

THIS SPEC IS OBSOLETE

Spec No: 001-65423

Spec Title: MAC OS X: GETTING STARTED WITH USB - AN1105 	

 Sunset Owner: Gayathri Vasudevan (GAYA)

 Replaced by: None

Mac OS X: Getting Started with USB

August 29, 2013 Document No. 001-65423 Rev. *A 1

AN1105
Associated Project: No

Associated Application Notes: None

Abstract
Developing USB drivers for Mac OS X is completely different than developing USB drivers on Mac OS 9. This application
notes describe how to develop USB driver for Mac OS X. Include introducing the kernel of Mac OS X and driver architecture.
Some useful example codes also be attached.

Introduction
This document discusses developing USB drivers for Mac
OS X. We will briefly discuss the USB system architecture
on Mac OS X to understand the terminology. Then we will
discuss issues and tips and tricks for developing USB
device drivers.

Specifically we want to cover the following:

1. Mac OS X Kernel and I/O Kit architecture

2. USB on Mac OS X

3. Kernel Space drivers

4. User Space drivers

5. Interaction with the Classic environment

6. Reference information and where to go next

Comparing Mac OS 9 to Mac OS X
Developing USB drivers for Mac OS X is completely
different than developing USB drivers on Mac OS 9. It is
unfortunate, but the skills used to develop drivers for Mac
OS 9 are not transferable to Mac OS X. The API’s are
different. The runtime environment is different and the tools
are different. The table in Figure 1, compares some of the
differences between USB drivers on Mac OS 9 versus Mac
OS X.

Figure 1. USB Drivers on Mac OS 9 vs. Mac OS X

 Mac OS 8 & 9 Mac OS X

Driver Description In driver’s code fragment Property List (XML file)

Scheduling Asynchronous Asynchronous & Synchronous

Programming C Embedded C++ (object oriented)

Driver Framework USB Specific I/O Kit

Providing Application Access Easy – Direct Access Hard – Must bridge Kernel Boundary!

Similar function names/methods Parameter Block interface Series of C++ methods

Memory buffers Held and locked IOMemoryDescriptor

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 2

Mac OS X Architecture Overview

In the simplest form, the Mac OS X architecture can be
divided into two parts: user space and kernel space. The
diagram commonly used to describe the Mac OS X
architecture is shown in Figure 2.

Figure 2. Mac OS X Architecture Overview

The lower block, in Figure 2, represents the kernel. All code
that runs in the kernel shares the kernel’s address space.
Everything else outside of the kernel is referred to as user
space. Applications built with the Carbon, Cocoa, Java or
BSD application environments get their own address space
at runtime, but by convention it’s all referred to as user
space. Common services used by the application
environments, including the Event Manger and the Quartz
imaging and windowing system, are also in user space.

The Mac OS X Kernel is based upon Mach and FreeBSD
and is available via open source licensing through the Darwin
project (http://www.apple.com/darwin). In other operating
systems it’s common to refer to just the Mach Kernel as the
kernel. However, Apple refers to everything you see in the
lower block as the Kernel.

Inside the kernel is the I/O Kit – Apple’s object-oriented
framework for developing KEXTs (a.k.a, Kernel Extensions
or kernel drivers). The I/O Kit is based upon a restricted form
of C++ that provides an inheritance model to make writing
drivers easier. The I/O Kit enables the rapid development of
device drivers by implementing abstractions common to all
drivers as well as abstractions that are specific to certain
types of drivers (such as USB and FireWire).

The I/O Kit framework provides mechanisms to handle I/O
synchronization, memory management, as well as object
runtime and life cycle support. The kernels used in operating
systems such as Microsoft NT, Linux and most Unix
derivations are single threaded, which simplifies kernel driver
development. However, the Mach Kernel in Mac OS X is
multi-threaded, which requires drivers to adopt special
synchronization mechanisms provided by I/O Kit.

The I/O Kit also provides a plug-in mechanism, called Device
Interfaces. The Device Interface plug-in mechanism enables
applications and user-space drivers to access hardware. Or,
more specifically, it allows applications and user-space
drivers to access KEXTs that drive hardware. We will discuss
Device Interfaces more later when we discuss user-space
drivers.

USB on Mac OS X
The USB system software had to be completely redesigned
for Mac OS X based upon the I/O Kit. The USB system
software on Mac OS X is referred to as the IOUSBFamily.
The IOUSBFamily is deployed as a single KEXT bundle. We
will describe what a KEXT bundle is in the section Anatomy
of a KEXT. The IOUSBFamily is a required part of Mac OS

X. The IOUSBFamily KEXT can be found in the directory
/System/Library/Extensions/IOUSBFamily.kext.

The IOUSBFamily provides support for many USB Class
device drivers in Mac OS X:

 Hub driver

 HID devices – keyboards, mice, gaming, pointing
devices, UPSes

 Mass Storage (including optical storage like CD-
R/W and DVD)

 USB Communication Class (V.90/V.25 Modems)

 Audio – Audio input and output

 Printing – Built-in PostScript printing support

Highlights of USB and Mac OS X

Kernel vs. User space. Even though all of IOUSBFamily is
in the Kernel, Mac OS X drivers can be written in kernel
space or user space and have direct access to the
IOUSBFamily. Applications and user-space drivers can take
full control over a USB device using the device interface
plug-in mechanisms provided by IOUSBFamily and I/O Kit.

I/O Kit and C++. I/O Kit provides an object oriented
framework for developing drivers. It is implemented in a
restricted form of C++ that omits features unsuitable for use
within a multithreaded kernel (e.g., RTTI, exceptions, etc).
The IOUSBFamily and I/O Kit enable the rapid development
of USB device drivers by implementing abstractions common
to all USB drivers. IOUSBFamily objects can be instantiated
and used directly or they can serve as base classes from
which custom drivers can be derived and functionality can be
overridden. The I/O Kit’s object oriented inheritance model
and the IOUSBFamily eliminate a lot of the USB specific
code that a USB driver would have to implement. We will
provide examples of the inheritance model in action in the
section on Kernel Space Drivers.

Driver Matching. One of the unique aspects of Mac OS X’s
driver model has to do with how driver matching and loading
works. I/O Kit uses matching dictionaries, encoded in KEXT
property lists, to match device drivers to hardware.
Applications and user-space drivers create matching
dictionaries used to find and access hardware. Because
driver matching is very important, we will discuss it further in
this section as well as in the Developing Kernel Space
Drivers section and the Developing User Space Drivers
section. Unlike in Mac OS 9, drivers are not loaded
automatically simply because they are installed. In Mac OS
X, a driver must first be matched to an existing device before
that driver can be loaded.

I/O Registry. The I/O Registry is a dynamic database
representing a collection of objects (nubs and drivers) and
the provider-client relationships between the objects. The I/O
Registry exists only in memory and is rebuilt every time the
system boots. The I/O Registry dynamically changes as new
hardware is added or removed from the system. The I/O Kit
provides powerful search APIs for searching the I/O Registry
for an object with particular characteristics. This is how
applications find the Device Interfaces that are used to
access hardware devices.

http://www.apple.com/darwin

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 3

Blocking I/O. Any I/O done in Mac OS 9, regardless if from
applications or drivers, had to be called asynchronously.
However, in Mac OS X asynchronous and synchronous I/O is
possible. Synchronous (blocking) I/O simplifies application
code that performs I/O. An application or user-space driver
can make an I/O call and the execution of that code will block
until the I/O completes. Asynchronous I/O is also available
for the more advanced applications or user-space drivers.

Multithreaded Drivers. The Mac OS X kernel is
multithreaded. The kernels used in operating systems such
as Microsoft NT, Linux and most Unix derivations are single
threaded. This means that Mac OS X kernel drivers must be
able to handle multithreading. Multithreaded driver support
is another important feature provided by I/O Kit.

Memory Buffer Comparisons

In Mac OS 9, applications create memory buffers that need
to be marked as “held” memory. This means the memory
buffers cannot be swapped out to disk by the virtual memory
system. Then pointers to the memory buffers are passed to
drivers.

In Mac OS X, user-space drivers use virtual address buffers.
They pass memory pointers straight into the kernel. But in
the kernel the memory pointer is wrapped inside an
IOMemoryDescriptors object. IOMemoryDescriptors are very
flexible. The memory buffers IOMemoryDescriptors
reference do not need to be contiguous. The user-space
memory buffers passed into the kernel are not necessarily
mapped into kernel address space. IOMemoryDescriptors
objects can describe memory that is inaccessible from the
kernel directly, but is accessible using DMA. This is very
efficient because wiring memory into kernel address space
would be a very expensive operation.

Checking out Darwin and checking out the
IOUSBFamily

The IOUSBFamily is part of the Darwin open source project.
All of the source code to the IOUSBFamily is available via
open-source licensing. The URL is
cvs.opensource.apple.com:/cvs/Darwin. Download the
source to IOUSBFamily and get hands on understanding
how USB works on Mac OS X. The major objects in the
IOUSBFamily are listed here with a brief summary.

IOUSBController object – Heart of USB Family. The
AppleOHCI driver inherits from this object to provide access
to the USB Host Controller shipped with Mac hardware.

IOUSBDevice object – Its provider is the IOUSBController
object. There is one IOUSBDevice object per device
connected to the bus. Provides methods for accessing the
fields of the USB Device Descriptor and the Configuration
Descriptor of the device. It sets the configuration of the
device and instantiates an IOUSBInterface object for each
interface in the configuration descriptor.

IOUSBInterface Class – Its provider is the IOUSBDevice
object. There is one IOUSBInterface object per interface on
a device – Interface Descriptor. Instantiates and distributes
IOUSBPipe objects to drivers. Allows setting of Alternate
interfaces.

IOUSBPipe Class – There is one IOUSBPipe object per
endpoint in an Interface Descriptor. The IOUSBPipe provides
the methods for data transfer to drivers. IOUSBPipe objects
provide access to all the USB Endpoints:

 Control

 Interrupt Read/Write

 Bulk Read/Write

 Isochronous Read/Write

IOUSBDeviceUserClient and IOUSBInterfaceUserClient –
Provide connections between user tasks and the
IOUSBDevice and the IOUSBInterface kernel objects. The
UserClient objects are visiable in the I/O Registry.

I/O Kit IOUSBFamily Kernel Driver Stack

In the previous section we covered the main objects in the
IOUSBFamily. Let’s take a look at how objects are built up
in the system. This is also a good opportunity to experiment
with the IORegistryExplorer utility. Open
Developer/Applications/IORegistryExplorer.app.

The IORegistryExplorer allows the objects in the I/O Registry
to be viewed from a number of different perspectives,
referred to as Planes. All of the Planes start out with a root
and build up from there. An IOUSB Plane exists to look at
the objects in the I/O Registry from the perspective of the
USB subsystem. The IOService Plane shows the provider-
client relationships between the objects in the I/O Registry.
The IOService Plane is the most useful Plane in the
IORegistryExplorer, but it can also be most difficult to
navigate. Navigating the first three levels of the IOService
Plane can be the most confusing, an example has been
captured in Figure 3.

cvs.opensource.apple.com://cvs/Darwin

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 4

Figure 3. IORegistryExplorer Application

Select the IOService plane in the list. Then starting with the
Root object, select the objects in the plane until you can
select the pci@f2000000:IOPlatformDevice object, as shown
in Figure 3. Then select the AppleMacRiscPCI object. With
the AppleMac-RiscPCI object selected, look for the
IOProviderClass key in the table at the bottom of the
IORegistryExplorer window. This table displays the
dictionary values stored in the I/O Registry for the selected
object. The IOProviderClass is a key/value pair from a
KEXT’s property list. The IOProviderClass key/value pair
tells I/O Kit what objects this KEXT can match to. In this
case the AppleMacRiscPCI object matches to an object of
type IOPlatformDevice.

Continuing from the AppleMacRiscPCI object, select the
IOP-CIDevice object. The IOPCIDevice object is created
when the PCI controller detects a USB controller chipset at
boot time. Then, the IOUSBController class is matched to
the IOPCIDevice object and instantiated. The
IOUSBController object initializes the USB controller chip
and then instantiates an IOUSBDevice object. The
IOUSBDevice object represents the root hub, inside the
controller chip. The IOUSBDevice object retrieves the USB
device descriptor from the device and puts it into the I/O
Registry to be used by I/O Kit to match and load the
AppleUSBHubDriver. During initialization, the
AppleUSBHubDriver scans the bus looking for USB devices.
For each USB device found, an IOUSBDevice object is
instantiated and the process continues recursively.

If we have USB Speakers attached, for example, the
AppleUSBHubDriver tells the IOUSBController object to
instantiate another IOUSBDevice nub object representing
the speakers. The I/O Kit matches the IOUSBComposite
class driver against this device because the USB Speakers
are a composite class device. The IOUSBComposite driver
sets the configuration in the device, which causes the
interfaces to appear; the IOUSBComposite object calls the
SetConfiguration method on IOUSBDevice and
IOUSBDevice instantiates the interfaces of the device in the
form of the IOUSBInterface nub objects. One of these
interfaces is the audio channel. I/O Kit matches a driver
against the IOUSBInterface nub object for the audio channel
and in this case it is the AppleUSBAudioDevice driver. The
driver stack is complete.

USB Driver Matching in Mac OS X

There are two kinds of objects found in the I/O Registry:
nubs and drivers. The primary function of nubs is to provide
matching services – matching drivers to devices. Driver
matching is an I/O Kit process, so USB driver matching must
follow I/O Kit rules. To support driver matching, each KEXT
defines one or more IOKitPersonalities dictionaries that
specify the kinds of devices it can support. An
IOKitPersonalities dictionary is defined in the Info.plist
property list in the KEXT’s bundle. The dictionary values are
used by I/O Kit to identify candidate drivers for a particular
device.

When a USB device is attached to the bus, the hub driver
detects and “enumerates” the device. The hub driver tells
the USB controller driver to create an IOUSBDevice object.
The IOUSBDevice object is an I/O Kit nub abstraction of the
device’s USB device descriptor. This IOUSBDevice object is
attached to the IOService plane of the I/O Registry as a child
of the USB controller driver. The IOUSBDevice nub object is
then registered for matching with the I/O Kit.

I/O Kit finds and loads a driver for the nub in three distinct
phases, using a subtractive process until a successful
candidate is found. The phases of matching are: class
matching, passive matching, and active matching.

Class matching – starts with all known KEXTs installed in
the system and eliminates drivers of the wrong class. I/O Kit
keeps track of all installed KEXTs in the file
/System/Library/Extensions.mkext. I/O Kit looks for the
nub’s class name in the IOProviderClass key/value pair in
each KEXT’s property list. The IOProviderClass key/value
pair tells I/O Kit what objects this KEXT can match to. All the
KEXTs that match to this class remain in the list, all others
are eliminated.

Passive matching – examines each remaining driver’s
personalities for properties specific to the device, eliminating
those drivers that do not match. I/O Kit creates a table of
possible USB drivers for the device using the information in
the kernel drivers’ property list. This table is then passed to
the IOUSBFamily to evaluate the candidate drivers using a
scoring mechanism based upon criteria specified by the
USB Common Class Specification. This creates an ordered
list of drivers with a ranking.

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 5

Active matching – begins when IOService calls the probe
method for each candidate driver in the list starting with the
highest ranked driver. The probe method is passed a
reference to the provider object the driver is being matched
against. The probe method can use the reference to the
provider to verify that it can support the device. In additions,
a probe score can be returned from the probe method to
indicate how well suited the driver is to drive the device.
However, for USB drivers it’s usually best not to modify this
value.

A driver can accept the USB device by returning a true value
from the probe method. Once a driver accepts the USB
Device, I/O Kit calls the driver’s start method. At this time
the driver can perform I/O to interrogate the device and
determine if the driver really wants to support the device. If
the driver changes it’s mind and decides it actually doesn’t
support the device, it fails the start method and I/O Kit will
then select the next candidate driver in the list and calls that
driver’s probe method.

Kernel vs. User Space Drivers

The first step to USB driver development in Mac OS X is
determining if you are going to need to develop a kernel-
space driver or a user-space driver. Some of the questions
you should ask yourself are the following:

1. Will your driver be used by the kernel?

2. Will your driver be used by many tasks in the
system?

3. Do you need access to primary interrupts?

4. Do you need tight synchronization between tasks?

If you answer yes to any of these questions then you might
need to develop a kernel-space driver (a KEXT). If your
driver needs to respond to PCI bus interrupts then you
definitely need to be in the kernel. If your driver’s client also
lives in the kernel (e.g., storage drivers) then you need to be
in the kernel. Kernel threads run at a higher priority than
user-space threads. So, if you need very, very, tight
synchronization between tasks then you will need to be in
the kernel. If the previous questions don’t apply to you, you
should make it your goal to stay out of the kernel.

Debugging a KEXT is very difficult. Debugging a KEXT
requires two-machine debugging using GDB (the gnu
debugger). A single bug in a KEXT can bring down the
whole system. Whereas user-space drivers can be
developed using a source level debugger and crashes in
user space won’t bring down the system.

Recently, I met a developer who did all his preliminary USB
driver development and prototyping in user space, because
it’s so much easier to do development. Then, only after the
driver logic was fully debugged, did he move the code into a
KEXT. This made his life easier.

Concrete Driver Examples

Keyboards and Mice – are kernel-space drivers because
the HID System is in the kernel. And because they are used
by just about every user-space task in the system.

Mass Storage – are kernel-space drivers because they are
used by the file system which is also in the kernel, see
Figure 4.

Scanners – are user-space drivers because they will only
be used by applications.

Printers – are user-space drivers because they will only be
used by applications.

CD-R/W & DVD-R/W – are both kernel and user-space
drivers due to sharing issues.

Figure 4. Directory Structure of a KEXT

USB Kernel Driver Development
A kernel-space driver is a Kernel Extension (KEXT) that is
installed in /System/Library/Extensions. Currently, KEXTs
must be built using Apple’s Project Builder and debugged
using GDB and command line tools in the Terminal. KEXTs
must run in supervisor mode, and as such, they must have
the appropriate user and permission settings. The KEXT and
all it’s contents must be owned by root and by the group
wheel. Root and wheel are unix-isms.

Additionally the bundle has to have the file permissions of
755 and the files in the bundle need to have the permissions
of 644. This can be performed with the following commands
in the Terminal.

chown -R root your_driver.kext chown -R

:wheel your_driver.kext chmod -R 755

your_driver.kext

Anatomy of a KEXT

A KEXT is just a special kind of bundle. And a bundle is just
a special kind of directory that the Finder treats as single file.
Instead of a multi-forked file system with resource and data
forks as was used in previous versions of the Mac OS, Mac
OS X stores executable code and the software resources
related to that code in a bundle. The bundle directory, in
essence, “bundles” a set of resources into a discrete
package.

But for a bundle to be a KEXT it must have the following:

1. The bundles name must end with a .kext extension.

2. All KEXTs must have an Info.plist – information property
list (in XML) that describes the KEXT’s contents and
requirements, like a table of contents.

Optionally a KEXT can also contain:

1. The module, or KMOD, contains the Mach-O binary
code. This is what’s actually loaded into the kernel and
run.

2. A Resources directory can be used for localized strings,
icon, etc.

3. A Plug-ins directory can be used to hold a suite of
drivers (e.g., IOUSBFamily.kext).

Normally, a KEXT has a module, but it can have none
(locally). If a KEXT does not have a module, its property list
must reference a module in another KEXT. The Info.plist

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 6

must refer to at least one module.

The contents of the KEXT bundle of the Cypress USB Mass
Storage driver is shown in Figure 5.

Figure 5. Directory Structure of a KEXT

Inside of all bundles, exists a Contents directory where
everything else is placed. The com_cy_driver_USB_device
KMOD is inside a MacOS directory. Inside the Resources
directory is an English localization folder and an
ATASecurityHelper.app. ATASecurityHelper is a user-space
application used by the Cypress USB Mass Stroage driver to
provide a user interface to the ATA Security Feature for hard
drives. This shows that just about anything can be stored in
the Resources directory.

For comparison, let’s take a look at the bundle structure of
the IOUSBFamily.kext shown in Figure 6. The directory
structure should look familiar. The Contents directoy
contains the Info.plist, Resources, and the MacOS
directories as you’d expect. But, the IOUSBFamily.kext has
a Plugins directory full of other KEXTs. The Plugins directory
provides a mechanism for organizing a suite of drivers into a
single bundle. The I/O Kit will look one level deep into a
KEXT for additional KEXTs located in the Plugins folder. All
of the KEXTs will be available for driver matching as if they
were organized individually.

Figure 6. Directory Structure of IOUSBFamily.kext

Property Lists

The Info.plist property list is the most important and the only
required part of a KEXT bundle. The Info.plist contains
essential configuration information and matching
dictionaries. This information is readily available to system
and program code at runtime. If viewed from a text editor,
the property list would be in XML (Extended Markup
Language) format. However, the Info.plist file is normally
edited within Project Builder.

The Info.plist, information property list, is a collection of key-
value pairs where the XML tags <key> and </key> enclose
the key. Immediately following the key are the tags
enclosing the value; these tags indicate the data type of the
value; for example,

<key>idProduct</key> integer>10256</integer>

would define an integer value for the idProduct key.

Code Listing 1, shows the contents of the Cypress USB
Storage driver Info.plist in XML format and Figure 7, shows
the Info.plist in Project Builder.

Code Listing 1 – Info.plist for the Cypress USB Storage driver.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

3 <plist version="1.0">

4 <dict>

5 <key>CFBundleDevelopmentRegion</key>

6 <string>English</string>

7 <key>CFBundleExecutable</key>

8 <string>com_cy_driver_USB_Device</string>

9 <key>CFBundleGetInfoString</key>

10 <string>1.4.0, Copyright Cypress Semiconductor, Inc. 2000-2002</string>

11 <key>CFBundleIdentifier</key>

12 <string>com.cy.iokit.Morpheus</string>

13 <key>CFBundleInfoDictionaryVersion</key>

14 <string>6.0</string>

15 <key>CFBundleName</key>

16 <string>com_cy_driver_USB_Device</string>

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 7

17 <key>CFBundlePackageType</key>

18 <string>KEXT</string>

19 <key>CFBundleShortVersionString</key>

20 <string>1.4.0</string>

21 <key>CFBundleSignature</key>

22 <string>????</string>

23 <key>CFBundleVersion</key>

24 <string>1.4</string>

25 <key>IOKitPersonalities</key>

26 <dict>

27

28 <!-- ... matching dictionaries not shown ... -->

29

30 </dict>

31 <key>OSBundleCompatibleVersion</key>

32 <string>1.0.0</string>

33 <key>OSBundleLibraries</key>

34 <dict>

35 <key>com.apple.iokit.IOSCSIArchitectureModelFamily</key>

36 <string>1.0.0</string>

37 <key>com.apple.iokit.IOStorageFamily</key>

38 <string>1.1</string>

39 <key>com.apple.iokit.IOUSBFamily</key>

40 <string>1.8</string>

41 </dict>

42 <key>OSBundleRequired</key>

43 <string>Local-Root</string>

44 </dict>

45 </plist>

46

Figure 7. Info.plist in Project Builder

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 8

Summary of Property List Keys.

CFBundleDevelopmentRegion – defined in IOCFBundle.h.
This key identifies the region code the property list strings
are written in.

CFBundleIdentifier – defined in IOCFBundle.h. This key is
used to uniquely identify the bundle in the system. Use the
reverse DNS of your company (e.g., “com.yourCo.driver”).

CFBundleInfoDictionaryVersion – defined in
IOCFBundle.h. The version number for the Info.plist format.
New plists should be version 6.0.

CFBundleVersion – defined in IOCFBundle.h. This key is
the bundle version string written in Mac OS 9 vers resource
style (e.g., “1.2.3b4”).

CFBundleName – defined in IOCFBundle.h. The short
display name for the bundle, this key is more applicable for
applications.

CFBundleExecutable – defined in IOCFBundle.h. The
name of the file holding the executable code for the bundle.

CFBundlePackageType – The MacOS-style four-letter-type
that identifies that this is a KEXT bundle.

CFBundleSignature –The MacOS-style four-letter-type that
identifies the bundle creator. This is the application creator
type. Not relevant for KEXTs.

CFBundleShortVersionString – This key is new with Mac
OS X 10.2. This is a short version string (e.g.,“1.2.3”)

CFBundleGetInfoString – The string for Get Info panels in
applications. May be used in upcoming versions of Apple
System Profiler for KEXTs.

IOBundleLibraries – These are your KEXT’s dependencies.
Here you list the other KEXTs that your KEXT needs in order
to load and run properly.

OSBundleRequired – This tells IOKit if this driver is
needed for early, boot time, driver matching. Set this to
Local-Roott if you need to load your KEXT at boot time.
However, if you need to compete with OS provided drivers
like USB Mass Storage Class or USB HID Class drivers,
which are loaded early in the boot processes, set this to
Root.

IOKitPersonalities – this is a dictionary containing one or
more matching dictionaries for this KEXT. Each matching
dictionary defines a different personality for the KEXT. It is
possible for a driver with multiple personalities to be
instantiated more than once if several personalities match.
Your driver can have more than one personality for a variety
of reasons. It could be that the driver (as packaged in the
KEXT) supports more than one type of device, or multiple
versions of the same type of device, or you have multiple
drivers packaged in the KEXT.

IOKitPersonalities dictionaries have a set of key-value pairs
that are used by I/O Kit for driver matching. Some are
common to all personalities (like CFBundleIdentifier,
IOClass, and IOProviderClass), others are defined by a
family. The IOUSB-Family defines the keys found in
IOKitPersonalities dictionaries for USB drivers. IOUSBFamily
passive matching criteria is from the USB Common Class
Specification section 3.10. Add the fields from the
specification (e.g., idProduct, and idDevice) to the
personality.Warning: Follow the specification to the letter. If
you add one extra key-value pair more than specified, the
matching dictionary will fail!

CFBundleIdentifier – a matching dictionary key. This
identifies the KEXT containing the IOClass that will be
loaded. Normally, the CFBundleIdentifier and IOClass point
to this KEXT, but it’s not required. It is perfectly valid for a
KEXT to have a matching dictionary that matches and
launches to a driver in another KEXT.

IOClass – a matching dictionary key. The name of the C++
driver class I/O Kit will instantiate for probing.

IOProviderClass – a matching dictionary key. This key
identifies the name of the nub class that this personality
matches to. For USB drivers the IOProviderClass will be
IOUSBDevice or IOUSBInterface.

IOKitDebug – an optional key used to turn on I/O Kit
debugging. This key makes I/O Kit dump additional data to
the system.log. This can be helpful when debugging drivers.
This is especially helpful when you are having difficulty
getting your driver to load (most likely a matching problem).

Code Listing 2 – Info.plist for the Cypress USB Storage driver.

1 <key>IOKitPersonalities</key>

2 <dict>

3 <!-- Each personality has a different name. -->

4 <key>FX</key>

5 <dict>

6 <!-- The name of the bundle the IOClass will be called from. Usually, this will be the same

7 -- as the CFBundleIdentifier for this KEXT but it doesn’t have to be. -->

8 <key>CFBundleIdentifier</key>

9 <string>com.cy.iokit.Morpheus</string>

10

11 <!-- The name of the class IOKit will instantiate when probing. Notice this class is

different

12 -- for each of three example matching dictionaries.

13 -->

14 <key>IOClass</key>

15 <string>com_isd_driver_CYMSC_Device</string>

16

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 9

17 <!-- IOKit matching properties

18 -- All drivers must include the IOProviderClass key, giving

19 -- the name of the nub class that they attach to. The provider

20 -- class then determines the remaining match keys. A personality

21 -- matches if all match keys do; it is possible for a driver

22 -- with multiple personalities to be instantiated more than once

23 -- if several personalities match.

24 -->

25 <key>IOProviderClass</key>

26 <string>IOUSBInterface</string>

27

28 <!-- IOUSBFamily passive matching criteria.

29 -- This personality matches on IOUSBInterface so the following key-value pairs identify that

30 -- interface.

31 -->

32 <key>bConfigurationValue</key>

33 <integer>1</integer>

34 <key>bInterfaceNumber</key>

35 <integer>0</integer>

36 <key>idProduct</key>

37 <integer>10256</integer>

38 <key>idVendor</key>

39 <integer>1351</integer>

40 </dict>

41

42 <key>ISD105-GNS</key>

43 <dict>

44 <key>CFBundleIdentifier</key>

45 <string>com.cy.iokit.Morpheus</string>

46 <key>IOClass</key>

47 <string>com_isd_driver_USS725_Device</string>

48

49 <!-- IOKit matching properties

50 -- This personality will match on an IOUSBDevice object.

51 -->

52 <key>IOProviderClass</key>

53 <string>IOUSBDevice</string>

54

55 <!-- IOUSBFamily passive matching criteria.

56 -- idProduct and idVendor identify this driver as a USB device driver.

57 -->

58 <key>idProduct</key>

59 <integer>513</integer>

60 <key>idVendor</key>

61 <integer>1451</integer>

62 </dict>

63

64 <key>ISD200-MSC ATAPI</key>

65 <dict>

66 <key>CFBundleIdentifier</key>

67 <string>com.cy.iokit.Morpheus</string>

68 <key>IOClass</key>

69 <string>com_isd_driver_ISDMSC_Device</string>

70 <key>IOKitDebug</key>

71 <integer>65535</integer>

72 <key>IOProviderClass</key>

73 <string>IOUSBDevice</string>

74 <key>idProduct</key>

75 <integer>48</integer>

76 <key>idVendor</key>

77 <integer>1451</integer>

78 </dict>

79 <!-- ... some dictionaries not shown ... -->

80 </dict>

81

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 10

IOService Startup Sequence – Driver Loading

The IOService object controls the startup sequence of the
driver life cycle. Since all objects in I/O Kit inherit from
IOService it’s important to understand the steps that occur.
During the startup sequence there are two tasks that occur –
driver matching and driver startup. A developer can override
any of these methods, so is important to know the order
methods are called and their function.

Driver matching
 init – called by I/O Kit when KMOD is loaded into

memory.

 attach – called by the provider to temporarily attach
the KEXT to it in the I/O Registry.

 probe – called by I/O Kit to determine if KEXT
supports the device.

 detach – called after the probe method, regardless
if the probe passed or failed. The driver needs to be
aware that this will occur.

 free – called if probe fails.

Driver startup
 attach – called if you pass the probe method. The

KEXT is put into the I/O Registry.

 start – called to do one time initialization and
perform I/O with the device to complete the
matching process.

What happens when a USB Device is
removed?

When a device is removed from the bus, the hub driver
notices that the device has been removed and it issues a
terminate message to the IOUSBDevice object. The
IOUSBDevice object then sends the terminate message to
any of its child objects, which in turn send messages to their
children and so forth until the leaf node of the tree is notified
that the device has gone away. The leaf node driver must
close its connection to its parent, terminate its state
machine, and prepare to be removed from memory. Again,
the IOService object controls this part of the driver life cycle.

IOService Termination Sequence
Tearing down a driver stack is a little bit more complicated
then building it up. A driver stack must be released in a
coordinated manner. Drivers must stop accepting new
requests and clear out all queued and in-progress work.

The I/O Kit performs an orderly tear-down of a driver stack
upon device removal in three phases.

Phase 1 – Make the driver objects inactive.
The first phase involves making the driver stack inactive so
that it receives no new I/O requests. The driver’s terminate
method will be called by the hub driver. The default behavior
of the terminate message is to make the object inactive
immediately. As a consequence of being made inactive,
each object also sends its clients a kIOServicesIsTerminated
message via the message method. [The
kIOServicesIsTerminated message has been deprecated. If
a kernel driver receives this message it should no longer be
handled.]

Phase 2 – Clear pending and in-progress I/O
requests from driver queues.
I/O Kit calls the willTerminate method and the driver needs
to cancel or abort all pending I/O. The driver can cancel the
I/O asynchronously – it doesn’t have to wait for the call to
return.

Then I/O Kit will call the didTerminate method. At this point
termination is almost complete. The driver needs to wait for
all outstanding I/O to complete. Once all I/O is done, the
driver needs to close its provider (i.e., call the close method
on the provider object).

Phase 3 – Clean up.
Finally, in the third phase, the I/O Kit invokes the appropriate
driver life-cycle methods on drivers to clean up allocated
resources and detach the objects from the I/O Registry
before freeing them. The stop method will be called and the
driver needs to release or free any resources allocated in the
start method. I/O Kit then calls the detach method in the
driver – the detach method removes the driver from the I/O
Registry.

IOUSBFamily Workloop

The workloop is one of the most misunderstood technologies
to kernel driver developers. Every driver has to work on the
workloop. There is one workloop for every interrupt source
(one per IOUSBController – most Macs have two USB
controllers). Every member of the USBFamily that is
attached to a particular controller and every driver for a USB
device attached to that USB controller, participates on the
same work-loop. The workloop is a serialization mechanism
for I/O calls. What this means to developers is that your
driver has to be careful about kind of calls it makes.

For example, a synchronous call to USB from an
asynchronous callback routine will deadlock the system. In
order for the synchronous call to complete, an interrupt has
to come in on a different thread but that interrupt is not able
to execute on the workloop because the workloop is locked
by your driver’s callback routine.Thus, a deadlock occurs. A
kernel driver developer needs to be very aware of the
execution context when developing drivers.

There are two mechanisms that are useful in working with
workloop execution contexts. The getWorkloop method
returns the USB controller’s Workloop. This is useful when
you want to do work on the Workloop. And if you want to do
work outside of the Workloop you can use the thread_call
mechanism.

Writing a driver using I/O Kit Inheritance

Driver inheritance in I/O Kit has confused a lot of developers
being exposed to I/O Kit for the first time. At first it may seem
logical that a USB driver would inherit from classes in the
IOUSBFamily, but this is not the case. USB drivers are not
members of and do not inherit from the IOUSBFamily. They
use the IOUSBFamily for their transport mechanism and are
thus clients of the USB family classes. Let’s look at some
examples.

The AppleUSBAudioDevice class is a subclass of the
IOAudioDevice which is a subclass of IOService. IOService
being the base class for all I/O Kit objects. So this driver is
a member of the Audio Family.

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 11

Client

AppleUSBAudioDevice <- IOAudioDevice <-

IOService

IOUSBInterface (provider)

The IOUSBHIDDriver class is a subclass of the IOHIDDevice
which is a subclass of IOService. IOService being the base
class for all I/O Kit objects. So this driver is a member of
the HID Family. The fact that this driver is bundled with the
IOUSBFamily only serves to confuse us.

IOHIDSystem (client)

IOUSBHIDDriver <-IOHIDDevice <- IOService

IOUSBInterface (provider)

Code-less Kernel Extension Examples

Code-less kernel extensions are kernel extensions that have
no code, only an Info.plist. A code-less kernel extension will
provide a personality that I/O Kit will match to the USB
device but the personality will point to another kernel
extention. The following examples are not only nifty tricks
for solving the problems presented, but they also provide
additional insight in to the way driver matching works on Mac
OS X.

Classic Environment HID Example
Problem: Suppose you have a USB HID device that you
want to make available only to the Classic environment.

Solution: Create a code-less KEXT that will match to the
device instead of Apple’s IOUSBHIDDriver and prevent the
IOUSBHIDDriver from taking control of the device. This re-
quires two personalities and the default behavior of the
IOService object and the AppleUSBMergeNub driver. Code
Listing 3 shows what the Info.plist would look like.

Code Listing 3 – Classic Enviornment HID
<key>IOKitPersonalities</key>

<dict>

 <key>Merge driver</key>

 <dict>

<key>CFBundleIdentifier</key>

<string>com.apple.driver.AppleUSBMer

geNub</string>

<key>IOClass</key>

<string>AppleUSBMergeNub</string>

<key>IOProviderClass</key>

<string>IOUSBDevice</string>

<key>idProduct</key>

<integer>10256</integer>

<key>idVendor</key>

<integer>1351</integer>

<key>IOProviderMergeProperties</key>

<dict>

 <key>ClassicMustSeize</key>

 < true/>

 </dict>

<key>IOService driver</key>

<dict>

<key>CFBundleIdentifier</key>

<string>com.apple.kerneliokit</string>

<key>IOClass</key>

<string>IOService</string>

<key>IOProviderClass</key>

<string>IOUSBDevice</string>

<key>idProduct</key>

<integer>10256</integer>

<key>idVendor</key>

<integer>1351</integer>

</dict>

</dict>

</dict>

<key>OSBundleLibraries</key>

<dict>

 <key>com.apple.iokit.IOUSBFamily</key>

 <string>1.8.2</string>

</dict>

<key>OSBundleRequired</key>

<string>Local-Root</string>

Both the Merge driver and the IOService driver personalities
match the device so both will be probed. When the Merge
driver personality matches, the AppleUSBMergeNub driver’s
probe method is called. The AppleUSBMergeNub driver
copies the contents of its IOProviderMergeProperties
dictionary to its provider’s dictionary. This puts the
ClassicMustSeize key-value pair entry into its provider’s
dictionary in the I/O Registry.

The provider in this case is the IOUSBDevice nub. After the
contents of the IOProviderMergeProperties dictionary has
been copied, the AppleUSBMergeNub fails the probe
method – telling I/O Kit that it doesn’t support this device.

The IOService object’s personality will match. Then the
IOService object’s start method will be called which simply
returns true. So we get a driver that returns true from the
start method but doesn’t actually do anything with the
device. Now, because of the ClassicMustSeize key-value
pair entry in the I/O Registry, Classic drivers are able to
open the HID device and take control of it.

Also, the property list must include the OSBundleRequired
entry so that this KEXT can compete with the Apple supplied
HID driver at boot time.

Vendor-Specific Composite Device Example

Problem: Suppose you have a vendor-specific device
whose functionality is implemented in the device’s
interfaces. We want to have the interfaces of the device
created so then other class drivers or vendor-specific
interface drivers can match to the interfaces.

Solution: Create a code-less KEXT with a personality that
matches to the device but points to the AppleUSBComposite
driver. The AppleUSBComposite driver’s main jobs are to set
the configuration on the device, which creates the interfaces,
and to handle any reconfiguration tasks after resets occur.
The contents of the Info.plist are shown in Code Listing 4.

Code Listing 4– Vendor-Specific Composite
Device
<key>IOKitPersonalities</key>

<dict>

 <key>V-S Composite driver</key>

 <dict>

 <key>CFBundleIdentifier</key>

 <string>com.apple.driver.AppleUSB-

Composite</string>

 <key>IOClass</key>

 <string>AppleUSBComposite</string>

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 12

 <key>IOProviderClass</key>

 <string>IOUSBDevice</string>

 <key>idProduct</key>

 <integer>10256</integer>

 <key>idVendor</key>

 <integer>1351</integer>

 </dict>

</dict>

USB User Space Driver Development
User space is where most USB drivers will reside. User-
space drivers are easier to develop and easier to debug than
kernel drivers. One can use CodeWarrior’s or Project
Builder’s source level debugging tools and crashes in a
user-space driver don’t bring down the system.

The device interface mechanism provided by I/O Kit
provides user-space drivers and applications with a means
of communicating with hardware from outside the kernel.
The IOUSB-Family provides two types of device interfaces:
IOUSBDeviceInterface for communicating with the device
itself and IOUSBInterfaceInterface for communicating with
an interface on the device. Figure 8, shows the driver stack
with a user space USB scanner driver communicating with
an IOUSBDeviceInterface. Notice the kernel boundary is
bracketed with a IOUSBDeviceInterface above the kernel
and a IOUSBDeviceUserClient in the kernel.

Figure 8. User Space Driver Stack

The UserClient and the DeviceInterface objects always
come in pairs to bridge the kernel boundary. The
IOUSBFamily provides two UserClient classes:
IOUSBInterfaceUserClient and IOUSBDeviceUserCient.
These two classes allow user-space drivers to communicate
with the three main kernel objects: IOUSBPipe,
IOUSBInterface and IOUSBDevice.

IOUSBFamily Kernel Classes

IOUSBPipe

IOUSBInterface <--> IOUSBInterfaceUserClient

IOUSBDevice <--> IOUSBDeviceUserClient

When the IOUSBDevice object is instantiated, it creates the
IOUSBDeviceUserClient kernel object. If a kernel-space
driver calls the open method on IOUSBDevice, it obtains
exclusive access to the device. When the open method is
called, the IOUSBDevice removes the
IOUSBDeviceUserClient from the driver stack. This prevents
user-space drivers from being able to access the device.

If a kernel-space driver has not opened the IOUSBDevice,
the IOUSBDeviceUserClient is available to user-space
drivers. A user-space driver uses a IOUSBDeviceInterface
object to find and access the IOUSBDeviceUserClient
object. When the user-space driver calls the
USBDeviceOpen method, it obtains exclusive access to the
device preventing other user-space drivers from accessing
it.

User-space drivers do not compete in the matching process
at the same time as kernel-space drivers. In some cases a
code-less kernel extension may have to be used to claim the
device. Remember that you have three environments,
Classic, kernel space and user space, that may be vying for
a shot at the device.

Using Device Interfaces

The procedure for finding and using a device interfaces is
long but very consistent. The steps are outlined here.

1. Obtain Master Port – the first step is to create a
mach port to access the kernel.

#include <mach/mach.h>

err = IOMasterPort(MACH_PORT, NULL,

&masterPort);

The masterPort should be released when done.

mach_port_deallocate(…)

2. Create a matching dictionary for the device type we
want to find.

For IOUSBDevice objects:

MathingDictionary = IOServiceMatching(

kIOUSBDevice-ClassName)

For IOUSBInterface objects:

MatchingDictionary = IOServiceMatching(

kIOSUBIterfaceClassName)

3. Add qualifications to the matching dictionary – This
is a family specific step. For USB devices we need
to use the USB Common Class Specification
section 3.10 as our guide. To match the second line
of the chart in section 3.10 of the USB Common
Class Specification, you must include the two items
(idProduct and idVendor). Do not include any other
fields in your matching dictionary device class or
device subclass or your matching dictionary will fail.
The matching rules are very strict!

// Add the vendor and product IDs to the

matching dictionary

// This is the second key of the first table

in the

// USB Common Class Specification

CFDictionarySetValue(matchingDict,

CFSTR(kUSBVendorName),

CFNumberCreate(kCFAllocatorDefault,

kCFNumberSInt32Type, &usbVendor));

CFDictionarySetValue(matchingDict,

CFSTR(kUSBProductName),

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 13

CFNumberCreate(kCFAllocatorDefault,

kCFNumberSInt32Type, &usbProduct));

4. Obtain the kernel iterator.

err = IOServiceGetMatchingServices(

masterPort, matching-Dictionary, &iterator

);

while (usbDeviceRef =

IOIteratorNext(iterator))

The iterator should be released when done.

IOObjectRelease(iterator);

5. Instantiate the device interface. This is the call that
instantiates the UserClient and DeviceInterface pair
of objects and sets up the communication channel
which allows user space code to access the kernel
objects.

IOCreatePlugInterfaceForService(…)

The object returned does not yet represent the interface you
want. You must first call QueryInterface to say that you are
looking for this particular type of interface.

(*iodev)->QueryInterface(…, &dev);

(*iodev)->Release(iodev);

6. Initialize the IOUSBDeviceInterface and create the
interfaces.

// First you open the device

(*dev)->USBDeviceOpen(dev)

// Get the configuration descriptor from the

device.

(*dev)->GetConfigurationDescriptorPtr(dev…)

// Set the configuration to be used. This

will create the interfaces.

(*dev)->SetConfiguration(dev,…)

// Create interface iterator tokens for the

various IOUSBInterfaceInterfaces.

(*dev)->CreateInterfaceIterator(…)

// Close and release the device. You’ll be

using the interfaces from here on.

(*dev)->USBDeviceClose(dev)

(*dev)->Release(dev)

7. Using IOUSBInteraceInterface to transfer data.

// Open exclusive access to the interface.

(*intf)->USBInterfaceOpen(intf)

// Select an alternate interface in this

configuration.

(*intf)->SetAlternateInterface(intf,…)

// Determine the number of endpoints in this

interface.

(*intf)->GetNumEndpoints(intf…)

// Use the GetPipeProperties to identify the

pipes (Bulk-In, Bulk-Out, Isoc-In, etc.)

(*intf)->GetPipeProperties(intf,…)

// – data transfer, yeah!

(*intf)->ReadPipe(intf,…)

(*intf)->WritePipe(intf,…)

// clean-up when the driver is finished

(*intf)->USBInterfaceClose(intf)

(*intf)->Release(intf)

A Note on Using Composite Devices from
User Space

If the device is a composite class device with no vendor-
specific driver to match against it, the AppleUSBComposite
driver matches against it and starts up as its provider. The
AppleUSBComposite driver then configures the device by
setting the first configuration in the device’s list of
configuration descriptors. This causes the IOUSBFamily to
abstract each interface descriptor in the chosen
configuration into IOUSBInterface nub objects. These nub
objects are attached to the I/O Registry as children of the
original IOUSBDevice nub object and are registered for
matching with the I/O Kit. Because the AppleUSBComposite
driver configured the device, setting the configuration again
from your application will result in the destruction of the
IOUSBInterface nub objects and the creation of new ones.
The only reason to set the configuration of a composite class
device that’s matched by the AppleUS-BComposite driver is
to choose a configuration other than the first one. For other
types of devices, non-composite class devices or composite
class devices with vendor-specific drivers that match against
them, there is no guarantee that any configuration will be set
and you may have to perform this task within your
application or user-space drivers.

User Space Drive Notification

User-space drivers can register with I/O Kit’s notification
mechanisms to be notified about device appearance, device
removal, changes in the state of the device, changes in
system power and a broad range of other events.

Sharing Devices – The Device Sharing Model

The I/O Kit model and the IOUSBFamily force exclusive
access to devices. However, there is a protocol for user-
space and kernel-space drivers to communicate a desire to
share a device. Drivers need to add support for the
following messages in order to play nice together.

 kIOMessageServiceIsRequestingClose – is
received when another entity is requesting access
to a device.

 kIOMessageServiceIsAttemptingOpen – is received
when another entity has attempted to open a
device. It’s a clue that someone else would like to
use the device and a driver should close down
access to the device if possible.

A driver can also register for I/O Kit notification
when a driver has closed its access to the device.
The notification set to the driver will be the
message:

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 14

 kIOMessageServiceWasClosed

Using Synchronous and Asynchronous calls
from User Space

Blocking I/O for User Space drivers
There are many USB APIs that can "block" until the USB
transaction completes. Using blocking I/O can simplify driver
designs. Synchronous calls from user-space drivers are
something that is always safe to do. You make a
synchronous call, your thread blocks, and when the call
completes, your thread picks up again.

Graphical user interface applications that directly access
USB devices should create a seperate thread for controlling
the USB device from the thread(s) controlling the user
interface. Otherwise, the user interface will feel sluggish or
may appear to the user to hang.

Asynchronous I/O in User Space
In user space you don’t really have to be worried about the
issues with synchronous versus asynchronous I/O, as is the
case with kernel drivers. Because user space threads are
never running on the workloop, deadlocks are not possible.
However, if your driver design lends it’s self better to doing
asynchronous I/O, callbacks to user space are possible.

Callbacks to user space are a little more difficult as there is
no mechanism in Mac OS X or I/O Kit to make direct calls
from kernel threads to user threads. So, what happens is
that a mach message is posted on a port from the kernel
side and there is a user thread that will check that port using
the CFRunLoop technology. When a callback message is
found, the user thread dispatches the callback routine for the
kernel thread.

In your user-space driver you need to create an
asynchronous event source for your interface
(IOUSBDeviceInterface or IOUSBInterfaceInterface) object.
Then add that event source to your CFRunLoop
(Documentation for CFRunLoop is in CFRunLoop.h.) Call
CFRunLoopRun and your event source will get processed,
calling back the callback routines you set up for your
asynchronous calls.

(*intf)->CreateInterfaceAsyncEventSource(…)

CFRunLoopSource(…)

(*intf)->ReadPipeAsync(intf,…)

CFRunLoopRun();

USB in Classic
The Classic environment in Mac OS X uses the Mac OS 9
driver model – the entire Mac OS 9 USB stack is in Classic.
Thus Mac OS 9 drivers should see no differences between
running natively on Mac OS 9 or in the Classic environment.

The USB stack in the classic environment always attempts
to capture two kinds of devices:

 Printing class devices, and

 Vendor specific class devices

Other devices are expected to have Mac OS X native
support. USB device driver developers need to use the
ClassicMust-Seize property or the Device Sharing Model to

accommodate the interactions of classic, user-space and
kernel-space drivers.

Where to Go Next
Everyone should start out reading the System Overview
book found at
/System/Documentation/Developer/SystemOverview/System
Overview.pdf.

Kernel Information

General Darwin documentation can be found at
http://developer.apple.com/techpubs/macosx/Darwin/kernel.
html.

Read the Kernel Environment book found at
/System/Documentation/Developer/Kernel/KernelEnvironme
nt.pdf.

The book IO Kit fundamentals can be found at
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/I
OKitFundamentals.

This book describes the features and architecture of the I/O
Kit and discusses important concepts and mechanisms,
including the I/O Registry, driver matching and loading, the
class hierarchy, event handling, data management, and
power management.

The book Writing an I/O Kit Device Driver can be found at

http://developer.apple.com/techpubs/macosx/Darwin/IOKit/D
eviceDrivers/WritingKitDrivers/index.html.

This book discusses many of the issues related to device-
driver development with the I/O Kit, including driver
matching, I/O transactions, programming conventions, and
debugging.

User Space Information

Accessing Hardware From Applications found at
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/D
eviceInterfaces/AccessingHardware/index.html.

This book describes how applications and other user pro-
grams, using the APIs of the I/O Kit framework, can access
hardware by communicating with the kernel. It explains what
device interfaces are and how to use them. And it describes
how to locate the device files of certain devices that can then
be accessed with POSIX APIs.

Also read Working With USB Device Interfaces found at
http://developer.apple.com/techpubs/macosx/Darwin/IOK-
it/DeviceInterfaces/USBBook/index.html.

The USB Technology Home Page can be found at
http://developer.apple.com/hardware/usb/index.html.

http://developer.apple.com/techpubs/macosx/Darwin/kernel.html
http://developer.apple.com/techpubs/macosx/Darwin/kernel.html
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/IOKitFunda%1fmentals
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/IOKitFunda%1fmentals
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/DeviceDrivers/WritingKitDrivers/index.html
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/DeviceDrivers/WritingKitDrivers/index.html
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/Device%1fInterfaces/AccessingHardware/index.html
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/Device%1fInterfaces/AccessingHardware/index.html
http://developer.apple.com/techpubs/macosx/Darwin/IOK%1fit/DeviceInterfaces/USBBook/index.html
http://developer.apple.com/techpubs/macosx/Darwin/IOK%1fit/DeviceInterfaces/USBBook/index.html
http://developer.apple.com/hardware/usb/index.html

AN1105

August 29, 2013 Document No. 001-65423 Rev. *A 15

More USB Documentation

Technical Q&As
 Tips on USB driver matching for Mac OS X

http://developer.apple.com/qa/qa2001/qa1076.html

 Making sense of IO Kit error codes

http://developer.apple.com/qa/qa2001/qa1075.html

 Issues with boot time KEXT loading

http://developer.apple.com/qa/qa2001/qa1087.html

Everyone should start out reading the System Overview
book found at

/System/Documentation/Developer/SystemOverview/System
Overview.pdf.

Document History
Document Title: Mac OS X: Getting Started with USB – AN1105

Document Number: 001-65423

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3095309 NXZ 11/25/2010 AN1105 spec updated to new application note template.

*A 4108854 RSKV 08/30/2013 Obsolete application note

All product and company names mentioned in this document are the trademarks of their respective holders.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2002-2013. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, l ife saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://developer.apple.com/qa/qa2001/qa1076.html
http://developer.apple.com/qa/qa2001/qa1075.html
http://developer.apple.com/qa/qa2001/qa1087.html
http://www.cypress.com/

