
Liar!	
 Macs	
 have	

no	
 viruses!	

-[Revisiting Mac OS X Kernel Rootkits!]-

§  Hold two degrees nobody likes these days:
Economics & MBA.

§  Ex-hacker for .pt banking system (www.sibs.pt).
§  Security Researcher at COSEINC.
§  Lousy coder.

§  Internet Troll (sorry, I love the Human brain!).
§  Love to drive a certain german car with the engine

in the wrong place (people say…).

Who Am I

§  Classic kernel rootkits aka kernel extensions.
§  Two simple ideas that can make them a lot more

powerful.
§  Sample applications of the "new" possibilities.

Today's subject
Prologue

§  Reaching to uid=0 is your problem!
§  The same with startup and persistency aka APT.
§  Probabilities should be favorable to you.
§  0days garage sale later today.
§  You know how to create kernel extensions.
§  Target is Mountain Lion 10.8.2, 64 bits.

Assumptions
(the economist’s dirty secret that makes everything possible)

Prologue

Also	
 works	
 with	

10.8.3!	

§  No such thing besides EFI and DTrace rootkits!
§  Old Dino Dai Zovi research and Phrack article.
§  Well, as far as I know or public knowledge…
§  Just lame Made in Italy rootkits (there goes the

myth about Italian design!).

§  Still, we must concede that they are “effective” and
working in the “wild”.

State of the “art”
Prologue

Simple Ideas

Sophis<cated!	

Not	
 simple.	

§  Many interesting kernel symbols are not exported.

§  Some are available in Unsupported & Private KPIs.

§  That's not good enough for stable rootkits.

§  Solving kernel symbols from a kernel extension
isn’t straightforward (or we are all wrong!).

§  That information is mangled (except in Lion).

Problem #1
Simple Ideas

§  __LINKEDIT segment contains the symbol info.
§  Zeroed up to Snow Leopard.
§  Available in Lion.
§  Available in Mountain Lion but symbol strings are

removed.

§  Not possible to directly lookup symbols by name.
§  OS.X/Crisis solves the symbols in userland and

sends them to the kernel rootkit.

Simple Ideas

Simple Ideas

Simple Ideas

§  One easy solution is to read the kernel image from
disk and process its symbols.

§  Some kind of “myth” that reading filesystem(s) from
kernel is kind of hard to do.

§  In fact it is very easy…

§  Kernel ASLR is not a problem in this scenario.

§  There are additional ways without filesystem read.

Simple Ideas

Simple Ideas

§  Virtual File System – VFS.

§  Read mach_kernel using VFS functions.

§  Possible to implement using KPI exported symbols.

§  And with non-exported.

§  Idea #2 can help with these.

Idea #1
Simple Ideas

§  Let's explore the KPI symbols solution.

§  Recipe for success:

q Vnode of mach_kernel.

q VFS context.

q Data buffer.

q UIO structure/buffer.

Simple Ideas

q How to obtain the vnode information.

§  vnode_lookup(const char* path, int flags, vnode_t
*vpp, vfs_context_t ctx).

§  Converts a path into a vnode.

§  Something like this:

Simple Ideas

Pay	
 aBen<on	
 to	

that	
 NULL!	

§  Why can we pass NULL as vfs context?

§  Because Apple is our friend and takes care of it for us!

§  vfs_context_current is available in Unsupported KPI.

Simple Ideas

q Data buffer.
§  Statically allocated.
§  Or dynamically, using one of the many kernel

functions:
§  kalloc, kmem_alloc, OSMalloc, IOMalloc,

MALLOC, _MALLOC.
§  All are wrappers for kernel_memory_allocate but

do not use this one directly.

Simple Ideas

§  Shopping list status:

þ vnode of /mach_kernel.

þ VFS context.

þ Data buffer.

¨ UIO structure/buffer.

Simple Ideas

q UIO buffer.

§  Use uio_create or uio_createwithbuffer, and
uio_addiov.

§  First and last are available in BSD KPI.

§  uio_createwithbuffer is private extern. Bummer…!

§  Just rip it from kernel source and add to your code.

§  Very stable function - not modified for a long time.

Simple Ideas

q UIO buffer.

§  uio_create calls uio_createwithbuffer.

§  Keep uio_createwithbuffer as a backup measure.

Simple Ideas

§  Recipe for success:

þ vnode of /mach_kernel.

þ VFS context.

þ Data buffer.

þ UIO structure/buffer.

§  Now we can finally read the kernel from disk…

Simple Ideas

§  Reading from the filesystem:

§  VNOP_READ(vnode_t vp, struct io* uio, int ioflag,
vfs_context_t ctx).

§  “Call down to a filesystem to read file data”.

§  Once again Apple takes care of the vfs context.

§  If call was successful the buffer will contain data.

§  To write use VNOP_WRITE.

Simple Ideas

§  To solve the symbols we just need to read the
Mach-O header and extract some information:

§ __TEXT segment address.

§ __LINKEDIT segment offset and size.

§ Symbols and strings tables offset and size from
LC_SYMTAB command.

Simple Ideas

§  Read __LINKEDIT into a buffer (~1Mb).

§  Process it and solve immediately all symbols we
might need.

§  Or just solve symbols when required to obfuscate
things a little.

§  Don't forget that KASLR slide must be added to the
retrieved values.

Simple Ideas

§  To compute the KASLR value find out the base
address of the running kernel.

§  Using IDT or a kernel function address and then
lookup 0xFEEDFACF backwards.

§  Compute the __TEXT address difference to the
value we extracted from disk image.

§  Or use some other method you might have.

Simple Ideas

§  We are able to read (and write) to any file.

§  For now the kernel is the interesting target.

§  We can solve any available symbol - function or
variable, exported or not in KPIs.

Checkpoint #1
Simple Ideas

§  Many interesting functions & variables are static
and not available thru symbols.

§  Cross references not available (IDA spoils us!).

§  Hex search sucks and it’s not that reliable.

Problem #2
Simple Ideas

§  Integrate a disassembler in the rootkit!

§  Tested with diStorm, my personal favorite.

§  Great surprise, it worked at first attempt!

§  It’s kind of like having IDA inside the rootkit.

§  Extremely fast in a modern CPU.

§  One second to disassemble the kernel.

Idea #2
Simple Ideas

Earth	
 calling	

ESET,	
 hello?	

§  Ability to search for static functions and variables.

§  Possibility to hook calls by searching references
and modifying the offsets.

§  Improve success rate while searching for
structure’s fields.

Checkpoint #2
Simple Ideas

§  We can have full control of the kernel.

§  Everything can be dynamic.

§  Stable and future proof rootkits.

§  Can Apple close the VFS door?

§  We still have the disassembler.

§  Kernel anti-disassembly ? J

§  Imagination is the limit! LSD	
 helps,	

they	
 say!	

Simple Ideas

§  One way to execute userland code.

§  How to hide our rootkit from Dtrace’s fbt.

§  How to "kill" Little Snitch.

§  Zombie rootkits.

§  Additional applications in the Phrack paper.

Practical applications
Simple Ideas

Dude,	
 where’s	

the	
 paper?	

Commercial break!

Time	
 to	
 get	

some	
 popcorn!	

Portuguese do it better!
(rootkits, at least)

§  How to execute userland binaries from the rootkit.

§  Many different possibilities exist.

§  This particular one uses or abuses:

§ Mach-O header “features”.

§ Dyld.

§ Launchd.

§  Not the most efficient but fun.

Exec userland

Kernel	
 calls	

userland,	
 hello?	

§  Kill a process controlled by launchd.

§  Intercept the respawn.

§  Inject a dynamic library into its Mach-O header.

§  Let dyld do its work: load library, solve symbols
and execute the library's constructor.

§  Injected library can now fork, exec, and so on…

Idea!
Exec userland

q Write to userland memory from kernel.

q Dyld must read modified header.

q Kernel location to intercept & execute the injection.

q A modified Mach-O header.

q A dynamic library.

q Luck (always required!).

Requirements
Exec userland

I	
 play	
 Russian	

rouleBe!	

q Write to userland memory from kernel.
§  mach_vm_write can't be used because data is in

kernel space.
§  copyout only copies to current proc, not arbitrary.
§  Easiest solution is to use vm_map_write_user.

§  "Copy out data from a kernel space into space in
the destination map. The space must already exist in
the destination map."

Exec userland

q Write to userland memory from kernel.

§  vm_map_write_user(vm_map_t map, void *src_p,
vm_map_address_t dst_addr, vm_size_t size);

§  Use proc_find(int pid) to retrieve proc struct.

§  proc and task structures are linked (void *).

§  Map parameter is the map field from the task
structure.

Exec userland

þ Write to userland memory from kernel.

§  The remaining parameters are buffer to write from,
destination address, and buffer size.

Exec userland

þ Dyld must read modified header.
§  Adding a new library to the header is equivalent to

DYLD_INSERT_LIBRARIES (LD_PRELOAD).
§  Kernel passes control to dyld.
§  Then dyld to target's entrypoint.

§  Dyld re-reads the Mach-O header.
§  If header is modified before dyld's control we can

inject a library (or change entrypoint and so on).

Exec userland

q Kernel location to intercept & execute the injection.

§  We need to find a kernel function within the new
process creation workflow.

§  Hook it with our function responsible for
modifying the target's header.

§  We are looking for a specific process so new proc
structure fields must be already set.

Exec userland

§  exec_mach_imgact is the "heart" of a new process:

Exec userland

§  Inside the "heart" there's a small function called
proc_resetregister.

§  Located near the end so almost everything is ready
to pass control to dyld.

§  Easy to rip!

Purrfect!!!	

Exec userland

þ Write to userland memory from kernel.

þ Dyld must read modified header.

þ Kernel location to intercept & execute the injection.

q Modified Mach-O header.

q A dynamic library.

þ Luck (always required!).

Checkpoint
Exec userland

þ Modified Mach-O header.

§  Very easy to do.

§  Most binaries have enough space (>90% in iOS).

§  Target in memory is always non-fat.

§  Give a look at my last presentations slides.

§  Or OS.X/Boubou source code
(https://github.com/gdbinit/osx_boubou).

Exec userland

Exec userland

þ A dynamic library.

§  Use Xcode's template.

§  Add a constructor.

§  Fork, exec, system, thread(s), whatever you need.

§  Don't forget to cleanup library traces! I	
 never	
 leave	

footprints!	

Exec userland

Commercial break!

Food	
 &	
 Wine,	
 	

I	
 love'em!	

§  OS X is “instrumentation” rich:

§ DTrace.

§ FSEvents.

§ kauth.

§ kdebug.

§ TrustedBSD.

§ Auditing.

Don’t detect me

§  Let’s focus on DTrace's fbt provider.

§  Because its design and implementation are cool.

§  Not so sure about its mascot!

Get	
 the	
 f*ck	

ouBa	
 here!	

Don’t detect me

§  fbt - function boundary tracing.

§  Traces almost every kernel's function entry and exit.

§  The ones you can't listed at critical_blacklist.

§  And also some kernel extensions/drivers.

§  Can be used to detect syscall hooking.

§  Rubilyn rootkit five seconds of fame…

Don’t detect me

Busted!!!	

Don’t detect me

§  FBT's implementation uses traps.

§  Replaces one instruction at target’s entry function.

§  On function entry it is the one that sets the base
pointer: mov rbp, rsp.

§  Trap handler transfers control to DTrace.

§  The replaced instruction is emulated.

§  OS X patches to an illegal instruction (0xF0).

Don’t detect me

Don’t detect me

§  When probe is activated, kernel and kext functions
are patched.

§  Static functions aren't!

§  Because functions search is based on the symbol
table.

§  No symbols, no patch.

Don’t detect me

Don’t detect me

§  fbt_perfCallback is the "heart".

§  Calls DTrace "upper" layers via fbt_invop.

§  And emulates the patched instruction, based on
return value of fbt_invop.

§  There's an array called fbt_probetab which
contains patching and return information.

§  Processed inside fbt_invop.

Don’t detect me

Don’t detect me

q How to hide from the fbt provider.
§  Hook fbt_perfCallback or fbt_invop.
§  Process fbt_probetab and try to match address

against functions we want to hide.
§  If they match, just return the proper value.

§  Else emulate the original functions.
§  Or call them (performance penalty since array will

be searched again!).

Don’t detect me

§  I did not test yet the following but it seems possible:

§  We can use the same DTrace trick to hook
functions.

§  Patch functions we want to hook with illegal
instruction.

§  Modify the trap handler to use ours instead of
DTrace's.

Don’t detect me

§  Do whatever we want with input to the original
function.

§  We can distinguish functions via fault address.

§  And return or not to the original since we can easily
recover that information.

§  Probably not worth all the trouble.

§  But keep in mind it might happen!

Don’t detect me

§  Many instrumentation features available!

§  Do not forget them if you are the evil rootkit coder.

§  Helpful for a quick assessment if you are the
potential victim.

§  Friend or foe, use them!

Don’t detect me
Checkpoint

Commercial break!

Rootkit,	
 are	

you	
 there?	

§  Little Snitch is a popular application firewall.

§  Able to filter outgoing and incoming network
connections per application.

§  Good enough to block most threats.

§  Implemented using socket filters.

§  Installed on each domain, type, and protocol socket.

Kill the Snitch

I	
 hate	

snitches!	

§  Structure sflt_filter with callbacks:

§  To hook, just modify the callback pointers.

Kill the Snitch

§  We need to find Little Snitch's structure!

§  It is located in a static tail queue.

§  Called sock_filter_head.

§  Use the disassembler, Luke!

§  Couple of functions referencing it.

§  sflt_attach_internal for example.

Kill the Snitch

May	
 the	
 Force	

be	
 with	
 you.	

Kill the Snitch

§  Entrypoint for the socket is sf_attach_func callback.

§  Return non-zero value and socket filter is not
attached to new sockets.

§  Not very useful – not enough information to filter
destination IPs for example.

§  A cookie is created on attach with useful info for
the other callbacks.

Kill the Snitch

§  Connect out callback has struct sockaddr as a
parameter.

§  We can use it to distinguish target IP and allow it or
not to bypass Little Snitch.

§  And also use info from the cookie.

§  Socket filters are another single
point of failure as kauth.

Kill the Snitch

Commercial break!

COSEINC	
 rules!	

Zombies

OBerz?	

Zombies?	

§  Create a kernel memory leak.

§  Copy rootkit code to that area.

§  Fix permissions and symbols offsets.

§  That’s easy, we have a disassembler!

§  Redirect execution to the zombie area.

§  Return KERN_FAILURE to rootkit's start function.

Idea!
Zombies

þ Create a kernel memory leak.

§  Using one of the dynamic memory functions.

§  kalloc, kmem_alloc, OSMalloc, MALLOC/FREE,
_MALLOC/_FREE, IOMalloc/IOFree.

§  No garbage collection mechanism (true?).

§  Find rootkit’s Mach-O header and compute its size
(__TEXT + __DATA segments).

Zombies

q Fix symbols offsets.

§  Kexts have no symbol stubs as most userland
binaries.

§  Symbols are solved when kext is loaded.

§  RIP addressing is used (offset from kext to kernel).

§  When we copy to the zombie area those offsets are
wrong.

Zombies

q Fix symbols offsets.
§  We can have a table with all external symbols or

dynamically find them (read rootkit from disk).
§  Lookup each kernel symbol address.
§  Disassemble the original rootkit code address and

find the references to the original symbol.
§  Find CALL and JMP and check if target is the

symbol.

Zombies

þ Fix symbols offsets.
§  Not useful to disassemble the zombie area because

offsets are wrong.
§  Compute the distance to start address from CALLs

in original and add it to the zombie start address.

§  Now we have the location of each symbol inside the
zombie and can fix the offset back to kernel
symbol.

Zombies

q Redirect execution to zombie.

§  We can’t simply jump to new code because rootkit
start function must return a value!

§  Hijack some function and have it execute a zombie
start function.

§  Or just start a new kernel thread with
kernel_thread_start.

Zombies

þ Redirect execution to zombie.

§  To find the zombie start function use the same trick
as symbols:

§  Compute the difference to the start in the original
rootkit.

§  Add it to the start of zombie and we get the correct
pointer.

Zombies

þ Return KERN_FAILURE.

§  Original kext must return a value.

§  If we return KERN_SUCCESS, kext will be loaded
and we need to hide or unload it.

§  If we return KERN_FAILURE, kext will fail to load
and OS X will cleanup it for us.

§  Not a problem because zombie is already resident.

Zombies

§  No need to hide from kextstat.

§  No kext related structures.

§  Harder to find (easier now because I'm telling you).

§  Wipe out zombie Mach-O header and there’s only
code/data in kernel memory.

§  It’s fun!

Advantages
Zombies

I	
 eat	
 zombies	

for	
 breakfast!	

"Demo"
Zombies

"Demo"
Zombies

"Demo"
Zombies

"Demo"
Zombies

§  Nemo, Snare and I are going to write a book!

§  About state of the art OS X rootkits (we hope so).

§  Hopefully out in a year.

§  By No Starch Press.

§  Limited $2500 edition with a plug’n’pray EFI
rootkit dongle!

§  Nah, just kidding! Don’t forget to buy it anyway J

Marketing

q Internal structures!

§  Some are stable, others not so much.

§  Proc structure is one of those.

§  We just need a few fields.

§  Maybe find their offsets by disassembling stable
functions?

Problems

q Memory forensics

§  The “new” rootkit enemy.

§  But with its own flaws.

§  In particular the acquisition process.

§  Which we can have a chance to play with.

§  29C3 had a presentation about Windows.

§  Had no time to finish my research on this.

Problems

§  And so many others.

§  It's a cat & mouse game.

§  Any mistake can be costly.

§  But it's not that easy for the defensive side.

Problems

§  Improving the quality of OS X kernel rootkits is
very easy.

§  Prevention and detection tools must be researched
& developed.

§  Kernel is sexy but don't forget userland.
§  OS.X/Crisis userland rootkit is powerful!
§  Easier to hide in userland from memory forensics.
§  Read the paper, if you haven't already J.

Conclusions

Read	
 what?	

Where	
 is	
 it?	

nemo, noar, snare, saure, od, emptydir, korn,
g0sh, spico and all other put.as friends,
everyone at Coseinc, thegrugq, diff-t, #osxre,
Gil Dabah from diStorm, and you for spending
one hour of your life listening to me J.

Greets

http://reverse.put.as

http://github.com/gdbinit

reverser@put.as

@osxreverser

#osxre @ irc.freenode.net

Contacts

End!	
 At	
 last…	

Have	
 fun!	

