
ProprietaryProprietary

Mac OS X : System Integrity Protection
Nicolas RUFF - nruff(at)google(dot)com

ProprietaryProprietary

Introduction

Proprietary

What is SIP?

SIP: "System Integrity Protection", a.k.a. "rootless".

SIP restricts capabilities, even for the root user.
● No write access to:

○ /System, /bin, /sbin, /usr (except /usr/local)
● No access to Apple-signed processes.

○ Includes memory dumping, ptrace() and DTrace access.
● No unsigned kernel extension (kext) loading.
● No write access to boot- and SIP-related NVRAM settings.
● ... plus a few other goodies

○ Protects symbolic links inside /etc, /tmp, /var
○ Protects system apps under /Applications
○ Protects against removal of selected launchd services.
○ Etc.

Proprietary

How is SIP implemented?

● Configuration file under:
○ /System/Library/Sandbox/rootless.conf

● Backward compatibility list under:
○ /System/Library/Sandbox/Compatibility.bundle/Contents/Resources/paths

● Individual setting bits stored in NVRAM.

● Can be selectively disabled in Recovery Mode using csrutil command.

● Live controlled by syscall 0x1e3.

● ls -O displays "protected" files.

Proprietary

What is SIP goal?

● SIP aims at protecting the core OS against permanent loss of integrity.

● Threat model is root to kernel and/or protected location escalation.
○ Local users already have sudo access on OS X.

● SIP is application-based access control rather than user-based.

● Applications are identified by:
○ Signing authority (Apple) + signature + entitlement(s)

Proprietary

"Entitlements"

Strings, essentially.

(in XML form)

Source: http://newosxbook.com/ent.jl

http://newosxbook.com/ent.jl

ProprietaryProprietary

SIP Shortcomings

Proprietary

SIP shortcomings

Existing extensions:

● /System/Library/Extensions/AppleKextExcludeList.
kext/Contents/Info.plist contains a whitelist of 11,000+ unsigned-yet-
allowed extensions.
○ Identified by Bundle SHA-1.
○ The revocation list is silently updated by default.

● Signed kext with known bugs ... or features.
○ E.g. https://www.spyresoft.com/dockmod or AppleHWAccess.kext
○ Both blacklisted.

● kext signing certificate costs $99.

Fixed in OS X 10.11: whitelist not honored anymore.

https://www.spyresoft.com/dockmod

Proprietary

SIP shortcomings

kext signature check is implemented in userland (kextd and kextload).

Fixed in OS X 10.11:

● Require com.apple.rootless.kext-management entitlement.
● Prevent the debugging of system processes.

Proprietary

SIP shortcomings

Misbehaving "entitled" application.

● E.g. fsck_cs -l <logfile>
● https://twitter.com/i0n1c/status/714261458851221504

This particular one has been fixed in OS X 10.11.5.

"Entitled" applications should be considered as dangerous as suid binaries.

https://twitter.com/i0n1c/status/714261458851221504
https://twitter.com/i0n1c/status/714261458851221504

Proprietary

SIP shortcomings

Kernel debugger.

● Requires physical access.

gdb-i386-apple-darwin

● Can run (but not attach to) protected processes [Now fixed].

Proprietary

SIP shortcomings

Kernel bugs.

● Writing a single NULL byte over the policy global var.
● Calling _csr_set_allow_all(1).

Note: kas_info() leaks ASLR offset to the root user (before OS X 10.11.3).

ProprietaryProprietary

Conclusion

Proprietary

Conclusion

SIP tries to replace user-based permissions by application-centric permissions.

Adding security to a decade-old design is challenging to get right ; expect more bugs.

Kernel attack surface is still huge ; a single bug defeats the whole model.

Proprietary

References

Apple Documentation
https://developer.apple.
com/library/mac/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Intro
duction.html

External analysis
http://www.slideshare.net/i0n1c/syscan360-stefan-esser-os-x-el-capitan-sinking-the-ship
http://go.sentinelone.com/rs/327-MNM-087/images/SyScan360%20SG%202016%20-%20Memory%
20Corruption%20is%20for%20wussies.pdf

Also relevant to OS X Security
http://reverse.put.as/
https://objective-see.com/blog.html
https://bugs.chromium.org/p/project-zero/issues/list?can=1&q=OS+X

https://developer.apple.com/library/mac/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/System_Integrity_Protection_Guide/Introduction/Introduction.html
http://www.slideshare.net/i0n1c/syscan360-stefan-esser-os-x-el-capitan-sinking-the-ship
http://www.slideshare.net/i0n1c/syscan360-stefan-esser-os-x-el-capitan-sinking-the-ship
http://go.sentinelone.com/rs/327-MNM-087/images/SyScan360%20SG%202016%20-%20Memory%20Corruption%20is%20for%20wussies.pdf
http://go.sentinelone.com/rs/327-MNM-087/images/SyScan360%20SG%202016%20-%20Memory%20Corruption%20is%20for%20wussies.pdf
http://go.sentinelone.com/rs/327-MNM-087/images/SyScan360%20SG%202016%20-%20Memory%20Corruption%20is%20for%20wussies.pdf
http://reverse.put.as/
http://reverse.put.as/
https://objective-see.com/blog.html
https://objective-see.com/blog.html
https://bugs.chromium.org/p/project-zero/issues/list?can=1&q=OS+X
https://bugs.chromium.org/p/project-zero/issues/list?can=1&q=OS+X

