

Who Am I

§  An Economist and MBA.
§  Computer enthusiast for the past 30 years.
§  Someone who worked at one of the world’s best ATM

networks, the Portuguese Multibanco.
§  A natural-born reverser and assembler of all kinds of

things, not just bits & bytes.

Introduction

§  This presentation main goal is to allow you to make an
easier transition into OS X reverse engineering world.

§  I assume you already have some RE experience in other
platforms, Windows or Unix.

§  Many details are either minimal or omitted!

Summary

§  Reversing in OS X - what’s different.
§  Tools overview.
§  Anatomy of a debugger.
§  Anti-debugging.
§  Code injection.
§  Swizzling.
§  Other tips & tricks.
§  Reversing a crackme.
§  Final remarks.

Reversing in OS X - what’s different

§  Applications exist in bundle folders.
§  These contain the application binary and other

resources, such as:
– Frameworks.
– Language files.

– Graphics, sounds, etc.
– Code signatures, if applicable.
– Application properties file, Info.plist.

Reversing in OS X - what’s different

Reversing in OS X - what’s different

Reversing in OS X - what’s different

§  The Info.plist contains useful information about the
target application.

§  For example, the CFBundleExecutable key gives you the
name of the main executable.

§  MacOS folder can contain more than one binary.
§  I use it to collect some statistics about Mach-O binaries

and also to find which binary to infect in my PoC virus.

Reversing in OS X - what’s different

Reversing in OS X - what’s different

§  Mach-O file format.
§  Very simple!
§  One header, with magic values

0xFEEDFACE (32bits) and
0xFEEDFACF (64bits).

§  Followed by load commands and
sections.

§  And then data.

Reversing in OS X - what’s different

Reversing in OS X - what’s different

§  Code is located in __TEXT
segment and __text section.

§  Linked libraries in
LC_LOAD_DYLIB commands.

§  The entrypoint is defined at
LC_UNIXTHREAD or LC_THREAD.

§  Structs described at /usr/
include/mach-o/loader.h.

Reversing in OS X - what’s different

§  Fat archive:
§  Allows to store different

architectures inside a single
“binary”.

§  Magic value is 0xCAFEBABE.
§  Fat archive related structures

are always big-endian!
§  The “lipo” command allows you

to extract a specific arch.

Reversing in OS X - what’s different

Syntax:
lipo –thin [architecture] –output [output_file_name] fat_archive

Reversing in OS X - what’s different

§  Objective-C.
§  An extension to C language that enables objects to be

created and manipulated.
§  Rich set of frameworks: Cocoa, Cocoa Touch(iOS).
§  Syntax of methods:

§  [object message:arguments]
§  [object message]

Reversing in OS X - what’s different

§  What happens on execution?
§  There are no “traditional” calls to functions or methods.
§  Instead, messages go thru the objc_msgSend function.
§  id objc_msgSend(id theReceiver, SEL theSelector, ...)
§  There are three more message functions, but

objc_msgSend is the most common.

§  Check Objective-C Runtime Reference documentation.
§  Also nemo’s article at Phrack #66.

Reversing in OS X - what’s different

Reversing in OS X - what’s different

§  Those messages can be traced:
§  With GDB.

§  With DTrace.
§  Nemo’s article has sample code for the above solutions.
§  The GDB version works great in iOS.
§  Set NSObjCMessageLoggingEnabled environment variable to

YES and messages will be logged to /tmp/msgSends-pid.
§  More info at Technical Note TN2124 – Mac OS X Debugging

Magic.

Tools overview

§  Quality, quantity, and number of features of tools lags a
lot versus the Windows world.

§  Especially in GUI applications.
§  This is slowly improving with increased interest in this

platform.

§  Download Apple’s command line tools for Xcode or the
whole Xcode. (https://developer.apple.com/downloads/ ,
requires free Apple ID).

Tools overview - Debuggers

§  GDB.
§  IDA.
§  PyDBG/PyDBG64.
§  Radare.
§  LLDB.
§  Hopper.
§  Forget about GNU GDB 7.x !

Tools overview - Debuggers

§  GDB is my favourite.
§  Apple forked it at 6.x - stopped in time.
§  Lots of bugs, missing features - LLDB is the new thing.
§  But, it does the job!
§  Use my patches (http://reverse.put.as/patches/).
§  And gdbinit, to have that retro Softice look & features

(http://reverse.put.as/gdbinit/).

§  Please read the header of gdbinit!

Tools overview - Debuggers

Tools overview – GDB commands

§  Add software breakpoints with “b, tb, bp, bpt”.
§  Add hardware breakpoints with “hb, thb, bhb, bht”.
§  To breakpoint on memory location you must add the *

before address. Example: b *0x1000.
§  Step thru code with “next(n), nexti(ni), step, stepi”.

§  Step over calls with “stepo, stepoh”.
§  Change flags register with “cf*” commands.
§  Evaluate and print memory with “x” and “print”.

Tools overview – GDB commands

§  Print Object-C objects with “po”.
§  Modify memory with “set”.
§  Register: set $eax = 0x31337.
§  Memory: set *(int*)0x1000 = 0x31337.
§  Assemble instructions using “asm”.
§  Dump memory with dump commands (“dump memory”

is probably the one you will use often).

§  Find about all gdbinit commands with “help user”.

Tools overview - Disassemblers

§  Otool, with –tV option. The objdump equivalent.
§  OTX – enhanced otool output (AT&T syntax).
§  IDA – native version so no more Windows VM.
§  Hopper – the new kid on the block, actively developed,

very cheap, includes a decompiler.

§  Home-made disassembler using Distorm3 or any other
disassembler library (udis86, libdasm also work well).

Tools overview – Other tools

§  MachOView – great visual replacement for otool –l.
§  Hex-editors: 0xED, Hex Fiend, 010 Editor, etc.
§  nm – displays symbols list.
§  vmmap – display virtual memory map of a process.
§  DTrace. Check [9] for some useful scripts.
§  File system usage: fs_usage.

Tools overview – Class-dump

§  Allows you to examine the available Objective-C
information.

§  Generates the declarations for the classes, categories
and protocols.

§  Useful to understand the internals and design of
Objective-C apps.

§  Used a lot by the iOS jailbreak community.

Tools overview – Class-dump

Mach tasks and threads

§  Explaining the whole Mac OS X architecture would
require a whole presentation.

§  Others did it before, please check [20] and [21].
§  For now we just need one concept.
§  Unix process abstraction is split into tasks and threads.
§  Tasks contain the resources and do not execute code.
§  Threads execute within a task and share its resources.
§  A BSD process has a one-to-one mapping with a Mach

task.

Anatomy of a debugger

§  OS X ptrace implementation is incomplete (and useless).
§  Mach exceptions are the solution.
§  Each task has three levels of exception ports: thread,

task, host.
§  Exceptions are converted to messages and sent to

those ports.
§  Messages are received and processed by the exception

handler.

Anatomy of a debugger

§  The exception handler can be located in another task,
usually a debugger.

§  Or another thread in the same task.
§  Kernel expects a reply message with success or failure.
§  Messages are first delivered to the most specific port.

§  Detailed information on Chapter 9.7 of Mac OS X
Internals.

Anatomy of a debugger

Anatomy of a debugger

§  By default, the thread exception ports are set to null
and task exception ports are inherited during fork().

§  We need access to the task port.
§  Not a problem if debugging from the same task:

mach_task_self().

§  Higher privileges required (root or procmod group) if
from another task: task_for_pid().

Anti-debugging – “Old school”

§  ptrace(PT_DENY_ATTACH, …).
§  Ok, that was a joke. This is useless!
§  Just breakpoint on ptrace() or use a kernel module.
	

Anti-debugging – “Old school”

§  AmIBeingDebugged() from Apple’s Technote QA1361.
§  Calls sysctl() and verifies if P_TRACED flag is set in proc

structure.
§  Breakpoint sysctl() and modify the result or use a kernel

module.

Anti-debugging - #1

§  Remember, debuggers “listen” on the exception ports.
§  We can verify if that port is set.
§  Use task_get_exception_ports().
§  GDB uses a mask of EXC_MASK_ALL and a flavour of

THREAD_STATE_NONE.

§  Iterate thru all the ports and verify if port is different
than NULL.

§  Do something (nasty) J.

Anti-debugging - #1

Anti-debugging - #2

§  Check for GDB breakpoint.
§  GDB is notified by dyld when new images are added to

the process.
§  This is what allows the GDB “stop-on-solib-events” trick

that I used to get into Pace’s protection.

§  Symbol name is _dyld_all_image_info.

Anti-debugging - #2

§  How to do it:
§  Use vm_region_recurse_64() to iterate thru memory.
§  We need a starting point.
§  Dyld stays at 0x8FExxxxx area in 32 bits processes.
§  And at 0x00007FFFxxxxxxxx area in 64 bits processes.
§  It’s always the first image in that area, even with ASLR.
§  Try to find a valid Mach-O image by searching for the

magic value.

Anti-debugging - #2

Anti-debugging - #2

§  Add DYLD_ALL_IMAGE_INFOS_OFFSET_OFFSET to the
base address of dyld image.

§  Get a pointer to the dyld_all_image_infos structure.
§  We are interested in the notification field.
§  Verify if there’s a INT3 on that address.

§  Do something (nasty) J.

Anti-debugging - #3

§  This one crashes GDB on load, but not if attached.
§  Abuse the specification of struct dylib_command.
§  The library name is usually after the structure.
§  And offset field points there.
§  Just put the string somewhere else and modify the offset

accordingly.

§  Check http://reverse.put.as/2012/01/31/anti-debug-
trick-1-abusing-mach-o-to-crash-gdb/.

Anti-debugging - #3

Kernel debugging

§  The default solution is to use two computers, via
Ethernet or Firewire.

§  VMware can be used, which is so much better.
§  The traditional way, using Apple’s kernel debugger

protocol with GDB.

§  Or VMware’s built in debug server also with GDB.
§  Check out my original post and snare’s updates at

http://ho.ax.

Code injection

§  DYLD_INSERT_LIBRARIES is equivalent to LD_PRELOAD.
§  I prefer another trick!
§  Modify the Mach-O header and add a new command:

LC_LOAD_DYLIB.
§  Most binaries have enough space to do this.

Code injection

§  What can it be used for?
§  A run-time patcher.
§  A debugger & tracer.
§  A virus (the subject of my next presentation).
§  Function hijacking & method swizzling.
§  Anti-piracy & DRM.
§  Something else!

Code injection

Version Average Size Min Max
32bits 3013 28 49176
64bits 2601 32 36200

Some stats from my /Applications folder:

Minimum size required is 24bytes.
Check http://reverse.put.as/2012/01/31/anti-
debug-trick-1-abusing-mach-o-to-crash-gdb/
for a complete description.

Code injection – How to do it

§  Find the position of last segment command.
§  Find the first data position, it’s either __text section or

LC_ENCRYPTION_INFO (iOS).
§  Calculate available space between the two.
§  Add new command (if enough space available).

§  Fix the header: size & nr of commands fields.
§  Write/overwrite the new binary.

Code injection – How to do it

Code injection – How to do it

§  Next step is to build a dynamic library.
§  You can use the Xcode template.
§  Add a constructor as the library entrypoint:
§  extern void init(void) __attribute__ ((constructor));
§  Do something.

§  Interesting Objective-C feature.
§  Replace the method implementation with our own.
§  We are still able to call the original selector.
§  JRSwizzle makes this an easy process!
§  Do whatever you want in your implementation:
§  Dump credentials.
§  Control access.
§  Add features.
§  Etc…

Swizzling

Swizzling – A basic example

Swizzling – A basic example

Swizzling – A basic example

Swizzling – A basic example

§  GDB doesn’t breakpoint entrypoint on packed binaries.
§  My theory: this is due to abnormal Mach-O header.
§  There’s only a __TEXT segment, without any sections.
§  And a LC_UNIXTHREAD with the entrypoint.
§  A workaround is to modify entrypoint and replace with

INT3.

§  And then manually fix things in GDB.
§  Use my GDB patches to avoid a bug setting memory.

Tips & tricks – Packed binaries

§  In case of UPX, the entrypoint instruction is a call.
§  So you will need to set the EIP to the correct address.
§  Fix the stack pointer.
§  And add the return address to the stack.
§  Remove the INT3 and restore the original byte, to avoid

checksum problems.

§  Problems might occur if there’s a secondary check
between memory and disk image.

Tips & tricks – Packed binaries

Tips & tricks – Packed binaries

Tips & tricks – Packed binaries

§  How to compute file offsets for patching:
§  If you use IDA, the displayed offset is valid for fat and

non-fat binaries.
§  The vmaddr and fileoff fields on the next slides refer to

the __TEXT segment.

Tips & tricks – File offsets

Tips & tricks – File offsets

§  Manually:
§  1) If binary is non-fat:

File offset = Memory address - vmaddr + fileoff
§  2) If binary is fat:

Retrieve offset of target arch from fat headers.
File Offset = Target Arch Offset + Memory address -
vmaddr + fileoff

Tips & tricks – File offsets

§  Retrieve fat architecture file offset:

Tips & tricks – File offsets

§  Retrieve vmaddr and fileoff:

Tips & tricks – File offsets

§  Calculate the file offset for a given address:

File offset = 45056 + 0x542a – 0x1000 + 0 = 0xF42A

Tips & tricks – File offsets

Tips & tricks – File offsets

§  Code signing introduced in Leopard.
§  In practice it’s useless. Barely any app uses it in a

proper way.
§  We can patch the app and resign it with our own

certificate.

§  Of course, assuming no certificate validation (never saw
an app that does it!).

Tips & tricks – Resigning binaries

§  Generate your self-signed code signing certificate.
§  Using Certificate Assistant of Keychain app.
§  Or by hand with OpenSSL [22].
§  Resign the modified application:
§  codesign –s “cert_name” –vvvv –f target_binary
§  Or just remove LC_CODE_SIGNATURE from Mach-O

header.

Tips & tricks – Resigning binaries

§  Almost all of the previous slides apply.
§  If your target is armv7, you will have some problems.
§  GDB is unable to correctly disassemble some

instructions, so output is all messed up.
§  My method is to follow code in IDA, while stepping in

GDB (yes, it sucks!).
§  Hopper author is working on ARM support and will

implement a debug server for iOS.

iOS Reversing

§  If you want to overwrite iOS binaries, don’t forget that
inodes must change.

§  Just mv or rm the original file and copy the new/patched
file.

§  ldone from hackulo.us repo works great for fake code
signing.

§  Cydia.radare.org repo has an updated GDB version with
my patches.

iOS Reversing

§  Target is Sandwich.
§  A very simple and rather old Cocoa crackme.
§  Available at http://reverse.put.as/wp-content/uploads/

2010/05/1-Sandwich.zip.
§  A couple more crackmes available at http://

reverse.put.as/crackmes/.
§  Try to reverse my crackme, it uses some interesting

tricks J.

Reversing a crackme

Reversing a crackme

§  What is inside?
§  We can start by using the file command to verify the

available architectures.
§  And then use class-dump to dump methods.
§  Or use nm to display the symbols.

§  I also like to use otool –l (or MachOView) to have a look
at the Mach-O load commands.

§  It allows you to spot unusual stuff.

Reversing a crackme

Reversing a crackme

§  The methods validate: and validateSerial: have
appealing names.

§  We can disassemble the binary and give a look at those
methods.

§  In this example I used OTX command line version.
§  And we can also use GDB to verify if those methods are

used or not.

Reversing a crackme

Reversing a crackme

Reversing a crackme

Reversing a crackme

	

	

	

§  The stringValue method is retrieving the serial number
we input into the box.

§  Browsing documentation in Xcode or Dash we have:

§  Returns a string object with that NSTextField contents.

Reversing a crackme

Reversing a crackme

	

	

	

	

	

	

	

	

	

§  The method validateSerial: is called with the serial
number as the only argument.

§  Returns a bool with success or failure.
§  If we modify the JNE at 0x1d43:

Reversing a crackme

Reversing a crackme

§  Now it’s a matter of following the code and reversing
the serial algorithm.

§  Length should be 19 chars.
§  It should contain 4 groups of characters separated by a

dash (-).

§  And so on…
§  You should be able to follow what is happening by

checking methods documentation.

Reversing a crackme

Final remarks

§  OS X is an interesting platform.
§  Lags in both offensive and defensive reversing tools &

tricks, especially if compared with Windows.
§  This is great for all of you that like to do research!
§  Not so crowded space as Windows and Linux.

§  Lots of opportunities to create new things.
§  And hopefully to do interesting presentations ;-).

References

1.  http://reverse.put.as
2.  http://ho.ax
3.  http://www.phrack.org/issues.html?issue=66&id=4#article

4.  http://www.codethecode.com/projects/class-dump/
5.  http://developer.apple.com/library/mac/#qa/qa1361/

_index.html

6.  http://landonf.bikemonkey.org/code/macosx/
Leopard_PT_DENY_ATTACH.20080122.html

7.  Mac OS X Internals, Amit Singh

References

8.  Under the iHood, Recon 2008, Cameron Hotchkies.
9.  http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtrace-

scripts-for-mac-os-x/

10.  https://github.com/rentzsch/jrswizzle
11.  http://radare.org/

12.  http://www.hopperapp.com
13.  https://github.com/gdbinit/pydbg64
14.  http://lldb.llvm.org/

15.  http://code.google.com/p/distorm/

References

16.  http://otx.osxninja.com/
17.  http://sourceforge.net/projects/machoview/
18.  http://www.suavetech.com/0xed/0xed.html

19.  http://cocoadev.com/wiki/MethodSwizzling
20.  http://osxbook.com/book/bonus/ancient/whatismacosx/

arch_xnu.html

21.  http://chaosradio.ccc.de/24c3_m4v_2303.html
22.  http://developer.apple.com/library/mac/technotes/tn2206/

_index.html#//apple_ref/doc/uid/DTS40007919-CH1-
SECTION7

Greets to:
snare, noar, saure, #osxre, Od, put.as team

http://reverse.put.as

http://github.com/gdbinit
reverser@put.as

@osxreverser

#osxre @ irc.freenode.net

