
© 2012 CrowdStrike, Inc. All rights reserved.

Ninjas and Harry Potter

ñSpellòunking in Apple SMC Land

Alex Ionescu, Chief Architect @aionescu

NoSuchCon 2013 alex@crowdstrike.com

Bio

ƴReverse engineered Windows kernel since 1999

ƴLead kernel developer for ReactOS Project

ƴCo-author of Windows Internals 5th and 6th Edition

ƴFounded Winsider Seminars & Solutions Inc., to provide services
and Windows Internals training for enterprise/government

ƴInterned at Apple for a few years (Core Platform Team)

ƴNow Chief Architect at CrowdStrike

Introduction

Your Mac has a chipé

éthat anyone can updateé

ébut you canôt read it.

It manages your light sensoré

éprotects your diské

éstores your FileVault keyé

éhas a ñNinja timeròé

éand has a backdooré

éusing a Harry Potter spellé

éall while regulating current and voltage

What is the SMC?

The System Management Controller I/O Chip

20MHz 16-bit Processor

8 32-bit General Purpose Registers

24-bit (16MB) Address Space

Multiple Timers + Watchdog

I2C Bus Access

12-line Interrupt Controller

Analog/Digital Converter

LPC Bus Access, UART, USB, ACPI

Various I/O Ports

160K Flash ROM

8K RAM

The System Management Controller I/O Chip

SMC Address Map

ƴ0x000000-0x000FFF: Exception Vectors

ƴ0x001000-0x005FFF: Unknown/Unused

ƴ0x006000-0x006FFF: EPM UV Area

ƴ0x007000-0x007FFF: EPM CV Area

ƴ0x008000-0x022FFF: ROM Code + Data Variables

ƴ0x027FE0-0x027FFF: Code Markers (TBD)

ƴ0xFF2000-0xFF2FFF: Reserved (but used!)

ƴ0xFFF800-0xFFFEFF: I/O Registers

ƴ0xFFD080-0xFFEFFF: RAM (Data Variables)

ƴ0xFFFF00-0xFFFF7F: RAM (Used as Stack)

ƴ0xFFFF80-0xFFFFFF: I/O Registers

Renesas H8S/2117

ƴFull compiler support through GCC

ƴRenesas also has development kit and free SDK available

ƴUsed by many Intel Reference Platforms

ƴNot just Apple ï although this talk is only covering the Apple SMC

ƴFull 32-bit registers (er0-er7)

ƴAccess model similar to x86 (er0 -> e0 + r0h, r0l)

Renesas H8S/2117

ƴDifferent kinds of addressing modes

ƴAbsolute and relative, with various shifts and offsets

ƴFully supported by IDA processor module

ƴBut IDA sometimes has trouble with references

ƴ69 instructions total

ƴComplex data patterns hard to follow, but bit-instructions make I/O register
access a breeze to understand

H8S/2117 Registers & Instructions

Whatôs in an SMC Update?

ƴTodayôs SMC Updates are done through SMCFlasher.efi

ƴLeverages AppleSMC.efi, which exposes the AppleSMCProtocol

ƴSMCFlasher.efi is nothing but a renamed SMCUtil!

ƴSMCUtil is a long sought-after ñInternal Apple Toolò

ƴCan dump all sorts of SMC information

ƴChange SMC Modes

ƴFlash various portions of the SMC

SMC Update Payload

ƴSMCFlasher.efi takes a compressed payload as input

ƴUnusual S-REC-lookalike format, but no standard tools for it

ƴContains typical checksum byte for each 64-byte block

ƴBut also contains checksum vectors for the checksums themselves

ƴWrote own tool to convert to binary image

ƴTurns out, couldôve done it with grep (see presentation by Inverse Path)

Apple SMC Update Payload

Apple SMC Update Payload

SMC ROM (0x00000-0x27FFF ï 160KB)

ƴThe SMC ROM code is called the User MAT by Renesas

ƴIt is considered the SMC ñApplicationò, with a main()

ƴIt begins execution through the Reset Vector (0x0)

ƴThe first ~KB is filled with the various Interrupt Vectors

ƴRenesas Datasheet has all the internal/external interrupt nubmers

ƴPart of the chipôs responsibility is reacting to such interrupts

ƴTimers, Watchdog, and ACPI + I/O Port (Accelerometer, I2C)

SMC ROM Code

ƴAs external events cause interrupts, the SMC code updates state

ƴSome of this state is internal, used in further interrupts for chained state

ƴSome of this state is exposed back to the system through SMC ñKeysò

ƴLikewise, interrupts can be generated by the SMC

ƴEither on a regular basis, sending some piece of state to other hardware

ƴOr on request (such as for UART or ACPI IF Notify Bytes)

ƴThe data can also be internal, or externalized through an SMC ñKeyò

SMC Key Mechanism

ƴMuch of SMC functionality is done by read/write access to ñkeysò

ƴ4-byte character tags describing some functionality

ƴSMC Firmware has handlers for each key

ƴTotal keys = #SMCs * #Keys

ƴBoth of these are exposed through defined keys (TBD)

ƴKey names can be enumerated

ƴBut all is not what it seems..

SMC Firmware Key Descriptors

SMC Key Attributes

ƴSMC Keys have attributes, which are a combination of:

ƴRead (0x80)

ƴWrite (0x40)

ƴFunction (0x10)

ƴConst (0x8)

ƴPrivate (0x1)

ƴAtomic? (0x2)

SMC Key Example

ƴWe can run functions in the SMC which return a result

ƴSMC Functions receive a parameter in er0 which is 0x10 (R) or 0x11 (W)

ƴInput and/or output buffers are in er1

ƴDEMO: As an example, take CRCB vs CRCU

ƴCRCU causes a checksum to be taken of the entire UserMAT area

ƴUseful to write this down somewhere and periodically check on it ;-)

ƴAttacker could ñfakeò it however

