
fG! - SyScan360 2014

•  Professional troublemaker.	

•  WhiskeyCon’14 survivor!	

•  Wannabe rootkits book writer.	

•  Legendary white hat hero (© Dr. Quynh).	

•  Trying to build a security product for OS X.	

•  The dropper.	

•  Main backdoor module.	

•  MPRESS, and how to unpack it.	

•  Main backdoor module part 2.	

•  Debugging tips & tricks.	

•  Lame persistent threat.	

•  Encryption keys.	

•  Encrypted configuration file.	

•  Implementation and bundle injection.	

•  C&C communications.	

•  Kernel rootkit.	

•  Conclusions.	

“Here in HackingTeam we believe that fighting

crime should be easy: we provide effective, easy-

to-use offensive technology to the worldwide law

enforcement and intelligence communities.”	

	

“Our technology is used daily to fight crime in six

continents.”	

•  Wishful thinking.	

•  No transparency.	

•  Dubious clientele?	

•  If arms embargoes are bypassed, why would

“cyber” stuff be different? 	

•  Check the reports from Citizen Lab:	

–  “Hacking Team and the Targeting of Ethiopian

Journalists”.	

–  “Mapping Hacking Team’s “Untraceable” Spyware”.	

–  “Hacking Team’s US Nexus”.	

–  “Police Story: Hacking Team’s Government Surveillance
Malware”.	

•  HackingTeam’s Remote Control System.	

•  Officially sold as DaVinci.	

•  Known as Crisis or Morcut.	

•  Samples found for Windows, OS X, iOS, Android.	

•  New version called Galileo.	

•  Known (working) Mac OS X samples:	

MD5	
 VT First upload	

6f055150861d8d6e145e9aca65f92822	
 24/07/12	

1b22e4324f4089a166aae691dff2e636	
 16/11/12	

a32e073132ae0439daca9c82b8119009	
 11/11/13	

5a88ed9597749338dc93fe2dbfdbe684	
 18/01/14	

•  Microphone.	

•  Webcam.	

•  Screenshots.	

•  Keylogger/mouse tracker.	

•  Skype/Microsoft Messenger recording.	

•  Spying on browsers.	

•  Etc…	

•  Delivered via exploits: Flash, Word, etc(?).	

•  Social engineering: “plz install me!!!”.	

•  Less than one megabyte.	

•  This presentation is about this sample:	

•  a2e3f93fc91cc4f0f5b28605371d89a6c4bdb3a7e84
1097dc7615bc2aa43a779.	

•  Why this sample?	

•  Last one found/reported.	

•  Initial thought to be the most recent version.	

•  Later, why this conclusion appears to be wrong.	

Filename	
 Function	

8oTHYMCj.XIl	
 Main backdoor module	

3ZPYmgGV.TOA	
 64 bit kernel extension	

Lft2iRjk.7qa	
 32 bit kernel extension	

EDr5dvW8.p_w	
 Bundle (fat binary)	

GARteYof._Fk	
 XPC module(fat binary)	

ok20utla.3-B	
 Configuration file	

q45tyh	
 TIFF image	

•  Tries to hide the real entry point.	

•  Using a fake main() function.	

•  Easily detected by looking at the Mach-O

headers.	

•  Something you should *always* do!	

•  GDB doesn’t like to set breakpoints outside the
__TEXT segment.	

•  Patch the binary with a INT 3h.	

•  The mov ebp, esp instruction is a good candidate.	

•  Easy to emulate in GDB (set $ebp = $esp).	

•  No checksum checks exist.	

•  No imports other than exit().	

•  Uses INT 80h to call exit, open, fstat, mmap.	

•  Dynamically resolves all other required symbols.	

•  Mmap is used to map system libraries with the

symbols.	

•  There is no need to mmap libraries.	

•  (Ab)use dyld shared cache feature.	

•  The most important libraries are cached.	

•  We are able to read them directly from memory.	

•  But we still need to find some dyld functions.	

“The dyld shared cache is mapped by dyld into a

process at launch time. Later, when loading any

mach-o image, dyld will first check if is in the share

cache, and if it is will use that pre-bound version

instead of opening, mapping, and binding the

original file.”	

•  How does Crisis finds the necessary dyld
functions?	

•  In Snow Leopard there is no full ASLR (only
Lion or newer):	

– Enabled only for system libraries.	

– 32 bits dyld at fixed address 0x8fe00000.	

•  Recovers the return address of dyld::_main
from the stack.	

•  By exploiting the stack layout from _dyld_start
and then jump to entrypoint.	

•  Don’t forget kernel passes control to dyld and
then to the original entrypoint.	

u

v

•  This sample doesn’t work in Mountain Lion and

Mavericks.	

•  Because the stack layout changed.	

•  Mostly due to the introduction of LC_MAIN

command to replace LC_UNIXTHREAD.	

•  Easier to get current EBP and retrieve the value

in EBP-0xC.	

•  Compatible with “all” OS X versions and ASLR!	

•  It’s an address inside dyld.	

•  Caveat	

•  Must be compiled with:	

•  clang -o ebp ebp.c -arch i386 -mmacosx-

version-min=10.6	

•  This forces use of old LC_UNIXTHREAD.	

•  After all this excitement libraries are mmpa’ed.	

•  Search for the dyld symbols that allow to

retrieve loaded images.	

•  Sdbm hash used to “obfuscate” the symbols

names.	

•  The function to resolve the symbols just locates

the dyld symbol table and retrieves the value.	

•  Separate functions for Snow Leopard and Lion.	

•  No idea why!	

•  Lion version has an hardcoded value…	

u

v

u

v

w

•  The dyld functions are used to find out the base

address of the libraries.	

•  Added to each resolved symbol.	

•  Function pointer is now available to be used.	

•  Useful dyld functions:	

– _dyld_image_count.	

– _dyld_get_image_header.	

– _dyld_get_image_vmaddr_slide.	

– _dyld_get_image_name.	

•  Look inside mach-o/dyld.h.	

u

v

w

•  Next step, drop the payloads.	

•  Written to ~/Library/Preferences/xxxxxx.app/.	

•  Random app name.	

•  Always the same target folder in all known samples.	

•  This sample: ~/Library/Preferences/OvzD7xFr.app/.	

•  After writing all the payloads it just forks and

launches the main backdoor module.	

•  And returns control to the fake_start address.	

u

v

•  The core of Crisis.	

•  Responsible for :	

–  Injection into target applications.	

– Communications with C&C.	

–  Logging.	

– Rootkit control.	

–  Etc.	

•  Coded in Objective-C.	

•  (Very) Verbose class and method names.	

•  32 bits only binary.	

•  Packed with MPRESS in two samples.	

•  http://www.matcode.com/mpress.htm	

•  Easy to unpack.	

•  Not a real obstacle to reversing.	

•  Generic dumper to be released.	

•  One of the two generic packers available for

OS X (afaik!).	

•  Other is UPX (meh!).	

•  Everything else I know is custom ;-).	

•  “Programs compressed with MPRESS run

exactly as before, with no runtime performance

penalties.”	

•  “it also protects programs against reverse

engineering by non-professional hackers.”	

u

u

v

u

v

w

u

v

x w

•  Steps:	

1.  Start execution of initial stub.	

2.  Unpack the original binary and secondary stub.	

3.  Execute secondary stub.	

4.  Pass control to dyld and execute original binary.	

•  The MPRESS segment contains the packed data.	

•  And the initial packer stub.	

•  RWX memory permissions.	

•  Two unpacking stubs.	

•  The first pointed by the entry point.	

•  Located at the end of the packed data.	

u
v

w

•  Continue execution at the second stub.	

•  Restores original memory protections of each
segment.	

•  Maps the linker (dyld).	

•  Sets the initial stack and environment variables.	

•  Jumps to dyld_start.	

•  And dyld jumps back to the original entry point.	

•  Essentially it replicates what happens with a

normal binary.	

•  The original entry point can be easily found.	

•  Using gdbinit’s dumpmacho command and

otool. 	

•  Or dump memory and use otool, MachOView,

IDA.	

•  The moment it’s ready to jump to dyld_start

we have a Mach-O binary in memory.	

•  No further protections.	

•  MPRESS is nothing more than a shell for the

original binary.	

•  Same GDB problem as the dropper.	

•  Modify entry point address to a INT 3h.	

•  And also the jump to the second stub.	

•  If you use gdbinit script use the int3/rint3

commands for the second breakpoint. 	

u

v

•  Technically it’s dumping not unpacking.	

•  A custom debugger.	

•  Four breakpoints used.	

•  Perfect dump.	

•  No need to fix anything: imports, etc.	

•  Find out address and size of the unpacked area.	

•  Set after the unpacking is done.	

•  Find out the jump to the second stub.	

•  Set inside the second stub.	

•  We can’t dump memory yet.	

•  Best place is on the jump to dyld_start.	

•  Located in the jump to dyld_start instruction.	

•  We have the binary in memory.	

•  Dump to disk.	

•  Kill target binary.	

•  It’s a dumper so you should run it in a VM.	

•  https://github.com/gdbinit/mpress_dumper	

•  Not all samples can be just dumped.	

•  Possible differences between size in memory

and size in file.	

•  A simple dump can have file offsets pointing to

wrong data.	

•  This is the memory layout of another sample.	

•  The __DATA segment is 0x1000 bytes too big

in the dumped image.	

•  Dumped binary will crash.	

•  Because __OBJC and __LINKEDIT are pointing

to bogus data on disk.	

•  Headers must be parsed before dumping.	

•  Use the file size (and offset) fields to dump the

correct sizes to disk.	

•  Nothing else needs to be fixed. 	

•  Hooks the system logging function.	

•  The core is the [RCSMCore runMeh] method.	

•  Responsible for initialization.	

•  Loading modules.	

•  Installing missing settings.	

•  Two shared memory segments created in /tmp.	

•  Size: 16kbytes and 3megabytes.	

•  Name: /tmp/launchch-xxxx.	

•  A semaphore: sem-mdworker.	

•  Anti-debug measure #1.	

•  A dormant thread that checks for debugger

presence and exits if present.	

•  Sysctl anti-debugging (Technote QA1361).	

•  Easy to bypass, just remove call to new thread.	

•  Advance EIP or just NOP that call.	

•  Anti-debugging #2.	

•  If you want to debug the backdoor module

isolated…	

•  You need to patch a check for configuration.	

•  Anti-debugging #3.	

•  Patch to avoid self-uninstall.	

•  Later on, why this happens.	

•  Creates a LaunchAgent for logged in user.	

•  Named com.apple.mdworker.	

•  Maybe create a more credible intermediate

stub that forks and calls the main backdoor?	

•  Too easy to detect…	

•  There are at least three encryption keys.	

•  Two hardcoded for log and configuration.	

•  The session key dynamically negotiated with the

server.	

•  C&C traffic over HTTP.	

	

•  Log and configuration files are encrypted with

AES 128 CBC, null IV.	

•  openssl enc -d -aes-128-cbc -in ok20utla.3-B -K

"76c972b2f7b783c5ad3bd2859096882c" -iv 0 -

out config.decrypted	

•  Those initial NULL bytes are there just to annoy

OpenSSL.	

•  Can be safely removed.	

•  OpenSSL still complains but decrypts correctly.	

•  Just create small utility calling CCCrypt.	

•  How to trace all encrypt/decrypt operations.	

•  Two methods:	

– encryptedWithKey:	

– decryptWithKey:	

•  Or breakpoint in CCCrypt and dump its
parameters.	

•  To start reversing, breakpoint method

[RCSMTaskManager loadInitialConfiguration].	

•  No pretty JSON format L.	

•  Divided into configuration sections:	

– EVENTS.	

– AGENT.	

– LOGRP.	

– BYPAS.	

•  EVENTSCONF contains:	

– Events.	

– Actions.	

•  In this file, three events and two actions.	

# of actions	

3rd event	

# of elements	
 1st event	

2nd event	

•  The agents section only contains agents

configuration.	

•  The status field defines if agent is active or not.	

•  There’s some mapping between the agent ID

and classes.	

•  Agent ID 576 maps to RCSMAgentDevice.	

•  Appears to only retrieve target configuration.	

•  The only agent ID active in this file.	

Agent ID	
 Class	

576	
 RCSMAgentDevice	

47545	
 RCSMAgentScreenshot	

59881	
 RCMSAgentWebcam	

4640	
 RCSMAgentPosition	

49858	
 RCMSAgentMicrophone	

512	
 RCMSAgentOrganizer	

•  Why does this sample uninstalls itself?	

•  The answer is in the configuration file.	

•  There is an expiration date.	

•  April, 30, 2012!	

•  There is a thread that monitors and triggers

events.	

•  Essentially an internal crontab.	

•  Started inside [RCSMTaskManager

loadInitialConfiguration].	

u

v
w

x

•  How to bypass the date check:	

– Set your clock before installation of dropper.	

– Or just NOP that jnz in #4 if you already

installed with a later date.	

•  How does Crisis implement its features?	

•  How does it find the target applications?	

•  A bundle is injected into targets.	

•  To hook interesting functions.	

•  Send data to the main backdoor module.	

	

•  How is the bundle injected into targets?	

•  Assume target is Mac OS X Lion.	

•  Slightly different implementation for older OS X

versions.	

•  Different notification features exist in OS X.	

•  Check Apple Technical Note TN2050.	

•  Let’s focus on NSWorkspace option.	

•  Interface with the workspace.	

•  It allows applications to use Finder features.	

•  Notifications are posted to NSWorkspace notification

center.	

•  Only works for apps that use the window server aka

GUI apps.	

•  NSWorkspaceDidLaunchApplicationNotification	

– Posted when a new app has started.	

– The notification object is the shared NSWorkspace

instance.	

“An NSNotificationCenter object (or simply,

notification center) provides a mechanism for

broadcasting information within a program. An

NSNotificationCenter object is essentially a

notification dispatch table.”	

•  Interesting Instance Method:	

•  addObserver:selector:name:object:	

•  “Adds an entry to the receiver’s dispatch table

with an observer, a notification selector and

optional criteria: notification name and sender.”	

•  AddressBook notification:	

•  Whenever a graphical application is launched.	

•  The Crisis installed observer is notified about

the new process.	

•  And injectBundle:(NSNotification*)notification

is called.	

•  About the selector parameter.	

•  “Selector that specifies the message the
receiver sends notificationObserver to notify it
of the notification posting. The method specified
by notificationSelector must have one and only
one argument (an instance of NSNotification).”	

•  That notification object can be used to retrieve info
about the application.	

•  Using for example the userInfo method of
NSNotification class.	

•  Returns a dictionary with information associated to that
application.	

•  Name, PID, etc.	

•  sendEventToPid: is the method responsible for dealing
with injection.	

•  If target OS is Lion launches a new instance of the
backdoor with parameter –p PID.	

•  Other versions it tries to load directly scripting additions.	

•  New security measures in Lion?	

•  lionSendEventToPid does two things:	

– Forces AppleScript to load in the target.	

–  Injects the bundle using AppleScript events.	

•  Most of this code seems to be based (or ripped

off?) from EasySIMBL or SIMBL.	

•  https://github.com/norio-nomura/EasySIMBL.	

•  http://www.culater.net/software/SIMBL/

SIMBL.php.	

•  Two possible entry points in a bundle.	

•  One can be called from AppleScript.	

•  The other the real bundle entry point.	

•  AppleScript entry point.	

•  The real bundle entry point.	

•  Derived from principal class.	

•  Either at Info.plist as NSPrincipalClass key.	

•  Or, the first loaded class is considered the principal class.	

•  Check “Code Loading Programming Topics” Apple
document.	

•  Available in Microsoft Office package.	

•  At least two methods hooked.	

•  SendMessage:ccText:inHTML.	

•  ParseAndAppendUnicode:inLength:inStyle:fIndent:fParseE
moticons:fParseURLs:inSenderName:fLocalUser.	

•  Using Swizzling technique (Objective-C feature!).	

•  Swizzling is essentially exchanging
implementation pointers.	

•  The original method can still be called.	

•  Very easy to hook Objective-C methods.	

•  Check for example JRSwizzle: https://
github.com/rentzsch/jrswizzle.	

•  Encrypted data over HTTP.	

•  REST Protocol.	

•  Session key negotiated with the server.	

•  Breakpoint [AuthNetworkOperation perform]

to reverse the initial communication.	

•  A fourth encryption key.	

•  Symbol gBackdoorSignature.	

•  Check the recent released SANS paper, it has a

good analysis on this.	

•  32 bits kernel extension: Lft2iRjk.7qa.	

•  64 bits kernel extension: 3ZPYmgGV.TOA.	

•  Extremely small: 10 and 14 kbytes.	

•  Very few features.	

•  Hide files and processes.	

•  Uses device /dev/pfCPU for communication

with userland.	

•  Kernel symbols resolved in userland and

transmitted back to rootkit.	

•  The “famous” ioctl bug.	

•  Its best feature is a method to hide the rootkit
from kernel extensions list.	

•  By attacking the “new” IOKit object where that
info is located.	

•  Check http://reverse.put.as/2012/08/21/tales-
from-crisis-chapter-3-the-italian-rootkit-job/.	

•  All four samples don’t install and use it.	

•  The “Ah56K” vs “Ah57K” mode.	

•  All samples are “Ah56K”, which doesn’t seem to

try to escalate privileges.	

•  No r00t, no rootkit!	

•  Even if lame, Crisis is feature complete.	

•  And certainly effective against many targets.	

•  Few core technology developed in-house.	

•  Mostly glued/ripped code/ideas from others.	

•  This sample was thought to be newer.	

•  Mostly because of:	

– “Connection” to Pope Francis: Frantisek.	

– Binary configuration file instead of JSON.	

– The OpenSSL trick.	

– Code changes in the dropper.	

•  Maybe…	

•  This sample could be a decoy.	

•  Or a customized version.	

•  It has only one agent active.	

•  All the other samples have more than one.	

•  The active agent just collects info about target.	

•  Has a lower serial number 329.	

•  Biglietto Visita sample serial is higher than

Frantisek.	

MD5	
 Date	
 Serial	
 C&C IP	

6f055150861d8d6e145e9aca65f92822 	
 24/07/12	
 N/A	
 176.58.100.37	

1b22e4324f4089a166aae691dff2e636 	
 16/11/12	
 N/A	
 ar-24.com	

a32e073132ae0439daca9c82b8119009 	
 11/11/13	
 RCS_537	
 176.58.121.242	

5a88ed9597749338dc93fe2dbfdbe684 	
 18/01/14	
 RCS_329	
 176.79.146.167	

•  The order samples were found/reported:	

•  What I think is the true order:	

MD5	
 Date	
 Serial	
 C&C IP	

5a88ed9597749338dc93fe2dbfdbe684 	
 18/01/14	
 RCS_329	
 176.79.146.167	

a32e073132ae0439daca9c82b8119009 	
 11/11/13	
 RCS_537	
 176.58.121.242	

1b22e4324f4089a166aae691dff2e636 	
 16/11/12	
 N/A	
 ar-24.com	

6f055150861d8d6e145e9aca65f92822 	
 24/07/12	
 N/A	
 176.58.100.37	

•  This particular Mach-O layout is only compiled

with Xcode 3.1.4 or older.	

•  In a OS X 10.5 system (because of dyld).	

•  Against 10.5 SDK.	

•  Xcode 3.2.6 with 10.5 SDK does not replicate.	

•  I guess they gave up on MPRESS.	

•  And moved from binary configuration to JSON
format.	

•  Playing around with different versions?	

•  Releasing decoy versions?	

•  Customized versions?	

•  Assuming all this theory is true…	

•  There are no new public samples.	

•  Everything is from 2012 or before.	

•  Do you have them?	

•  The current AV model is not working.	

•  Considerable knowledge gap?	

•  Are potential targets of Crisis protected or not

if they use up-to-date AV?	

•  Assuming we have a knowledge gap.	

•  Can the new samples be any better?	

•  I seriously doubt it.	

•  HackingTeam is low skilled.	

•  Windows version isn’t much better.	

	

“@osxreverser think we can stop here. Waiting for

your next talk we’re going to have fun as always

(privately of course, we need no groupies)”	

u

v

•  You for spending time of your life listening to

me, the initial reviewers (Jonathan, Andrey, Taiki,

Patrick), and conference organizers.	

http://reverse.put.as	

http://github.com/gdbinit	

reverser@put.as	

@osxreverser	

#osxre @ irc.freenode.net	

A day full of possibilities!	

Let's go exploring!	

•  https://developer.apple.com/library/mac/qa/qa1070/_index.html	

•  https://developer.apple.com/library/mac/technotes/tn1164/_index.html	

•  https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/

LoadingCode/Concepts/CocoaBundles.html#//apple_ref/doc/uid/20001269-

BAJCIAHA	

