infected host’s PlatformUUID.

In my reference sample, the injected content is a JavaScript that
will fetch and execute another JavaScript from the payload
C&C server.

There are a lot of possibilities that can be derived from the
different combinations of the confi guration data and the remote
JavaScript. One combination would be an entry ID 986378308
containing a bank’s name and a JavaScript that renders a
phishing HTML form. This possibility may be the basis for
reports that Flashback is designed to steal passwords [7].
Though possible, this usage appears to be less likely, as a
sample targeting non-Google web pages has yet to be seen.
Changes in the payload of new variants also serve as further
proof that the malware is only interested in the search giant.

NEW PAYLOAD
In new variants, the payload routines have been modifi ed to
such an extent that they show little resemblance to earlier
variants. The targeted web page and injected content are no
longer controlled by the confi guration data. They have been
changed to static routines specifi cally designed for Google.
Duplicate hooks have also been removed and only
CFWriteStreamWrite() and CFReadStreamRead() are hooked.

In the new payload, most of the processes have been moved to
the infected host, with the payload C&C servers becoming more
‘interactive’ rather than simply hosting JavaScript. This may be
why new variants use the list of servers in confi guration data
entry IDs 3035856777 and 2522550406 rather than 2413278617.

The payload starts with the CFWriteStreamWrite() hook
waiting for a request containing ‘google.’, and ‘GET /search?’
followed by ‘q=’ (i.e. a Google search).

Figure 13: Hooks and Google search.

The value of the ‘q=’ parameter (the search keyword) is parsed
out and Flashback sends this and other details to the payload
server:

• http://%payload_C&C_server%/search?q=%Base64_
encoded_keyword%&ua=%Base64_encoded_browser_
useragent%&al=%Base64_encoded_browser_
language%&cv=%Base64_malware_version%

The response from the server will be as follows:

• Layer 1 – Base64 encoded

• Layer 2 – RC4 encrypted with the MD5 hash of the
infected system’s PlatformUUID as the key

• Layer 3 – list of commands delimited by ‘|’ where each
item is Base64 encoded.

The decoded commands can be any of the following:

Command Action

BIDOK|%destination_
url%|%tracking_
value%|%referrer%

Store or update redirection data of
keyword in cache.

BIDFAIL Does not do anything.

H_SETUP|%value1%|
%value2%|%value3%|
%value4%

Update redirect values related to
%tracking_value% returned by a
‘BIDOK’ command, which determine
when redirection should occur. Initial
values are loaded from entry IDs
2651194085, 2053826074,
131556884 and 1948502003 of the
confi guration data.

ADD_S|%server% Add a payload C&C server.

MU|%Base64_
encoded_Flashback_
VM_program%

Run a Flashback VM program.

SK|%unused_value% Uninstall Flashback. Basically just
run the commands specifi ed in entry
IDs 1987052121, 344144970,
1759733748, and 2264415946 of the
confi guration data then securely
delete the main binary.

The rest of the payload is dependent on the ‘BIDOK’ and ‘H_
SETUP’ commands returned by the server. The malware
performs the returned commands and then sends the original
request to Google to get the actual results.

Now the CFWriteStreamWrite() hook waits for the user to click
a link in the Google result by monitoring for a request
containing the following:

• ‘GET /url?’, ‘q=’, and ‘google’

• Followed by one of: ‘sa=’, ‘ved=’, or ‘usg=’

Once a link in the Google result is clicked, Flashback parses out
the value of the ‘q=’ and ‘url=’ parameters, which are the
keyword and original destination of the Google result
respectively, and uses them to check (1) whether there is
corresponding redirection data for the keyword and (2) if the

FLASHBACK OS X MALWARE AQUILINO

111VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

original destination is not whitelisted (determined by
confi guration data entry ID 4072365446).

If neither condition is satisfi ed, Flashback does nothing;
otherwise it checks the corresponding tracking value (see
‘BIDOK’ command) of the keyword in the cache against the
redirect values (see ‘H_SETUP’ command) to determine
whether to proceed with the payload. Should the payload
proceed, Flashback reports to the following URL:

• http://%payload_C&C_server%/click?data=%Base64_
encoded_data%

The decoded data contains the following information:

• %keyword%|%tracking_value%|%original_destination%

The tracking value is the price of each visit to the new
destination URL [8] and is most likely reported to help
Flashback’s authors track how much they should be earning.

At the same time, the malware creates a specially crafted
request for Google:

• http://google.com/%marker1%%Base64_encoded_
data%%marker1%

The CFWriteStreamWrite() hook uses this request to
communicate with the CFReadStreamRead() hook. Flashback
expects Google’s response to contain the request it sends.

The CFReadStreamRead() hook constantly checks if an HTTP
response contains the strings ‘google.com’ and %marker1%, the
latter of which the malware generates randomly when the
browser is launched. If these strings are not found, the hook
hands over the original HTTP response to the browser. If found,

Flashback uses the marker to locate the encoded data sent by the
CFWriteStreamWrite() hook. The data would be as follows,
with sample values:

Decoded data %keyword%|%new_destination%&%marker2
 %%ID%&%marker2%

Sample data viagra|http://www.destination.com/page?p=v
 &VXAuoc5lKM8&VXAu

Where ‘VXAu’ is %marker2% and ‘oc5lKM8’ is the %ID%.

Flashback then returns the following content to the browser:

HTTP/1.0 200 OK

Content-Type: text/html;

Content-Length: %content_length%

<script>window.googleJavaScriptRedirect=1</script>

<script>

 var a=parent,b=parent.google,c=location;

 if(a!=window&&b)

 {

 if(b.r)

 {

 b.r=0;

 a.location.href=”%url%”;

 c.replace(“about:blank”);

 }

 }

 else

 {

 c.replace(“%url%”);

 };

</script>

<noscript><META http-equiv=”refresh” content=”0;URL=’%
url%’”></noscript>

Where:

• %content_length% is replaced with the actual length

• %url% is replaced with %new_destination%&%marker2%
%ID%&%marker2%, for example: ‘http://www.
destination.com/page?p=v&VXAuoc5lKM8&VXAu’.

The end result is that the browser will be redirected to the new
destination. The HTTP request to the new destination will,
however, contain a referrer value from Google, as the browser
still thinks the response returned by the CFReadStreamRead()
hook is from Google. To make it look more legitimate,

Flashback replaces the referrer with the
corresponding value returned by the ‘BIDOK’
command. This happens when the browser’s HTTP
request to the new destination is caught by the
CFWriteStreamWrite() hook, the malware uses
%marker2% to parse out the %ID% in the request
and uses it to locate the corresponding referrer value
returned by the ‘BIDOK’ command in the cache.

FILTER/LOADER BINARY
We mentioned earlier that some Flashback variants
include a fi lter/loader binary. The only purpose of
this binary is to ensure that the main binary is

Figure 14: Hooks and Google result click.

Figure 15: Google response containing the request.

FLASHBACK OS X MALWARE AQUILINO

112 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

loaded only by the correct processes. Though the main binary
already includes the necessary checks, Flashback thoughtfully
includes redundancy. After all, it is always better to be careful,
right?

Actually, this time it appears this malware has been too careful
for its own good. In the samples I encountered, it appears the
authors made a typo in the routine checking if the host process
is ‘WebProcess’.

Figure 16: Typo in ‘WebProcess’ process check.

This resulted in the malware only being loaded by the ‘Safari’
process and not by the ‘WebProcess’ process, which is the one
actually responsible for handling the page load [9]. Because of
this, some Flashback variants may not be able to execute their
payload. This is good news for Mac users. Even in these cases
however, the Flashback VM is still able to communicate with
the update server.

LAUNCHAGENT BINARY

In the latest Flashback variant, the installer is replaced with a
binary that functions like a stand-alone light version of the
Flashback VM. Initially, the binary was thought to be just an
updater when it was distributed together with the installer [10].

Figure 17: .jar containing both installer and LaunchAgent
binary.

However, the binary has taken complete responsibility for
installing Flashback in the latest
variant [11]. This looks similar
to a trend happening in Windows
malware where new variants
start with something small
instead of deploying the full
payload immediately. This may

be done to avoid AV signatures, as it is easier to morph a simple
downloader than a full-blown malware.

Figure 18: .jar containing LaunchAgent binary only.

The binary is installed via drive-by downloads by malicious
Java applets hosted on Flashback distribution websites and is
dropped to the user’s home folder. The launch point is a
property list fi le created in the ‘~/Library/LaunchAgents/’
folder, which will launch the binary every 4,212 seconds. The
actual fi lenames given by the distribution sites may vary
between cases.

The behaviour of the binary is mostly defi ned by a confi guration
block found in its body. The block is a series of entries that have
the structure shown in Figure 19.

Upon execution, the binary goes through a list of paths that
belong to security software and analysis tools (entry ID
0x92FA). As with the original installer, the LaunchAgent binary
has a bug where it didn’t check the existence of the paths during
enumeration. This resulted in reports of suspicious network
activity warnings from Little Snitch fi lling up discussions in
Apple Support Communities just moments after its release [12].
This ultimately led to mass discovery of Flashback and security
researchers fi nally obtaining samples of the malware.

On fi rst execution, the LaunchAgent binary reports back to the
following URL:

• http://%distribution_website%/stat_svc/

It then locks itself to the infected system by encrypting the
confi guration block in its body using the RC4 algorithm, with
the infected system’s PlatformUUID as the key.

On successive executions, the binary contacts a server, which
belongs to the last group of Flashback C&C servers. For this
group of servers, the binary generates a name using a custom
algorithm based on the current day, month and year. Then it
generates fi ve more names using the same algorithm but this
time using three constants found in its confi guration block
(entry ID 0x6192).

Figure 19: LaunchAgent binary confi guration block format.

FLASHBACK OS X MALWARE AQUILINO

113VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

The same algorithm is able to generate fi ve different names
because the algorithm involves modifying the constants in the
process. Therefore, this is like running the algorithm with a new
set of constants on each run. However, the fi nal generated list of
names will always be the same since they started with the same
set of constants. For details of the actual algorithm, Scrammed!
blog has a very good C language representation [13].

The values of the constants differ between variants, making the
generated names variant-specifi c, while the name generated
using the current date values is common to all variants. Each
name is appended with the TLDs (entry ID 0x1F91) ‘.kz’, ‘.in’,
‘.info’, ‘.net’ and ‘.com’ to form the fi nal list of servers. In
addition to the generated list of servers, the binary also keeps a
pre-defi ned list of servers in its confi guration block (entry ID
0x92BE), which differs between variants.

When selecting a server, the binary starts with the
variant-specifi c list, then the date-specifi c list, and fi nally the
pre-defi ned list. The binary runs the installation/update program
returned by the fi rst server that has a valid response, and then
exits; the same routine is repeated whenever the binary is
executed by launchd again.

The server verifi cation process is similar to those from previous
C&C groups. The binary expects the response to contain
information in two parts: part 1 contains the Base64 encoded
installation/update program and part 2 contains the
corresponding Base64 encoded RSA signature. The binary uses
markers (entry ID 0x4280) to parse out the relevant information
from the response, then verifi es the RSA signature using a
public key found in the confi guration block (entry IDs 0x0FA7
and 0xD18F). Unlike the verifi cation process used in previous
C&C groups, the RSA signature uses the SHA1 hashing
method.

The installation/update program is actually just another
confi guration block similar to the one found in the body of the
binary. Here, the entry IDs determine the action to be taken with
the entry content. The binary will execute entries with IDs
0x2020 to 0x2028 and 0x1010 to 0x1019.

Entry ID Action

0x2020 - 0x2028 Drop the entry content as ‘/tmp/
.%random%’ then execute it using ‘nohup’
(entry ID 0x4280 of the confi guration
block in the body of the binary)

0x1010 - 0x1019 Execute the shell command specifi ed in
the entry content

To ensure previous installations/update programs are not
executed again, the binary creates the fi le ‘/tmp/.%CRC32_of_
program%’ containing the CRC32 of the program. If the fi le
already exists, the binary skips the rest of its routine and exits. It
is not clear why the ‘/tmp/’ folder is used. Unlike the main
binary’s Flashback VM, it seems that the authors do not mind
the same program being executed again when the folder is
cleared. Perhaps the authors just wanted to reduce the load of
the C&C servers. This approach also allows the malware to

reinfect the system if only the main binary is removed during
disinfection.

CONCLUSION
While malware on the OS X operating system is not yet as
sophisticated as that found on Windows, it is catching up
quickly and Flashback isn’t far behind. It has advanced features
such as infected host locking and domain name generation,
which are established techniques in Windows malware. Malware
authors appear simply to be migrating the toolset they
developed over the years from one platform to the other. Some
aspects don’t even require much adjustment, as the Java exploits
used in Flashback’s distribution scheme are cross-platform and
work out of the box.

Though Flashback may be the only real outbreak we’ve seen so
far on OS X, it is unsettling to consider that its success may
inspire other malware authors to start migrating to OS X as well.
All they need is a period to adjust.

APPENDIX
MD5 of reference samples:

• FC25B95BB01EA1049D64358198D8B585 – installer
binary

• 434C675B67AB088C87C27C7B0BC8ECC2 – main
binary (old)

• A455A86A888E4D2FB1F94BBCF6B6C850 – main
binary (new)

• 42A1D6C009EB3F003ACA344E821AFDD1 – fi lter/
loader binary

• 919146E4D79A3C38F3D600355FED2120 – LaunchAgent
binary

REFERENCES
[1] Dr.Web blog. http://news.drweb.com/show/

?i=2353&lng=en&c=9.

[2] Hyppönen, M. http://twitter.com/mikko/
statuses/187886540486230017.

[3] F-Secure blog. http://www.f-secure.com/weblog/
archives/00002206.html.

[4] Intego blog. http://www.intego.com/mac-security-blog/
new-fl ashback-trojan-horse-variant-uses-novel-
delivery-method-to-infect-macs/.

[5] Sorokin, I. http://twitter.com/hexminer/
status/186807718596706306.

[6] Intego blog. http://www.intego.com/mac-security-blog/
fl ashback-mac-trojan-horse-infections-increasing-with-
new-variant/.

[7] Computerworld. http://www.computerworld.com/s/
article/9224651/New_Mac_malware_exploits_Java_
bugs_steals_passwords.

[8] Symantec blog. http://www.symantec.com/connect/
blogs/osxfl ashbackk-motivation-behind-malware.

FLASHBACK OS X MALWARE AQUILINO

114 VIRUS BULLETIN CONFERENCE SEPTEMBER 2012

[9] Apple Support Communities. https://discussions.apple.
com/thread/3216267?start=0&tstart=0.

[10] F-Secure blog. https://www.f-secure.com/weblog/
archives/00002341.html.

[11] Symantec blog. http://www.symantec.com/connect/
blogs/osxfl ashbackk-overview-and-its-inner-workings.

[12] Apple Support Communities. https://discussions.apple.
com/thread/3844172?start=0&tstart=0.

[13] Scrammed! blog. http://scrammed.blogspot.it/2012/04/
fl ashback-trojan-domain-generator.html.

