
@rantyben
💩🐹

So, like, I’m in Majuro…

… sailing

DRINKING…

Then Dave is all…

LONG STORY SHORT…

FUZZING
OSX

AT

 SCALE

I PROPOSED…
• 8 weeks

• Write better instrumentation than CrashWrangler

• Run OSX on commodity hardware

• Run “shiny new tools” like AFL

• Centralised C&C

GROUND RULES

• This was new work, didn’t know how it would go

• I knew ~nothing about OSX

• I never release bugs in fuzzing talks

• Userland only

FUZZING IS A PROCESS!
1. Acquire Knowledge

2. Instrumentation

3. Delivery

4. Generation

5. Scale

ACQUIRE KNOWLEDGE

Real Unix Kernel Weird Mach “Micro”kernel

Core Services

Real Unix Apps Apple Apps

libc

OSX
• Processes ➡ Tasks (Threads ➡ Threads)

• IPC ➡ Mach Ports

• System Calls ➡ Traps

• Libraries ➡ Frameworks

OSX

• gdb ➡ lldb

• gcc ➡ clang

• ldd, objdump, many others ➡ otool

OSX

http://uninformed.org/?v=4&a=3&t=sumry

http://web.mit.edu/darwin/src/modules/xnu/osfmk/man/

https://github.com/shoumikhin/Mach-O-Hook

http://uninformed.org/?v=4&a=3&t=sumry

ACQUIRE KNOWLEDGE

👍

INSTRUMENTATION

INSTRUMENTATION
• Mach Exception Ports?

• “Normal” Unix tools?

• CrashWrangler?

• LLDB - C++ / SWIG API (🐍💩)?

• GDB?

CRASHWRANGLER 😢

• exc_handler ~1300LOC ObjC

• CrashLog.rb ~800LOC (reimplements half of it?)

• Moar Ruby scripts to do bucketing

• bash scripts for instrumentation

CRASHWRANGLER 😂

CRASHWRANGLER 😃

• About 30 C tests to repro common crashes

• Includes OSX specific faults

• ObjC, CoreFoundation …

GDB EXPLOITABLE
• Initially developed at CERT

• https://github.com/jfoote/exploitable

• Runs as a GDB plugin

• Another ~20 tests

• 🐍💩

LLDB API

• Actually really good! And has samples!

• http://lldb.llvm.org/python_reference/index.html

• Complete, unsweetened, 🐍 wrapper

• Tools runs AS a debugger, not IN a debugger

EXPLOITABEN*

• Steals design from Exploitable

• Steals OSX heuristics from CrashWrangler

• Steals tests from both

• More or less ground-up rewrite (🐍💩)

EXPLOITABEN*

• Uses indicators, not classifications

• Tweaks to hash bucketing

• Assorted Frills

• timeouts, attach-wait, env, command triggers …

INDICATORS
• Memory patterns linked to UAF etc (0xbadbeef)

• ~50 suspicious OSX stack functions

• Access types: read, write, exec, recursion

• Heuristics on $pc, $sp

• Flags block movs

#define SIZE (1 << 30)
int main() {

 char buf[SIZE];
 char c = buf[0];

}

StopDesc: EXC_BAD_ACCESS (code=1,
address=0x7fff1fbffe30)
AvNearNull: False
AvNearSP: True
BadBeef: False
Access Type: read
Registers: dl=0x0000000000000078
BlockMov: False
Weird PC: False
Weird SP: True
Suspicious Funcs:
Illegal Insn: False
Huge Stack: False

#include <string.h>
int main(int argc, char** argv)
{
 char buf[16];
 memset(buf, 'A', 65);
}

StopDesc: signal SIGABRT
AvNearNull: False
AvNearSP: False
BadBeef: False
Access Type: <not an access violation>
Registers:
BlockMov: False
Weird PC: False
Weird SP: False
Suspicious Funcs: __stack_chk_fail
Illegal Insn: False
Huge Stack: False

FRANCIS

• Simple Go package to parse exploitaben reports

• Seems pretty reliable so far

• Used as the OSX plugin for my afl-triage tool

• Multicore, -every mode, Cache DB …

AFL-TRIAGE DEMO

TERRY
• Very slow/lame fuzzer in Go

• Forks a radamsa server for Generation

• Invokes target under exploitaben

• Finds bugs 😭

• https://github.com/bnagy/terry

https://github.com/bnagy/terry

AFL (FORESHADOWING)

• AFL has its own Instrumentation

• fork()server + signal handler

• polices memory limits and timeouts

SUMMARY
• Good enough instrumentation

• MUCH better crash triage than I’m used to

• OMGSYMBOLS!!! SOURCE CODE!!😻

• No dialog clickies etc

• No CPU monitoring, timeouts only

HOW WE DOIN?

• I’m in Palau

• Not drinking

• ~4 weeks into the project

• Dave is sending me motivational messages

MOTIVATION

DELIVERY

AFL

A FRACTAL OF GOOD DESIGN
http://prelkia.deviantart.com/art/Furious-Rabbit-157796019

AFL

• “American Fuzzy Lop” (it’s a rabbit)

• Revolutionary Fuzzing Tools (in historical order)

• SPIKE

• AFL

SRSLY?

• Compile-time instrumentation (or dynamic)

• Collect Coverage

• Dumb mutation

• Evolve files that create paths

ALL ABOUT EXECUTION!

• Coverage “bitmap”

• Forkserver

• Mutation algorithm curation

• Tokens - discovered / user supplied

COVERAGE BITMAP

 cur = <COMPILE_TIME_RANDOM>;
 shared_mem[cur ^ prev]++;
 prev = cur >> 1;

COVERAGE BITMAP

64k

0x0

ALL ABOUT EXECUTION!

• Effector maps

• Greedy time allocation

• Support tools

• cmin, tmin, showmap, peruvian-were-rabbit

CMIN

• Shrink corpus to approximate minimum set

• Prefers smaller files

TMIN

• Shrink one test to minimum size and clean

• Remove blocks, see if we lose coverage

• Alphabet normalisation

• Kinda slow (obviously)

PERUVIAN WERE-RABBIT

• Take one or more crashing inputs

• Run “normal” AFL, discard non-crashes

• Great for exploring promising null derefs etc

BUT… BUT… SAGE!
• AFL makes “generation” fuzzing practical

• For virtually any target*

• With no modifications*

• With no input limits*

• With no need to write code*

AFL WEAKNESSES

• Windows / Closed source in general

• Scale / Triage

• Complex Formats / Grammars*

• Effectiveness is exponential

 Fuzzers alive : 47
 Total run time : 119 days, 3 hours
 Total execs : 22 million
 Cumulative speed : 102 execs/sec
 Pending paths : 27678 faves, 292486 total
 Pending per fuzzer : 588 faves, 6223 total
 Crashes found : 3 locally unique

 Fuzzers alive : 47
 Total run time : 875 days, 4 hours
 Total execs : 167 million
 Cumulative speed : 104 execs/sec
 Pending paths : 41987 faves, 800020 total
 Pending per fuzzer : 893 faves, 17021 total
 Crashes found : 3647 locally unique

TIME TO EXPERIMENT

TARGET: PREVIEW+PDF

• Day 1: AFL supports qemu DBI for coverage 🎉😍

• Day 3: Except it doesn’t work on OSX 😢

• Day 14: Even if it did it would be too slow 😭

CORPUS DRIVEN FUZZING

• Great Corpora ➡ Much Bug

• How to acquire?

BUILDING CORPORA

• “Prospector”

• Download files from Internet

• Trace for coverage

• Select minimum files with maximum cover

PROSPECTOR

• Many people have had this idea

• I got it from Charlie

• Peach had a minset tool (but it was broken)

• AFAIK mine is the only public, “working” code 😳

PROSPECTOR ISSUES

• Real World files are not a good way to get cov

• Scraping is hard / slow / annoying

• Files are bloated with useless user data

EXISTING CORPORA
• Great if you can get them!

• http://acroeng.adobe.com/wp/?page_id=10

• https://github.com/corkami/pocs/tree/master/pdf

• https://code.google.com/p/imagetestsuite/

• …?

AFL CORPORA

• Generate against fast targets

• OSS parsers - different versions, options

• Minimise with cmin / tmin

• (Complex Grammars need help)

SYNTHESIS

CDF VS PDF

• AFL side - wrote a lexer to tokenise PDF

• https://github.com/bnagy/pdflex

• Extracted ~1500 tokens

• Curated by hand

CDF VS PDF

• Bugged lcamtuf to add a “fixup” feature

• AFL can now invoke a custom .so for each test

• Wrote a shim .so that talks to a unix socket

• https://github.com/bnagy/aflfix

https://github.com/bnagy/aflfix

PDF FIXUPS

• Wrote a Go fixer to patch startxref offsets

• Deeper coverage, moar* bugs

PDF SHRINKIES

• Partial parser, built on top of my lexer

• Blindly truncate PDF stream objects

• Fix up xref section so indirect refs all work

• “Real Enough” so parsers get deep coverage

CDF RESULTS

• AFL corpus, after many revisions

• Acroeng samples run through pdfshrink

• Feed to terry

• Fuzz qlmanage (actual Apple software)

CDF RESULTS

• Terry results > dumb AFL results

• AFL 50% faster than Terry

• The concept works!

OSX DELIVERY TIPS

• xattr -c can clear quarantine metadata

• If that fails, use open -a Preview foo.pdf

• Mount ramdisks like:

diskutil erasevolume HFS+ 'ramdisk' \

`hdiutil attach -nomount ram://1048576`

ram://1048576%60

OSX DELIVERY TIPS

• Try MallocScribble / MallocGuardEdges

• Disable CrashReporter (AFL will remind you)

OSX DELIVERY TIPS

• Magic compatability mode for the C++ linker

export CFLAGS="-mmacosx-version-min=10.4"

• Force content type for qlmanage

-c com.adobe.pdf

OSX DELIVERY TIPS

• run DevToolsSecurity -enable

SCALE

I AM TOTALLY CALM

MOTIVATION INTENSIFIES

HOW WE DOIN?
• I’m in Adelaide now.

• 6 weeks in. Total panic.

• Biggest time sinks:

• Writing solid instrumentation

• Doing multi-day benchmarks

• Tooling to handle PDF

VIRTUALIZING OSX

• No leetness required!

• http://www.contrib.andrew.cmu.edu/~somlo/OSXKVM/

• http://blog.ostanin.org/2014/02/11/playing-with-mac-os-x-on-kvm/

HOW IT WAS DONE
(BY SMARTER PEOPLE)

• Upstream KVM patches

• ACPI issues, unsupported instructions

• Upstream QEMU patches

• Patch SeaBIOS

• Add SMC chip emulation

HOW IT WAS DONE
(BY SMARTER PEOPLE)

• Chameleon bootloader is the final missing piece!

• This is real OSX from real install media

• (the bootloader is probably still backdoored)

OSX VIRT TIPS

• Use OSX VNC Client

• (Finder ⌘K ➡ vnc://ip.addr.of.server :5900)

• Use OSX VNC Server

• System Preferences ➡ Screen Sharing

vnc://ip.addr.of.server:5900

OSX VIRT TIPS

• Use Chimera

• DO NOT INSTALL on your Macbook! 😳

• Assorted Useful Features (autostart, better res…)

• org.chameleon.Boot.plist ⬅ CASE SENSITIVE

OSX VIRT TIPS
• Download a real Installer from App Store

• Recovery Partition image didn’t work for me

• Convert to an ISO:

• ~somlo/OSXKVM/MakeInstallDVD.sh

• Easy VNC port forwarding using -net user

hostfwd=tcp:172.16.216.135:5901-:5900

All virtualisation research was carried out on genuine Apple®
 hardware using properly licensed software.

This research was undertaken for educational purposes only.

This presentation does not constitute legal advice.

The adjective “pavonine” meaning “of or like a peacock” is from the
Latin pavoninus.

SCALING OSX?

• Planned on building a massive OSX Cloud

• Decided it was a bad idea

• Scale by CDF instead

WHY CDF?

• pdftoppm is “slow” for AFL - 160 tests/sec

• ghostscript even slower ~6

• Preview is about 0.6

• CDF is a force multiplier

WHY CDF?

• http://lcamtuf.blogspot.com/2015/03/another-
round-of-image-bugs-png-and.html

• 10 image parsing bugs in IE

• WITHOUT EVER FUZZING IE

HOW WE DOIN?
• I’m back in Majuro now

• Liver hurts from SySCAN

• Biggest failure was lack of C&C tooling

• Biggest success was solidifying CDF approach

• Approach seems viable

FUTURE
WORK

http://glitched9700.deviantart.com/art/Broken-Robot-II-82773491

FUTURE WORK

• AFL Clouds

• Designed lots of stuff, figured it was niche

• NSQ, Docker, Kubernetes blah blah blah?

• Ansible, Puppet blah blah?

FUTURE WORK

• Finish full triage framework (queues, DB, etc)

• Unify indicators with GDB plugin

• Write ObjC apps that use Apple frameworks?

• PrivateFrameworks/CorePDF

FUTURE WORK
• OSX Instrumentation (OSS)

• New LLVM passes being discussed RIGHT NOW

• OSX Instrumentation (Closed)

• New results with dyninst

• Intel PT on Broadwell CPUs?

SOFTWARE

HTTPS://GITHUB.COM/BNAGY/…

• aflfix

• crashwalk (includes afl-triage)

• francis (includes exploitaben.py)

• gootool (toy Mach-O disassembler based on Capstone engine)

• pdflex (includes pdftok, pdfshrink)

• terry

https://github.com/bnagy/

ben@coseinc.com

@rantyben

💩🐹

QUESTIONS?

http://web.mit.edu/darwin/src/modules/xnu/osfmk/man/ Mach IPC Interface
https://github.com/shoumikhin/Mach-O-Hook Mach-O Hooking

http://en.wikipedia.org/wiki/Mach_%28kernel%29
http://en.wikipedia.org/wiki/XNU

http://en.wikipedia.org/wiki/Darwin_(operating_system)
http://brendanzagaeski.appspot.com/0004.html minimal pdf

http://www.ghostscript.com/doc/9.15/Use.htm how to use ghostscript
http://events.linuxfoundation.org/sites/events/files/slides/lcna13_kleen.pdf Intel PT

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf PDF spec
https://github.com/jfoote/exploitable gdb exploitable

http://superuser.com/questions/178587/how-do-i-detach-a-process-from-terminal-entirely
http://baptiste-wicht.com/posts/2011/07/profile-applications-linux-perf-tools.html

http://lldb.llvm.org/python_reference/index.html
http://ho.ax/tag/lldb/

http://www.opensource.apple.com/source/xnu/xnu-2050.22.13/osfmk/mach/kern_return.h # exception subtypes
http://www.opensource.apple.com/source/xnu/xnu-1456.1.26/osfmk/mach/exception_types.h?txt # exception types

https://code.google.com/p/honggfuzz/source/browse/trunk/mac/arch_mac.c
http://llvm.org/svn/llvm-project/lldb/trunk/examples/python/disasm.py

http://lldb.llvm.org/python_reference/index.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/ManagingMemory/Articles/MallocDebug.html

MallocScribble
http://blog.ostanin.org/2014/02/11/playing-with-mac-os-x-on-kvm/

http://www.contrib.andrew.cmu.edu/~somlo/OSXKVM/

SOME LINKS

