Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

ANRLC

Defcon 2013

Mach-O Malware Analysis:

Combatting Mac OSX/iOS Malware with Data Visualization

Remy Baumgarten

ANRC LLC.

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Mach-O Malware Analysis:

Combatting Mac OSX/iOS Malware with Data Visualization

Remy Baumgarten, Security Engineer, ANRC LLC.

Draft Date: Apr 02, 2013

Apple has successfully pushed both its mobile and desktop platforms into our homes, schools and work
environments. With such a dominant push of its products into our everyday lives it comes as no
surprise that both of Apple’s operating systems, OSX and iOS should fall under attack by malware
developers and network intruders. Numerous organizations and Enterprises who have implemented
BYOD (bring your own device) company policies have seemingly neglected the security effort involved
in protecting the network infrastructure from these potential insider threats. The complexity of
analyzing Mach-O (Mach object file format) binaries and the rising prevalence of Mac-specific malware
has created a real need for a new type of tool to assist in the analytic efforts required to rapidly
identify malicious content. In this paper we will introduce Mach-O Viz, a Mach-O Interactive Data
Visualization tool that lends itself to the role of aiding security engineers in quickly and efficiently
identifying potentially malicious Mach-O files on the network, desktop and mobile devices of
connected users.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

000 0010 L U0) 4
WHRY @ NEW T 0017 c.ueiieiiiiuiiuismissssnsmsssssssssssssssnssassssssssssss ses s sss sssassassnsassas snssnass sessnsss sansnsassnssnsassnss 5
INtroducing MaCh=-0 ViZ ... s s sss s s sss s s sb s s sm s s ss s s sa s s snsss s 6
Demonstrating Mach-0 Viz's Features: Analysis of CustomlInstaller a.ka. Yontoo Trojan..........cce.... 11
Analysis of keychain_dumper: i0S Hacker Utilityc.cmmmmmmmmmmssns 19
Analysis of MacDefender: OSX'’s First Malware Threat ... 25
Mach-0 Viz: Where To GO From Here....... i sses 29
000 4 L 10 13 0] 4 29
20 0112 W 30
00 1 L T 30

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Introduction

These days it is safe to say that Mac is almost everywhere. From our MacBook laptops to our mobile
devices such as iPhones and iPads, the prevalence of Mac computing cannot be ignored and makes for a
lucrative target for malware authors and potential network intruders. Over the past few years we’ve seen
examples of Mac malware make its way through the prying eyes of the quality assurance engineers at Apple’s
App Store and subsequently right onto our mobile devices as witnessed in the Flashback Trojan attack last year.
To think that these attacks are isolated incidents would be dangerously naive.

Scarier still, even today there is a complete lack of governance in organizations for policing mobile devices
connected to their private network infrastructure. In one eye-opening statistic, 57% of IT Managers had seen
mobile related traffic on their networks with no means of actively enforcing their network defense guidelines.

Many IT groups believe it's Apple’s responsibility to act as the first line of defense against Mac targeted
threats. Though OSX and iOS operating systems have numerous security mechanisms in place to significantly
reduce Mac’s attack footprint, the assumption that Apple software can prevent all malicious software from
appearing on your desktop or mobile devices is far from true.

Making matters worse there is the Jailbreak community who play a cat-and-mouse game with Apple security
engineers to circumvent all iOS security mechanisms and allow installation of arbitrary unsigned binaries on
mobile devices. How many users in an average organization are bringing in Jail-broken devices to work and
connecting them to the local LAN? More importantly, how many of those devices are carrying Malware?

The need for a better understanding of the Mach-O file format coupled with a focus on network security are
the primary motivations which led to the development of Mach-O Viz. Mach-0O Viz is a data visualization tool
specifically created for IT security engineers and malware analysts to tackle the Mach-O file format complexity
and provide a rapid analysis solution for Mac software. Mach-0 Viz is provided free, multiplatform and
employs an array of open source software.

! http://www.mercurynews.com/business/ci_22741463/apple-are-mac-computers-becoming-more-vulnerable-malware-virus
2 http://www.forbes.com/sites/markfidelman/2012/05/02/the-latest-infographics-mobile-business-statistics-for-2012/

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Why a New Tool?

At ANRC, we’ve been tackling the Mach-O malware problem internally in our research and
development efforts, so we understand the problems posed by introducing these binaries into networks ill-
equipped to process them through their standard network defense systems. With most of the world
practicing a Windows-centric ideology with regard to security appliances, coupled with a ridiculously complex
file specification from Apple, we felt the need to delve deeper into the problem by:

* Examining and evaluating the existing tools available to help decipher the Mach-O format.

* Finding working examples of security products equipped to process Mach-O malware.

* Attempting to find a tool that could analyze these files regardless of the underlying architecture.
* Researching a better way to view the file internals of Mach-O files.

We examined any Mach-O tool we could find to help aid the analysis of potentially malicious binaries that
could be on i386, x86_64 or ARM architectures. The focus on these targets was intentional to make sure the
binaries were likely generated using XCode, Apple’s development IDE, or llvm/gcc. The following chart lists
the results of our initial research efforts and helped drive our design and development for Mach-O Viz.

Network Easy to
Tool Graphic Multiple Architectures Security Ease of Use
Aware Understand

IDA Pro Yes (sometimes) Yes No No No
otool No Yes No No No
class-dump No Objc Only No Yes Yes
Machoview Yes Yes No No Yes
ptool No Yes (old/no support) No No Yes
otool-ng No Yes (old/no support) No No No
hopper Yes (sometimes) Yes No No No

Figure 1. Evaluation of existing Mach-O tools (Green=Meets Need, Red=Does Not Meet, Yellow=Some Need Met)

The design for Macho-Viz centered on fusing the advantages offered by these tools and then adding a focus on
network security as well. Ultimately the goal is to help the network defender understand the Mach-O file
format better and provide a method to effectively and efficiently analyze a particular binary for malicious
behavior. One of the essential elements in the Macho-Viz tool design was the need for a simple interface
supporting a powerful and accurate data analytics engine that would yield results comparable to an advanced

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

disassembler. Additionally we wanted to make the tool free to the public to help increase security awareness
and benefit the reversing community that is struggling to keep up with malicious Mach-O binaries.

Introducing Mach-0 Viz

Mach-0 Viz was developed to introduce the idea of presenting a Mach-O binary visually which in turn
makes it easier for anyone to see how the file is constructed, i.e. how it is formed from the header through the
load commands and into all of its corresponding segments. In addition to visualizing the file itself we wanted a
powerful back-end graph visualization and analytics system for graphing the binary’s disassembly for the top 3
platforms: i386, x86_64 and ARM6/7. The fundamental component was to keep this process as visual as
possible while maintaining a simple-to-use interface.

With data visualization in mind, the next challenge was to make the tool as cross-platform as possible. The
desire was for client access to the interface to be simple regardless of platform (mobile, desktop, android, osx,
i0S ...etc). With mobility and cross-platform interoperability important requirements, we decided to
implement Mach-0O Viz as an HTML5/JavaScript front end using a Mac OSX Server backend. Additional design
features include:

* Use any client capable of running HTML5/JavaScript, thereby significantly increasing the types of
devices that could make use of Mach-O Viz.

* Keep the back-end as “Mac” as possible. We wanted to rely on Apple’s updates of the Mach-O
spec and its tools, such as otool, in their native environment. This would keep Mach-0 Viz updated
and relevant by default.

* Gain access to the LLVM disassembler for the most accurate ASM we can feed into our analytics
engine.

* Make use of as many Open Source utilities that added benefit as possible.

The initial interface designed morphed several times until we found a common ground that included both the
File Structure Visualization and the Function Graphing Visualization. The combination of these produced a
simple-to-navigate interface where visual interactivity was key (Figure 2).

The File Structure Visualization was developed in a drill-down type of style capable of driving the user deeper
into the fields represented by the major segments. For example, clicking “Load Commands” in the 1° level tier
would drill down so that you see a visual representation of all of the individual load commands and could
subsequently drill even deeper into an individual command (Figure 3). The File Structure Visualization
interfaces with the Function Graphing Panel, as well, allowing you to dump various segments into its Hex
Editor for easy viewing. In addition, the files __ TEXT segment is automatically analyzed and graphed by a
powerful analytics-graphing engine (Figure 4).

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

~ Visual File Explorer

Filename: cat

__DATA:__got
0x00002010

__TEXT:__eh_frame
0x00001758

Symbol Table
0x00003284

ader __TEXT:__text __T Dynamic Loader Info String Table
0x00000000 0x00001518 0x00001d| 0x00003000 0x000035d8
Load Commands __TEXT:__stubs __DATA:__ni_symbol_ptr Dynamic Symbol Table Code Signature
0x00000020 0x00001 0x00002000 0x000034d4 0x00003740
- :__const Function Starts
0x00001840 0x00003240
__TEXT:__unwind_info
0x0000170b
__DATA:__la_symbol_ptr
0x00002038
~ Visual File Explorer
Filename: cat
LC_DYLIB_CODE_SIGN_DRS [#14]
0x00000650
LC_LOAD_DYLIB [#12]
0x00000608

LC_SOURCE_VERSION [#10]

0x00000580

LC_uuiD #8]
0x00000:
LC_DYSYMTAB [#6]
0x00000548
GMENT_64 [#0] LC_SEGMENT_64 [#2] LC_DYLD_INFO_ONLY [#4]
20 0x000002e0 0x00000500
LC_SEGMENT_64 [#1] LC_SEGMENT_64 [#3] LC_LOAD_DYLINKER [#7]
0x00000068 0x000004b8 0x00000538:
LC_SYMTAB [#5] LC_MAIN [#11]
0x00000530 0x000005f0
LC_VERSION_MIN_MACOSX [#9]
0x000005d0

LC_FUNCTION_STARTS [#13]

0x00000640
LC_CODE_SIGNATURE [#15]

0x00000660

Figure 3. Drilling Down into Load Commands

TRAINING ' CONSULTING

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Graph Controls

Focus Center (ex. start, 10000def, 1df4)
Zoom Extent (Zoom graph view out to extents)

File Explorer

GraphView ~ HexView Strings Objective-C Disassembly View Network Security

Figure 4. Interactive Function Graphing Visualization

The Function Graphing Visualization provides an interactive method of navigating the disassembly of the
binary’s __ TEXT segment while focusing on functional code blocks, i.e. sequences of basic blocks that perform
a specific task. In addition to the interactive graph component, we also introduced methods for processing
and analyzing the data for display in context specific Views: Hex View, Strings, Objective-C, Disassembly View
and Network Security.

The data and static information segments can be displayed in the Hex View while Strings provides a
breakdown of code-referenced data. For example, to see all the strings available in the binary, a user can click
between the segments “CString” and “String Table” and display those in Hex View. Clicking the “Strings” tab
displays only those strings that have been resolved in the code itself and ultimately show up in the Graph
Visualization.

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

To view Objective-C data structures, the Objective-C tab provides this information using the open source tool
Class-dump?, which was been integrated into Mach-O Viz’s interface.

The Disassembly View provides a paginated and colored interface to the file’s disassembly. This allows a user
to see all of the instructions (not just the function graphs) in a clickable fashion.

Mach-0O Viz, with a heavy emphasis on the information security risk of Mach-O binaries, focuses on Security by
introducing 2 unique features:

1. Identifying code segments which are using API’'s and Functions flagged as Security Risks.
2. ldentifying and automatically generating network and static file signatures for the binary.
o Mach-0 Viz does this in 2 ways:
a) By detecting network domains, ip addresses, urls & web protocols embedded in the
binary.
b) Calculating a unique binary signature for the file itself using Mach-O MAGIC value in the
file’s header plus a unique 16 bytes from the binary’s String Table.

The images below (Figure 5, 6) demonstrates these features:

Security Assessment

(ldentified security risk results; select one to search function graph visualizations)
Security Scan Results:
Security Risks: 5

close
fwrite Show All ltems
Graph Controls socket
write
Focus Center connect x. start, 10000def, 1df4)

Zoom Extent (Zoom graph view out to extents)

Figure 5. Flagging risky API’s and functions in use by the Mach-O binary.

Graph View Hex View Strings Objective-C Disassembly View Network Security

Automated Network and Static File Signatures for "cat"

File Signature: MAGIC+String Table: alert tcp any - (msg:"Mach-O Viz Automated Scan: File Mach-O MAGIC;String Table 16 bytes”; flow:established; file_data; content:"ICF FA ED FEI"; depth:4; content:"|0(]
depth:13800; classtype:policy-violation; sid:1111111; rev:1;)

Figure 6. Automated signature generation for arbitrary Mach-O files.

Mach-0 Viz separates itself from more complicated tools, such as debuggers and disassemblers, by displaying
the file’s structure as graphically as possible while still providing the underlying assembly structure for more
advanced users (Figure 7).

® http://stevenygard.com/projects/class-dump/

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Graph View Hex View Strings Objective-C Disassembly View ‘ Network Security
\

BN (2] (3] [4] [5] Peoei 1[4

Items per page:| 100 %

0000000100001518 pushg %rbp
0000000100001519 movqg $rsp, %rbp
000000010000151c pushg %ri5
000000010000151e pushg %rld4
0000000100001520 pushg %ri3
0000000100001522 pushg %ri2
0000000100001524 pushg %rbx
0000000100001525 pushg %rax
0000000100001526 movq $rsi, %ril2
0000000100001529 movl tedi, %rldd
000000010000152¢c leaq 2445(%rip), %rsi #¥ literal pool for:

Figure 7. Disassembly View available for in-depth analysis.

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Demonstrating Mach-0 Viz's Features: Analysis of CustomlInstaller a.ka. Yontoo Trojan

To demonstrate the effectiveness of Mach-O Viz against current malware and also exercise some of its
features, we’ll analyze a relatively new sample called the Yontoo Trojan. This nasty piece of malware “installs
itself as a browser plug-in and infects Google Chrome, Firefox, and Safari Browsers via Adware.”*

This malware sample also demonstrates that Mac operating systems, OSX in this case, are still very much
vulnerable to infection. The Yontoo Trojan relies on the user to enable the infection by masquerading as a
browser HD video plugin (Figure 8) to social engineer the user into downloading and installing it. This tactic is
not new. Fooling an unsuspecting user into opening malicious attachments and downloads to compromise
their own systems continues to be a technique used by attackers because it's simple and it works.

® Safari File Edit View History Bookmarks Develop

® 00

| <> | (2] | D www. e ——

&3 [I0 2 Web Reflecti...ia Terminal Cooper & Du...ty Law Firm Intr
Macho-O Interactiv.. | Inbox (2) - aq@ls | CNN.com - By

il

*— HD video codec is missing: | Install HD video codec... |

Figure 8. Customlnstaller social engineering the user into installing a “HD” codec.

Uploading the file to Mach-0O Viz will kick start the automatic analysis, which lasts between several seconds to
several minutes depending on the size of the file and its complexity (ex. number of functions). During this
process Mach-0 Viz performs the following functions:

* Parses the file structure to build the file visualization’s header, load commands, text and data
segments.

* Scans and detects basic blocks, and from those basic blocks builds functions.

* Builds DOT (GraphViz format) files for the graph visualization.

* Resolves strings, names and ObjC components in the code (__TEXT) segment.

* Conducts a security scan of the file and, where applicable, builds automated SNORT signatures for
static file and network traffic detection.

4 http://www.ibtimes.com/yontoo-trojan-new-mac-os-x-malware-infects-google-chrome-firefox-safari-browsers-adware-1142969

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Once the initial analysis concludes, we are presented with Mach-O Viz's interactive user interface showing
both file and the function graph visualizations (Figure 9). In addition, the Security Assessment section warns
us of 15 identified risks (based on method, function or API) that we should focus our attention on (Figure 10).

w Visual File Explorer
Filename: Custominstaller
__DATA:__objc_data __DATA:__data
0x000360c8 0x0003f5¢0
__DATA:__const __DATA:__objc_protolist
0x00034440 0x0003f580
__TEXT:__gcc_except_tab __DATA:__objc_superrefs
0x0002b404 0x00037{30
__TEXT:__const __DATA:__nl_symbol_ptr __DATA:__objc_classlist
0x0002b0c0 0x00034028 0x0003f4f0
Header __TEXT:__text __TEXT:__cstring __TEXT:__eh_frame __DATA:__objc_selrefs Symbol Table String Table
0x00000000 0x00001488 0x00023728 0x0002b8d0 0x00036718 0x00042df8 0x00052570
Load Commands __TEXT:__symbol_stub1 __DATA:__program_vars __DATA:__objc_catlist Dynamic Symbol Table
0x00000020 0x0002356¢c 0x00034000 0x0003f578 0x00052238
__TEXT:__ustring __DATA:__ia_symbol_ptr __DATA:__objc_imageinfo
0x0002b0b4 0x000341f0 0x0003f5b0
__TEXT:__stub_helper __DATA:__cfstring Dynamic Loader Info
0x0002b110 0x00034448 0x00040000
__TEXT:__unwind_info __DATA:__objc_msgrefs
0x0002b520 0x00036618
__DATA:__objc_classrefs
0x00037d68
__DATA:__objc_const
0x00037fa8

Figure 9.

The function graph visualization automatically calculates the program’s entry point and places us at the
“main” or start of the Custominstaller program (Figure 11).

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Security Assessment

(Identified security risk results; select one to search function graph visualizations)
Security Scan Results: | |
Security Risks: 15

str_00024188
remove Show All ltems
Graph Controls str_httpdatadownloa
send
Focus Center accept x. start, 10000def, 1df4)

Zoom Extent (Zo Str_httpwwwyontooco ¢s)

str_httpcmponlinehd

str_0002a870

str_0002a6d8

Graph View Hex Vi¢ CFNetwork stive-C Disassembly Vie|
str_000234f8

str_0002a9a0

close

NSURL

[star
write

File Explorer

(£uno_100¢

/

Figure 10. Security Assessment identifies 15 risks that should be examined in further detail.

Graph View Hex View Strings Objective-C Disassembly View Network Security

[func_100001488]

[start]

100001488

0000000100001488 pushg $0
000000010000148a movq %rsp, %rbp
000000010000148d andq $-16, %rsp
0000000100001491 movq S(¥rbp), ¥rdi
0000000100001495 leag 16(%rbp), ¥rsi
0000000100001499 movl ¥edi, ¥edx
000000010000149b addl $1, ¥edx
00000001000014% shll $3, %¥edx
00000001000014al addq ¥rsi, ¥rdx
00000001000014a4 mopq %rdx, %rox
00000001000014a? jmp \0x1000014ad

I

1000044a9

00000001000014a9 addq $8, ¥rox
00000001000014ad ompg $0, (¥rox)
00000001000014b1 jne 0x1000014a3

J,

1000014b3

00000001000014b3 addq $8, ¥rox
00000001000014b7 callq _main

J,

1000014be

00000001000014bc movl ¥eax, ¥edi
00000001000014be callg _exit

Figure 11. The function visualization calculates and displays the start/main in graph view.

Continuing to view the analysis results, we find under the Strings tab four code-referenced string values which
allows us to further highlight the trojan’s potential malicious nature (Figure 12).

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Graph View Hex View Strings Objective-C Disassembly View Network Security

str_host nost
str_htmi htmi
str_http hitp
str_httpcmponlinend hitp://cmp.online-hd. tv/fttmac.zip

str_httpdatadownica

p://data.downioadstarter.net/country .asp?st=0

str_httpwwwyontooco http://www.yontoo.com/PrivacyPolicy.aspx
str_hitps hitps

str_id d

str_|fModifiedSince I1f-Modified-Since

str_|fNoneMatch If-None-Match

str_InstalledExtens Installed Extensions

Figure 12. Mach-0 Viz's analysis engine locates important strings and resolves them to the code segment.

The Objective-C view provides us information about harvested data structures, including their implementation
addresses. This provides us with a powerful combination to zero in on major functions of interest to analyze.
In addition, these data structures hint at the true nature of this binary. For example, we find an interface
declaration for an “Extensionslinstaller” that clearly references installation support for Firefox, Chrome, and
Safari. Class-dump (Figure 13) also provides us with their implementation address that can be placed into the
graphing visualization for display.

Graph View Hex View Strings Objective-C Disassembly View Network Security

€end

€interface ExtensionsInstaller : NSObject
{
}

(id)extensionvValue: (id)argl:(id)arg2:(id)arg3; // IMP=0x0000000100022103
(id)getFirefoxActiveProfileDir; // IMP=0x00000001000221ed
(BOOL)installFirefoxExtension: (id)argl; // IMP=0x0000000100022490
(BOOL)installChromeExtension: (id)argl; // IMP=0x0000000100022815
(BOOL)installsafariExtension: (id)argl; // IMP=0x00000001000229db
(void)uninstallExtensions: (id)argl; // IMP=0x0000000100022f9d

+ o+

€end

Figure 13. Objective-C tab provides important information on declarations and data structures.

Taking this valuable information, we can search this address, for example, 0x1000229db, which is the method
that appears to install the Yontoo trojan browser extension into Safari, into Mach-O Viz's Interactive Function
Search and generate the function graph.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Graph View = HexView Strings Objective-C Disassembly View Network Security

Figure 14.Zoomed out view of function 0x1000229db, implementation function for Yontoo installation into Safari.

We can further dissect this function to find out how the browser extension is installed by leveraging the in-
depth analysis and x86_64 string resolution already conducted by Mach-0 Viz. The function begins by locating
the path to the Safari Extensions that have been resolved correctly (Figures 15,16).

[func_1000229db]

1000229db

00000001000229db pushg %rbp
00000001000229dc movg %rsp, %rbp
00000001000229df pushg %rl3
00000001000229%el pushg %rl2
00000001000229e3 pushg %rbx
00000001000229e4 subg $344, %rsp
00000001000229eb movg %rdi, -312(%rbp)
00000001000229£2 movg %rsi, -320(%rbp)
00000001000229£9 movg %rdx, -328(%rbp)
0000000100022a00 movg 86793(%rip), %rsi
0000000100022a07 leaqg str_LibrarySafariEx, %rdi
0000000100022a0e callg _objc_msgSend

Figure 15. String address for Safari extension path correctly resolved during initial analysis.

| str_LibrarySafanEx ~/Ubrary/Safan/Extensions/

Figure 16. Auto-generated string “str_LibrarySafariEx” identifies user’s Safari extension directory.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Once the Extension directory is located, the installer proceeds to update Safari’s Extensions.plist (Figure 17,18)
and then copies and enables the new extension to successfully complete the install.

V
100022245

0000000100022a45 movg 86996(%rip), %rax
0000000100022a4c movg %rax, %rbx
0000000100022a4f movg -40(%rbp), %rdi
0000000100022a53 leaq str_Extensionsplist, %rdx
0000000100022a5a movg 81263 (%rip), %rsi
0000000100022a61 callg _objc_msgSend

Figure 17. Auto-generated string “str_LibrarySafariEx” identifies user’s Safari extension directory.

str_Extensionsplist Extensions.plist

Figure 18. Strings tab shows us the string in question.

A"
100022e0£

0000000100022e0f movg -104(%rbp), %rbx
0000000100022el13 leaqg str_Enabled, %rl2
0000000100022ela movg 86095(%rip), %rax
0000000100022e21 movg %rax, %rdi
0000000100022e24 movg 83877 (%rip), %rsi
0000000100022e2b movl $1, %edx
0000000100022e30 callg _objc_msgSend

Figure 18. Auto-generated string “str_Enabled”enables the new extension in Safari.

Finally, we can see the edge case wherein if the plugin already exists the installation routine for Safari jumps
past the code to install and enable the plugin and simply exits the function. Mach-0O Viz’s ability to
dynamically zoom in and out easily draws this branch to our attention and allows us to “color” the code path
in question (Figure 19).

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Graph View Hex View Strings Objectivq

X7

b4

Fi

AL

B

Figure 19. Code highlighting the branch that finds the Yontoo plugin installed and exits.

To find cross-references to this Safari extension installation function, we can simply search under
“Names/XRefs” in the Interactive Graph Function Search panel for the address 0x1000229db. Alternatively,
we could have made our way to this function by searching under “Strings” for occurrences of the string

“str_Extensionsplist”.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Interactive Graph Function Search

Functions: v Names/XRefs: 1000229db v Strings: str_Extensionsplist v Search Results:| | -

of Identified Functions: 620 1000229db
Lines of Assembly: 32517 Show All ltems

Figure 20. Exercising some of Mach-0 Viz’s interactive search capabilities to locate the same function.

The Network Security tab (Figure 21) is equally important. In this case Mach-O Viz has provided us with a
wealth of SNORT style signatures clearly targeting both the network traffic generated by the Yontoo Trojan, as
well as a static file signature to prevent future infection. For the network security administrator, simply
uploading the Yontoo Trojan binary Custominstaller into Mach-O Viz and navigating to this Network Security
tab would provide immediate feedback and assistance in detecting and containing this real and very recent
Mac OSX malware threat rapidly until a more thorough analysis and signature could be created (if necessary).

Graph View Hex View Strings Objective-C Disassembly View Network Security

Automated Network and Static File Sig for "C

str_0002a9a0: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://Awww.yontoo.coml”; classtype:policy-violation; sid:1111111; rev:1;)
str_00024188: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://data.downloadstarter.netl”; classtype:policy-violation; sid:1111111; rev:1;)
str_0002a970: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://www.yontoo.coml”; classty pe:policy-violation; sid:1111111; rev:1;)
str_0002a6d8: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://cmp.online-hd.tvI®; classtype:policy-violation; sid:1111111; rev:1;)
str_00023df8: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://data.downloadstarter.netl”; classtype:policy-violation; sid:1111111; rev:1;)

File Signature: MAGIC+String Table: alert tcp any - (msg:"Mach-O Viz Automated Scan: File Mach-O MAGIC;String Table 16 bytes”; flow:established; file_data; content:"ICF FA ED FEI"; depth:4; content:"120 00 2D 5B 41 70 70 44 65 6C 65 67 61 74 65 201"
depth:337280; classtype:policy-violation; sid:1111111; rev:1;)

Figure 20. Mach-0 Viz's Network Security tab auto-generates valuable network defense signatures for us.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Analysis of keychain_dumper: i0S Hacker Utility

Keychain Dumper’ is a popular utility for dumping all passwords saved within iOS’s keychain.
Installation of this utility assumes the iOS device (iPhone, iPad, etc.) has been jailbroken. Analyzing this file
with Mach-0 Viz will exercise the disassembly analysis engine’s ability to handle ARM7 instructions while
providing Objective-C and String information, when applicable.

After uploading the keychain dumper binary into Mach-0 Viz and drilling down into the header, we can verify
that it has been compiled as an ARM architecture (Figure 21).

~ Visual File Explorer

Filename: keychain_dumper

Magic number CPU subtype Number of commands
Oxfeedface 9

Flags
21 (0x15) 0x00000085
CPU type File type Size of commands Reserved field
12 - ARM 0x 2 (MH_EXECUTE) 2028 bytes (0x7ec) 0x00000085
! s

Figure 21. Keychain dumper header shows ARM architecture as the target for this binary.

In addition, we can verify that the file has not been code signed by examining the ENCRYPTION_INFO load
command (Figure 22). Also notice as we drill into the load commands the “bread crumbs” in the top-left give
us a simple history of how we managed to navigate to this field. This useful feature allows simple navigation
of the Mach-O file format load commands, which can become cryptic and complicated in a standard console
data dump. By presenting the same information in a visual file structure, we can easily find the fields of
interest and concentrate only on those.

> https://github.com/ptoomey3/Keychain-Dumper

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

v Visual File Explorer

Filename: keychain_dumper

cmd name encrypted offset:

: encrypted system
LC_ENCRYPTION_INFO 0x00001000 ted yet

not encrypte

cmd size: encrypted size:
20 bytes 8192

Figure 22. Drilling down into the load commands we arrive at ENCRYPTION_INFO and validate an unencrypted ARM binary.

Continuing the analysis of this hacker utility, our Security Risk score is 4, which is quite low. From a network
security threat perspective you definitely do not want this utility floating around; however, compared to a
malware Trojan or similar backdoor utility, this binary doesn’t appear to display malicious APl usage. Our sole
string flagged as a security risk turns out to point to Apple’s domain.

Security Assessment

(Identified security risk results; select one to search function graph visualizations)
Security Scan Results: | select|
Security Risks: 4

close
send Show All ltems
Graph Controls str_00003cc9
select
Focus Center (ex. start, 10000def, 1df4)

Zoom Extent (Zoom graph view out to extents)

File Explorer

Figure 23. A low amount of security risks demonstrates that lack of this binary’s ability to act as a true threat.

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

A powerful capability of Mach-O Viz is to enumerate and resolve all Objective-C string data for method names
and variables. This allows a complete enumeration of most of the code and turns malicious code analysis into
technical reading. Case in point, the “Names/XRefs” (Figure 24) of the keychain dumper utility systematically
gives a general idea of its inner workings and true capability.

Names/XRefs: | | v Str

exit

getCommandLineOptions
getEmptyKeychainltemString
getKeychainObjectsForSecClass
getopt

main

memset
objc_enumerationMutation
objc_msgSend

lph visualizations) prinCertificate
printGenericPassword
printldentity
printinternetPassword
printKey
printResultsForSecClass
printToStdOut
printUsage

loodef, 1df4)

SecCertificateCopy SubjectSumma
ry
SecldentityCopyCertificate

It Matchi
Disassembly Viex SecltemCopyMatching

sqlite3_close

I’H, :3050 sqlite3_column_text Erre

g ’

5, str_addObjec _saqlited finalize s stry

10, #13484) , [rsl

11, #13486 sqlite3_open . {:4}
,

516—. sqlite3_prepare_v2 bjc_msg

sqlite3_step
dyld_stub_binding_helper
P

start

Figure 24. Objective-C structure and method enumeration provides immediate value in quickly triaging this binary.

The following methods highlight the core of this binary: dumpKeychainEntitlements, printCertificate,
printGenericPassword, printldentity, printinternetPassword and printKey. The sqlite methods provide data
access to the keychain database store. In terms of functionality you can examine these functions to confirm
they actually perform “as advertised”.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Let’s conduct a verification of the dumpKeychainEntitlements method to confirm it does what it says.
Selecting it from the “Names/XRefs” and then from “Search Results” brings the method into the Graph
Visualization tab (Figure 25).

[func_326c]

[_dumpKeychainEntitlements]

326c

0000326c push {r4, rS, ré6, r?, 1r}
00003262 add r7, sp, #12

00003270 push.w {rg, ri0, rit}
00003274 svb sp, #12

00003276 move r0, #3778

7a movt r0, #0
0000327e add r0, str_UTF8String
00003280 1dr ri, [r0]

00003282 movw r0, #4546
00003286 movt r0, #0
00003282 add r0, #12942
0000328c blx _objc_msgSend

l

3290

00003290 mov r4, r0
00003292 movw r0, #3738
00003296 movt r0, #0
00003229a moarar > #2724
0000329 movt r2, #0
000032a2 add r0, str_stringWithStrin
4 add v-O, #1290
000032aé 1ldr r1, [r0]
00003238 1dr r0, [r2]
000032aa movw r2, #4522
000032ae movt rZ, #0
000032b2 add r2, #12932
000032b4 blx _objc_msgSend

Figure 25. A string resolution algorithm was developed to resolve ARM7 string references in Mach-0 Viz.

It’s important to note that in order to perform ARM string resolution in the code, an instruction-tracing
algorithm was developed in order to resolve these references for Mach-O Viz’s graphs. A native “otool” code
dump will not provide this amazingly useful information to you. The figure below (Figure 26) shows an Apple
otool dump of the same code sequence without the string references.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

_dumpKeychainEntitlements:

0000326¢
0000326e
00003270
00003274
00003276

0000327

00003282
00003286
0000328a
0000328c
00003290
00003292
00003296
0000329%a
A0AA320e

000032a6
000032a8
000032aa
000032ae
000032b2
000032b4
000032b8
000032ba
000032bc
000032be

b5f@
afe3
€92dedee
b@83
f64060c2

£2000000

f24110c2
f2cee000

4478
follea’e

4604
f640609a
f2ce0000
f64062c8
£2c00200

6801 ldr
6810 ldr
f24112aa movw
f2c00200 movt
447a add
foe0eaba blx
a%02 add
4605 mov
4620
fooleaTe

{r4, r5, r6, r7, 1lr}
r7, sp, #12

{r8, rie, rii}

sp, #12

re, #3778

e #0

re, #4546

re, #0

ré, pc

@x378c @ symbol stub for:
rd, r@

re, #3738

re, #0

r2, #3784

r2. #0

_objc_msgSend

rl, [re]

re, [r2]

r2, #4522

r2, #0

r2, pc

@x378c @ symbol stub for:
rl, sp, #8

r5, r@

re, rd

@x37bc @ symbol stub for:

_objc_msgSend

Figure 26. Apple’s otool doesn’t provide the deep code analysis of Mach-0 Viz.

Further down the method we find the call to open the keychain database along with a string referencing a
SELECT statement (Figure 27). Our Strings tab quickly reveals the details of this call (Figure 28).

| 000032b4 blx _ob

jo_msgSend |

lJosnnnn

32b8

000032b8 add ri,
000032ba mov rS,
000032bc mov x0,

000032be blx _sqlite3_open

sp, #8
ro
rd

laannnd

3202

0000322 cmp ¥0,

" "000032c4 bre 0x33b6

#0

L@,

32c6

000032c6 1ldr r0, [sp, #3]
000032c8 mover r1, #2764
000032cc movt ri, #0
000032d0 movs r2, #0
00003242 str r2, [sp]

000032d4 add r1, str SELECTDISTINCTa

000032d6 mov.w r2, #4294967295
000032da add r3, sp, #4
000032dc blx _sqlite3_prepare_v2

J

3220

33b6

00003220 cmp r0, #0
00003222 bne 0x3374

000033b6 movw r0, #4334
000033ba movt r0, #0
000033be add r0, #13250
000033c0 bl _printToStdOut

Figure 27. Tracing the code path of the dumpKeychainEntitlements method.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

str_SELECTDISTINCTa

SELECT DISTINCT agrp FROM genp UNION SELECT DISTINCT agrp FROM inet

Figure 28. Only due to Mach-O Viz's string resolution ability were we able to easily track down this value.

The next several code blocks iterate through the results of the SELECT statement and build a string out of the
data returned. The graph visualization allows us to color and observe this code loop (Figure 29).

Figure 29. Graph view shows us the SELECT statement and subsequent code loop to aggregate the results as strings.

The resulting string data is dumped to STDOUT and the function exits. As we have demonstrated in a matter

of a few minutes, you can quickly triage this file as a hacker utility, grab and deploy its flat file signature
(Network Security tab) and move on to other more malicious binaries.

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Analysis of MacDefender: OSX'’s First Malware Threat

MacDefender quickly solidified itself as the first real threat to the OSX operating system back in 2011.
Operating under the principles of social engineering, an unsuspecting user is lured into installing it as a
legitimate Mac Anti-Virus product. It then attempts to get the user’s credit card number by asking them to pay
for the “full” version. It also hijacks the user’s browser to display sites related to pornography.®

MacDefender is a good example of a FAT file structure whereby a binary is compiled for multiple architectures
and executes on the one detected by the Mach-O loader. Sending the file into Mach-0 Viz illustrates the two
architectures supported, x86_64 and i386 (Figure 30). Visually we can also see that the x86_64 binary is larger
than its i386 counterpart while the header is barely a sliver when weighed against the actual files.

.umm Load Commands .Enummom- .m .Hs/um .owum-c .sunnlnfo .ccmsunmn

v Visual File Explorer

Filename: MacDefender

Top Level

FAT Header Architecture File: 386
0x00000000 0x0002a000

Architecture File: x86_64

Figure 30. Mach-O Viz correctly parses and display FAT file headers with multiple architectures.

The Security Risk field and Network Security tab provide us with immediate feedback as to the true nature of
this binary by highlighting the malicious IP addresses and domains embedded within (Figure 31).

® http://en.wikipedia.org/wiki/Mac_Defender

TRAINING ' CONSULTING - SOLUTIONS 'A NRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Graph View Hex View Strings Objective-C Disassembly View ‘ Network Security ‘

str_00011860: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://69.50.214.541"; classtype:policy-violation; sid:1111111; rev:1;)

str_0000ebe0: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp:/Awww.freebdsmgalleries.coml”; classty pe:policy-violation; sid:1111111; rev:1;)
str_0000eb8b: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp: y-viagra-now.netl”; ype:policy-violation; sid:1111111; rev:1;)
str_0000eb77: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://gay.porn.coml”; classtype:policy-violation; sid:1111111; rev:1;)
str_0000eba5: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://fitish.coml”; classtype:policy-violation; sid:1111111; rev:1;)

str_00011888: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://69.50.214.531"; classtype:policy-violation; sid:1111111; rev:1;)

str_0000ebca: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp:/Awvww.porn.coml”; classtype:policy-violation; sid:1111111; rev:1;)
str_0000ebb?7: alert tcp any - (msg:"Mach-O Viz Automated Scan: Web Protocol Embedded”; flow:established; offset: 0; content:"Ihttp://www.gay.coml”; classtype:policy-violation; sid:1111111; rev:1;)

File Signature: MAGIC+String Table: alert tcp any - (msg:"Mach-O Viz Automated Scan: File Mach-O MAGIC;String Table 16 bytes”; flow:established; file_data; content:"ICA FE BA BEI"; depth:4; content:"110 1B 00 00 57 02 00 OE 30 1B 00 00 57 02 00 OEI";
depth:146160; classtype:policy-violation; sid:1111111; rev:1;)

Figure 31. Malicious URL’s and IP addresses embedded within MacDefender provide quick insight into its real intention.

The sysctl API provides access to get/set kernel level attributes and rightfully scores as a significant security
risk (Figure 32) in the automated security assessment.

Security Assessment
(Identified security risk results; select one to search functio|
Security Scan Results:| sysct| v
Security Risks: 12 remove
str_0000eb8b
Graph Controls str_0000eb77
system
Focus Center str 00011888 X. start]
Zoom Extent (Zo Str_00011860 ts)
File Explorer o bed
close
sysctl
str_0000eba5
Graph View Hex Vi¢ stive-C
str_0000ebb7
str_0000ebca

Figure 32.Sysctl is not an API function you want your average OSX binary to be accessing.

Ironically, the “fake” anti-virus comes equipped with the bells and whistles to make you think that it is in fact a
legitimate product as seen in the “Names/XRefs” list (Figure 33).

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Names/XRefs: | | v Strings

testPID
testProcinfo
AboutViewController_awakeFromNib
AboutViewController_OnRegister
AboutViewController_setRegisterStatus
AddinfectedObject

bs AddNewVirusToList
addPathAndNamelnfo

addProcesslinfo

AntiVirus_dealloc
r:Joh visualizations) AntiVirus_GetRndNum
AntiVirus_init
AntiVirus_IsFileinfected
AntiVirus_PauseScanning
AntiVirus_ResumeScanning
AntiVirus_ScanningProcessStarted
popodef, 1af4) AntiVirus_setTimelntervalForFirstVirAppe...
applicationDidFinishLaunching

applicationShouldHandleReopen
appURL
awakeFromNib

Disassembly Vie\ buttonGlicked
canBecomeKeyWindow
CCViewController_awakeFromNib
CCViewController_buttonClicked
CCViewController_changeSecurity Status
CCViewController_getimage
CCViewController_getMainWndController
CCViewController_InitButtonsimages
CCViewController_OnCleanup

Figure 33.This malware author created routines to mimic an actual Anti-Virus scan.

As part of the scam to fool the user, we can examine one of the AV’s functions, AntiVirus_IsFileinfected. In a
normal anti-virus this would be a complicated feat consisting of signature based detection and heuristics to
detect maliciousness of a particular binary. The unusually small size of this AV’s detection function points us
to something else however (Figure 34).

TRAINING - CONSULTING - SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Figure 34. The world’s smallest AV file infection detection routine.

Focusing in on the highlighted code blocks we see the use of a random number generator to create the effect
of a delayed scanning (Figure 35) in order to make it appear as if it is actually finding viruses while it displays
fake names to the user. Examining more of the so-called functionality reveals more of same scamming.

3
:
|

100008ed8

0000000100008ed8 movl _s_CurVirFinding(%rip), %gax

1 de cmpl _s_Vi (%rip), %eax
1 4 jge 0x1 Te
100008eea
-
100008efd

il fd pd xmm0, %xmml
0000000100008£01 subsd _s_timeLastFound(%rip), $Hmm0
0000000100008£09 movsd %xmm0, -40(%rbp)
0000000100008£0e leal -1(%rl2), %eax
0000000100008£13 cvtsil2sd %eax, %xmm0
0000000100008£17 movsd -40(%rbp), Sxmm2
0000000100008£f1c ucomisd %xmm0, $xmm2
0000000100008£20 jbe 0x100008f7e

P LRI

100008£22

Figure 35.Fake AV using random delays to create the appearance of a scan.

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

Mach-0O Viz: Where To Go From Here

As we’ve demonstrated, Mach-0 Viz can clearly be used as an effective tool for analyzing Mac related
malware both for the OSX and iOS operating system using data visualization. In addition to the many features
already implemented, we’d like to include the following functionality in future versions:

* Archiving support for previously analyzed files.

* Take Mach-0 Viz into the Cloud for inline automated scanning of Mach-O files for Enterprise networks.
* Function charting across multiple binaries looking for matching code sequences.

* Visually mapping Mach-0 Viz’s file and graph structures into an active debugger such as LLVM.

* Plugin support for modular enhancements.

Conclusions

Mach-0O Viz was developed to fill the need to properly and easily conduct malware analysis on Mac
related malware regardless of the architecture or device. By creating a terminal like interface using
HTML/JavaScript and developing a powerful back-end analytic engine we’ve managed to build a unique and
extremely useful tool to quickly triage Mach-O binaries regardless of their format, visually display them and
provide unique and automated signatures for deployment to network defense systems.

The ability for network security staff and analysts to react quickly and accurately to the latest Mac threats is
critical, especially in today’s Mac-centric world. Mach-O Viz provides the capability required to easily make
this happen without sacrificing the power of a full-featured commercial disassembler.

TRAINING - CONSULTING -~ SOLUTIONS YANRC

Mach-O Malware Analysis: Combatting Mac OSX/iOS Malware with Data Visualization

About ANRC

ANRC delivers advanced cyber security training, consulting, and development services that provide our
customers with peace of mind in a fast-paced and complex cyber security environment.

ANRC was formed with two visions in mind: to provide the best and most current computer security education

possible, and to administer that education through a revolutionary new approach, endowing our customers
with knowledge that will truly be usable, valuable, and retainable.

Contact

Mr. Remy Baumgarten
Security Engineer, ANRC LLC.
1-800-742-7931

TRAINING - CONSULTING - SOLUTIONS YANRC

