
Liar!	 Macs	 have	
no	 viruses!	

-[Revisiting Mac OS X Kernel Rootkits!]-

§  Hold two degrees nobody likes these days:
Economics & MBA.

§  Ex-hacker for .pt banking system (www.sibs.pt).
§  Security Researcher at COSEINC.
§  Lousy coder.

§  Internet Troll (sorry, I love the Human brain!).
§  Love to drive a certain german car with the engine

in the wrong place (people say…).

Who Am I

§  Classic kernel rootkits aka kernel extensions.
§  Two simple ideas that can make them a lot more

powerful.
§  Sample applications of the "new" possibilities.

Today's subject
Prologue

§  Reaching to uid=0 is your problem!
§  The same with startup and persistency aka APT.
§  Probabilities should be favorable to you.
§  0days garage sale later today.
§  You know how to create kernel extensions.
§  Target is Mountain Lion 10.8.2, 64 bits.

Assumptions
(the economist’s dirty secret that makes everything possible)

Prologue

Also	 works	 with	
10.8.3!	

§  No such thing besides EFI and DTrace rootkits!
§  Old Dino Dai Zovi research and Phrack article.
§  Well, as far as I know or public knowledge…
§  Just lame Made in Italy rootkits (there goes the

myth about Italian design!).

§  Still, we must concede that they are “effective” and
working in the “wild”.

State of the “art”
Prologue

Simple Ideas

Sophis<cated!	
Not	 simple.	

§  Many interesting kernel symbols are not exported.

§  Some are available in Unsupported & Private KPIs.

§  That's not good enough for stable rootkits.

§  Solving kernel symbols from a kernel extension
isn’t straightforward (or we are all wrong!).

§  That information is mangled (except in Lion).

Problem #1
Simple Ideas

§  __LINKEDIT segment contains the symbol info.
§  Zeroed up to Snow Leopard.
§  Available in Lion.
§  Available in Mountain Lion but symbol strings are

removed.

§  Not possible to directly lookup symbols by name.
§  OS.X/Crisis solves the symbols in userland and

sends them to the kernel rootkit.

Simple Ideas

Simple Ideas

Simple Ideas

§  One easy solution is to read the kernel image from
disk and process its symbols.

§  Some kind of “myth” that reading filesystem(s) from
kernel is kind of hard to do.

§  In fact it is very easy…

§  Kernel ASLR is not a problem in this scenario.

§  There are additional ways without filesystem read.

Simple Ideas

Simple Ideas

§  Virtual File System – VFS.

§  Read mach_kernel using VFS functions.

§  Possible to implement using KPI exported symbols.

§  And with non-exported.

§  Idea #2 can help with these.

Idea #1
Simple Ideas

§  Let's explore the KPI symbols solution.

§  Recipe for success:

q Vnode of mach_kernel.

q VFS context.

q Data buffer.

q UIO structure/buffer.

Simple Ideas

q How to obtain the vnode information.

§  vnode_lookup(const char* path, int flags, vnode_t
*vpp, vfs_context_t ctx).

§  Converts a path into a vnode.

§  Something like this:

Simple Ideas

Pay	 aBen<on	 to	
that	 NULL!	

§  Why can we pass NULL as vfs context?

§  Because Apple is our friend and takes care of it for us!

§  vfs_context_current is available in Unsupported KPI.

Simple Ideas

q Data buffer.
§  Statically allocated.
§  Or dynamically, using one of the many kernel

functions:
§  kalloc, kmem_alloc, OSMalloc, IOMalloc,

MALLOC, _MALLOC.
§  All are wrappers for kernel_memory_allocate but

do not use this one directly.

Simple Ideas

§  Shopping list status:

þ vnode of /mach_kernel.

þ VFS context.

þ Data buffer.

¨ UIO structure/buffer.

Simple Ideas

q UIO buffer.

§  Use uio_create or uio_createwithbuffer, and
uio_addiov.

§  First and last are available in BSD KPI.

§  uio_createwithbuffer is private extern. Bummer…!

§  Just rip it from kernel source and add to your code.

§  Very stable function - not modified for a long time.

Simple Ideas

q UIO buffer.

§  uio_create calls uio_createwithbuffer.

§  Keep uio_createwithbuffer as a backup measure.

Simple Ideas

§  Recipe for success:

þ vnode of /mach_kernel.

þ VFS context.

þ Data buffer.

þ UIO structure/buffer.

§  Now we can finally read the kernel from disk…

Simple Ideas

§  Reading from the filesystem:

§  VNOP_READ(vnode_t vp, struct io* uio, int ioflag,
vfs_context_t ctx).

§  “Call down to a filesystem to read file data”.

§  Once again Apple takes care of the vfs context.

§  If call was successful the buffer will contain data.

§  To write use VNOP_WRITE.

Simple Ideas

§  To solve the symbols we just need to read the
Mach-O header and extract some information:

§ __TEXT segment address.

§ __LINKEDIT segment offset and size.

§ Symbols and strings tables offset and size from
LC_SYMTAB command.

Simple Ideas

§  Read __LINKEDIT into a buffer (~1Mb).

§  Process it and solve immediately all symbols we
might need.

§  Or just solve symbols when required to obfuscate
things a little.

§  Don't forget that KASLR slide must be added to the
retrieved values.

Simple Ideas

§  To compute the KASLR value find out the base
address of the running kernel.

§  Using IDT or a kernel function address and then
lookup 0xFEEDFACF backwards.

§  Compute the __TEXT address difference to the
value we extracted from disk image.

§  Or use some other method you might have.

Simple Ideas

§  We are able to read (and write) to any file.

§  For now the kernel is the interesting target.

§  We can solve any available symbol - function or
variable, exported or not in KPIs.

Checkpoint #1
Simple Ideas

§  Many interesting functions & variables are static
and not available thru symbols.

§  Cross references not available (IDA spoils us!).

§  Hex search sucks and it’s not that reliable.

Problem #2
Simple Ideas

§  Integrate a disassembler in the rootkit!

§  Tested with diStorm, my personal favorite.

§  Great surprise, it worked at first attempt!

§  It’s kind of like having IDA inside the rootkit.

§  Extremely fast in a modern CPU.

§  One second to disassemble the kernel.

Idea #2
Simple Ideas

Earth	 calling	
ESET,	 hello?	

§  Ability to search for static functions and variables.

§  Possibility to hook calls by searching references
and modifying the offsets.

§  Improve success rate while searching for
structure’s fields.

Checkpoint #2
Simple Ideas

§  We can have full control of the kernel.

§  Everything can be dynamic.

§  Stable and future proof rootkits.

§  Can Apple close the VFS door?

§  We still have the disassembler.

§  Kernel anti-disassembly ? J

§  Imagination is the limit! LSD	 helps,	
they	 say!	

Simple Ideas

§  One way to execute userland code.

§  How to hide our rootkit from Dtrace’s fbt.

§  How to "kill" Little Snitch.

§  Zombie rootkits.

§  Additional applications in the Phrack paper.

Practical applications
Simple Ideas

Dude,	 where’s	
the	 paper?	

Commercial break!

Time	 to	 get	
some	 popcorn!	

Portuguese do it better!
(rootkits, at least)

§  How to execute userland binaries from the rootkit.

§  Many different possibilities exist.

§  This particular one uses or abuses:

§ Mach-O header “features”.

§ Dyld.

§ Launchd.

§  Not the most efficient but fun.

Exec userland

Kernel	 calls	
userland,	 hello?	

§  Kill a process controlled by launchd.

§  Intercept the respawn.

§  Inject a dynamic library into its Mach-O header.

§  Let dyld do its work: load library, solve symbols
and execute the library's constructor.

§  Injected library can now fork, exec, and so on…

Idea!
Exec userland

q Write to userland memory from kernel.

q Dyld must read modified header.

q Kernel location to intercept & execute the injection.

q A modified Mach-O header.

q A dynamic library.

q Luck (always required!).

Requirements
Exec userland

I	 play	 Russian	
rouleBe!	

q Write to userland memory from kernel.
§  mach_vm_write can't be used because data is in

kernel space.
§  copyout only copies to current proc, not arbitrary.
§  Easiest solution is to use vm_map_write_user.

§  "Copy out data from a kernel space into space in
the destination map. The space must already exist in
the destination map."

Exec userland

q Write to userland memory from kernel.

§  vm_map_write_user(vm_map_t map, void *src_p,
vm_map_address_t dst_addr, vm_size_t size);

§  Use proc_find(int pid) to retrieve proc struct.

§  proc and task structures are linked (void *).

§  Map parameter is the map field from the task
structure.

Exec userland

þ Write to userland memory from kernel.

§  The remaining parameters are buffer to write from,
destination address, and buffer size.

Exec userland

þ Dyld must read modified header.
§  Adding a new library to the header is equivalent to

DYLD_INSERT_LIBRARIES (LD_PRELOAD).
§  Kernel passes control to dyld.
§  Then dyld to target's entrypoint.

§  Dyld re-reads the Mach-O header.
§  If header is modified before dyld's control we can

inject a library (or change entrypoint and so on).

Exec userland

q Kernel location to intercept & execute the injection.

§  We need to find a kernel function within the new
process creation workflow.

§  Hook it with our function responsible for
modifying the target's header.

§  We are looking for a specific process so new proc
structure fields must be already set.

Exec userland

§  exec_mach_imgact is the "heart" of a new process:

Exec userland

§  Inside the "heart" there's a small function called
proc_resetregister.

§  Located near the end so almost everything is ready
to pass control to dyld.

§  Easy to rip!

Purrfect!!!	

Exec userland

þ Write to userland memory from kernel.

þ Dyld must read modified header.

þ Kernel location to intercept & execute the injection.

q Modified Mach-O header.

q A dynamic library.

þ Luck (always required!).

Checkpoint
Exec userland

þ Modified Mach-O header.

§  Very easy to do.

§  Most binaries have enough space (>90% in iOS).

§  Target in memory is always non-fat.

§  Give a look at my last presentations slides.

§  Or OS.X/Boubou source code
(https://github.com/gdbinit/osx_boubou).

Exec userland

Exec userland

þ A dynamic library.

§  Use Xcode's template.

§  Add a constructor.

§  Fork, exec, system, thread(s), whatever you need.

§  Don't forget to cleanup library traces! I	 never	 leave	
footprints!	

Exec userland

Commercial break!

Food	 &	 Wine,	 	
I	 love'em!	

§  OS X is “instrumentation” rich:

§ DTrace.

§ FSEvents.

§ kauth.

§ kdebug.

§ TrustedBSD.

§ Auditing.

Don’t detect me

§  Let’s focus on DTrace's fbt provider.

§  Because its design and implementation are cool.

§  Not so sure about its mascot!

Get	 the	 f*ck	
ouBa	 here!	

Don’t detect me

§  fbt - function boundary tracing.

§  Traces almost every kernel's function entry and exit.

§  The ones you can't listed at critical_blacklist.

§  And also some kernel extensions/drivers.

§  Can be used to detect syscall hooking.

§  Rubilyn rootkit five seconds of fame…

Don’t detect me

Busted!!!	

Don’t detect me

§  FBT's implementation uses traps.

§  Replaces one instruction at target’s entry function.

§  On function entry it is the one that sets the base
pointer: mov rbp, rsp.

§  Trap handler transfers control to DTrace.

§  The replaced instruction is emulated.

§  OS X patches to an illegal instruction (0xF0).

Don’t detect me

Don’t detect me

§  When probe is activated, kernel and kext functions
are patched.

§  Static functions aren't!

§  Because functions search is based on the symbol
table.

§  No symbols, no patch.

Don’t detect me

Don’t detect me

§  fbt_perfCallback is the "heart".

§  Calls DTrace "upper" layers via fbt_invop.

§  And emulates the patched instruction, based on
return value of fbt_invop.

§  There's an array called fbt_probetab which
contains patching and return information.

§  Processed inside fbt_invop.

Don’t detect me

Don’t detect me

q How to hide from the fbt provider.
§  Hook fbt_perfCallback or fbt_invop.
§  Process fbt_probetab and try to match address

against functions we want to hide.
§  If they match, just return the proper value.

§  Else emulate the original functions.
§  Or call them (performance penalty since array will

be searched again!).

Don’t detect me

§  I did not test yet the following but it seems possible:

§  We can use the same DTrace trick to hook
functions.

§  Patch functions we want to hook with illegal
instruction.

§  Modify the trap handler to use ours instead of
DTrace's.

Don’t detect me

§  Do whatever we want with input to the original
function.

§  We can distinguish functions via fault address.

§  And return or not to the original since we can easily
recover that information.

§  Probably not worth all the trouble.

§  But keep in mind it might happen!

Don’t detect me

§  Many instrumentation features available!

§  Do not forget them if you are the evil rootkit coder.

§  Helpful for a quick assessment if you are the
potential victim.

§  Friend or foe, use them!

Don’t detect me
Checkpoint

Commercial break!

Rootkit,	 are	
you	 there?	

§  Little Snitch is a popular application firewall.

§  Able to filter outgoing and incoming network
connections per application.

§  Good enough to block most threats.

§  Implemented using socket filters.

§  Installed on each domain, type, and protocol socket.

Kill the Snitch

I	 hate	
snitches!	

§  Structure sflt_filter with callbacks:

§  To hook, just modify the callback pointers.

Kill the Snitch

§  We need to find Little Snitch's structure!

§  It is located in a static tail queue.

§  Called sock_filter_head.

§  Use the disassembler, Luke!

§  Couple of functions referencing it.

§  sflt_attach_internal for example.

Kill the Snitch

May	 the	 Force	
be	 with	 you.	

Kill the Snitch

§  Entrypoint for the socket is sf_attach_func callback.

§  Return non-zero value and socket filter is not
attached to new sockets.

§  Not very useful – not enough information to filter
destination IPs for example.

§  A cookie is created on attach with useful info for
the other callbacks.

Kill the Snitch

§  Connect out callback has struct sockaddr as a
parameter.

§  We can use it to distinguish target IP and allow it or
not to bypass Little Snitch.

§  And also use info from the cookie.

§  Socket filters are another single
point of failure as kauth.

Kill the Snitch

Commercial break!

COSEINC	 rules!	

Zombies

OBerz?	
Zombies?	

§  Create a kernel memory leak.

§  Copy rootkit code to that area.

§  Fix permissions and symbols offsets.

§  That’s easy, we have a disassembler!

§  Redirect execution to the zombie area.

§  Return KERN_FAILURE to rootkit's start function.

Idea!
Zombies

þ Create a kernel memory leak.

§  Using one of the dynamic memory functions.

§  kalloc, kmem_alloc, OSMalloc, MALLOC/FREE,
_MALLOC/_FREE, IOMalloc/IOFree.

§  No garbage collection mechanism (true?).

§  Find rootkit’s Mach-O header and compute its size
(__TEXT + __DATA segments).

Zombies

q Fix symbols offsets.

§  Kexts have no symbol stubs as most userland
binaries.

§  Symbols are solved when kext is loaded.

§  RIP addressing is used (offset from kext to kernel).

§  When we copy to the zombie area those offsets are
wrong.

Zombies

q Fix symbols offsets.
§  We can have a table with all external symbols or

dynamically find them (read rootkit from disk).
§  Lookup each kernel symbol address.
§  Disassemble the original rootkit code address and

find the references to the original symbol.
§  Find CALL and JMP and check if target is the

symbol.

Zombies

þ Fix symbols offsets.
§  Not useful to disassemble the zombie area because

offsets are wrong.
§  Compute the distance to start address from CALLs

in original and add it to the zombie start address.

§  Now we have the location of each symbol inside the
zombie and can fix the offset back to kernel
symbol.

Zombies

q Redirect execution to zombie.

§  We can’t simply jump to new code because rootkit
start function must return a value!

§  Hijack some function and have it execute a zombie
start function.

§  Or just start a new kernel thread with
kernel_thread_start.

Zombies

þ Redirect execution to zombie.

§  To find the zombie start function use the same trick
as symbols:

§  Compute the difference to the start in the original
rootkit.

§  Add it to the start of zombie and we get the correct
pointer.

Zombies

þ Return KERN_FAILURE.

§  Original kext must return a value.

§  If we return KERN_SUCCESS, kext will be loaded
and we need to hide or unload it.

§  If we return KERN_FAILURE, kext will fail to load
and OS X will cleanup it for us.

§  Not a problem because zombie is already resident.

Zombies

§  No need to hide from kextstat.

§  No kext related structures.

§  Harder to find (easier now because I'm telling you).

§  Wipe out zombie Mach-O header and there’s only
code/data in kernel memory.

§  It’s fun!

Advantages
Zombies

I	 eat	 zombies	
for	 breakfast!	

"Demo"
Zombies

"Demo"
Zombies

"Demo"
Zombies

"Demo"
Zombies

§  Nemo, Snare and I are going to write a book!

§  About state of the art OS X rootkits (we hope so).

§  Hopefully out in a year.

§  By No Starch Press.

§  Limited $2500 edition with a plug’n’pray EFI
rootkit dongle!

§  Nah, just kidding! Don’t forget to buy it anyway J

Marketing

q Internal structures!

§  Some are stable, others not so much.

§  Proc structure is one of those.

§  We just need a few fields.

§  Maybe find their offsets by disassembling stable
functions?

Problems

q Memory forensics

§  The “new” rootkit enemy.

§  But with its own flaws.

§  In particular the acquisition process.

§  Which we can have a chance to play with.

§  29C3 had a presentation about Windows.

§  Had no time to finish my research on this.

Problems

§  And so many others.

§  It's a cat & mouse game.

§  Any mistake can be costly.

§  But it's not that easy for the defensive side.

Problems

§  Improving the quality of OS X kernel rootkits is
very easy.

§  Prevention and detection tools must be researched
& developed.

§  Kernel is sexy but don't forget userland.
§  OS.X/Crisis userland rootkit is powerful!
§  Easier to hide in userland from memory forensics.
§  Read the paper, if you haven't already J.

Conclusions

Read	 what?	
Where	 is	 it?	

nemo, noar, snare, saure, od, emptydir, korn,
g0sh, spico and all other put.as friends,
everyone at Coseinc, thegrugq, diff-t, #osxre,
Gil Dabah from diStorm, and you for spending
one hour of your life listening to me J.

Greets

http://reverse.put.as

http://github.com/gdbinit

reverser@put.as

@osxreverser

#osxre @ irc.freenode.net

Contacts

End!	 At	 last…	

Have	 fun!	

