
fG! @ SyScan360 SG 2016

Memory
corruption is for

wussies!

Who am I?

§  Still a whitehat L

§  HackingTeam #1 troll J

What’s up?

§  Killing some zero days!

§  System Integrity Protection.

§  Quick introduction to Mach messaging.

§  Quick tour about execve and friends.

§  Supersonic OS X exploitation.

System Integrity Protection

§  Introduced in El Capitan.

§  Reduces the power of root user.

§  A system wide sandbox.

§  Based on MACF/TrustedBSD.

System Integrity Protection

§  Uses code signing and entitlements to

manage authorizations.

§  Certain (too many!) binaries authorized.

§  Jonathan Levin entitlements database

§  http://newosxbook.com/ent.jl

System Integrity Protection

§  A SIP updates entitlement.

System Integrity Protection

§  Can’t debug protected processes.

System Integrity Protection

§  Can’t attach to protected processes.

System Integrity Protection

§  Can’t modify/delete/update protected files.

System Integrity Protection

System Integrity Protection

§  GDB can bypass protected processes.

System Integrity Protection

§  Although it can’t attach.

System Integrity Protection

§  0day (accidently?) disclosed at

SHMOOCON 2016 by Tyler Bohan and

Brandon Edwards.

§  I liked this one a lot L.

System Integrity Protection

System Integrity Protection

System Integrity Protection

System Integrity Protection

System Integrity Protection

System Integrity Protection

System Integrity Protection

§  With gdb you can own the whole system.

§  Assuming you have a LPE (but SIP is about

root operations anyway).

§  Will gdb fall under Wassenaar control?

</troll>

System Integrity Protection

§  A bug in an entitled binary and it’s over.

§  Library injection bugs.

§  Library/framework linking bugs.

§  Kernel bugs disabling the hooks.

§  Oh...Dumb developers...

Dumb developers...

§  Signed kernel extension.

§  That you can abuse to load arbitrary library.

§  Ooops J.

§  Obstacles: $99 and a bullshit excuse.

§  Apple already revoked this cert.

Introduction to Mach

§  Mach is the core of OS X XNU kernel.

§  Microkernel with BSD layer on top of it.

§  Everything implemented as objects.

§  Tasks, threads, virtual memory.

§  Object communication via messages.

OS X Architecture

OS X Architecture

Introduction to Mach

§  Two types of Mach messages:

§  Simple.

§  Complex.

Introduction to Mach

§  Simple messages

§  Fixed header.

§  Data blob.

Introduction to Mach

§  Complex messages

§  Fixed header.

§  Descriptor count.

§  Serialized descriptors.

§  Out-of-line data and port rights.

Introduction to Mach

§  Three interesting Mach ports

§  Task.

§  Thread.

§ Host.

Introduction to Mach

§  The kernel is itself represented by a task and

has a task port.

§  If we have a port right we can control the

kernel.

§  Example: processor_set_tasks() vulnerability

from SyScan 2015.

Introduction to Mach

§  Retrieving the task port from another task

requires special privileges.

§  Under normal circumstances J.

Introduction to Mach

§  A task doesn’t need special privileges to

retrieve its own port.

§  mach_port_t mach_task_self(void).

Introduction to Mach

§  Ports and rights can be passed between

tasks.

§  This is very powerful.

Introduction to Mach

§  This allows another task to have full control.

§  Without using the normal APIs for this

§  task_for_pid().

§  Doesn’t happen under normal situations.

§  “Hey bad guy, please take my task port!”.

Introduction to Mach

§  Can be used for malware purposes.

§  Fool the reverse engineer.

§  By having code executed in the second

process.

§  Via an exception for example.

Mach messaging

§  Define the messages format.

Mach messaging

§  Register the server.

Mach messaging

§  Loop and wait for messages.

§  Set options that we are expecting to receive

a message.

§  mach_msg() blocks.

Mach messaging

§  First lookup the server via launchd.

§  Allocate a port to receive messages.

Mach messaging

§  Prepare the message to send.

§  Configure it as complex.

Mach messaging

§  Add client port to the message.

§  More than one part can be sent on a msg.

Mach messaging

§  And finally send the message.

Mach messaging

§  The server receives the message.

§  Extracts the port right.

§  Can send a reply to signal it is ready.

Mach messaging

§  At this point we can send messages between

a server and a client.

§  And transmit the task port of the client to

the server.

Mach messaging

§  My original goal was to take control and

exploit SUID binaries.

§  Same technique will also work for any

entitled binary.

Execve and friends

Execve and friends

§  load_machfile() will read and map the

contents of the binary to execute.

§  Most of the Mach-O dirty work done inside

parse_machfile().

Execve and friends

§  Remember: control the task port, control the

process.

§  An “obvious” bug patched in Panther.

Execve and friends

§  Setuid bug patched in 10.3 release.

Execve and friends

§  More recent code to reset the ports.

Execve and friends

§  TL;DR

§ Kernel will load, parse, and map the executable.

§  It will try to guarantee integrity of new process

versus its parent.

Supersonic OS X exploitation

§  Ports are only reset after the new binary is

mapped.

§  Assume that task port was passed to another

process.

§  If we win the race we can write anything

into the new mapping.

Supersonic OS X exploitation

§  The trick is how to get the task port of

another task.

§  task_for_pid() requires privileges and/or

annoying prompt.

Supersonic OS X exploitation

§  We can have a “client” task to pass the port

to a “server” task.

§  Then execve() the SUID or entitled binary.

§  The server will try to win the race.

Supersonic OS X exploitation

§  We can write data into the new process.

§  Shellcode into the entrypoint or some

constructor.

§  When we win the race it’s game over.

Supersonic OS X exploitation

§  But we have a problem called ASLR.

§  Against non ASLR binaries it’s deadly.

§  And 32 bits binaries.

§  With ASLR we don’t know where the binary

is.

Supersonic OS X exploitation

§  @trimosx gave me some data about ASLR

slide behavior in OS X.

§  So just brute force with a selected value.

§  Zero works as good as any other value.

Supersonic OS X exploitation

§  This means the exploit will be super noisy.

§  Had test cases of up to 10k to 20k

executions.

§  Great vulnerability, poor execution.

Supersonic OS X exploitation

§  We need a known address.

§  The linker, dyld, is also under ASLR.

§  Different offset than main binary.

§  What’s left?

Supersonic OS X exploitation

§  The library cache, dyld_cache.

§  Randomized on each reboot.

§  Otherwise always at the same address for

any process.

Supersonic OS X exploitation

§  Since it’s CoW we can safely modify it.

§  We just need to modify a function used by

the target binary.

Supersonic OS X exploitation

Supersonic OS X exploitation

§  ps is a SUID binary and calls compat_mode()

very early in main().

§  The server can find the dyld cache and this

function address.

§  We just need to do this once.

Supersonic OS X exploitation

§  This will improve significantly our chances.

§  And drastically reduce the exploit noise.

§  Usually one to five attempts maximum.

Supersonic OS X exploitation

§  100% reliable.

§  100% safe.

§  Every single OS X version vulnerable.

§  Abuse any SUID binary.

§  Abuse any entitled binary.

Supersonic OS X exploitation

§  Found it early 2015.

§  Bug collision with Ian Beer late 2015.

§  Google post and PoC exploit at https://

googleprojectzero.blogspot.sg/2016/03/race-

you-to-kernel.html.

Loading unsigned kexts

Loading unsigned kexts

Loading unsigned kexts

Loading unsigned kexts

§  Using these vulnerabilities we can easily load

unsigned kernel extensions.

§  Attack kextload instead of kextd daemon.

Loading unsigned kexts

§  Remove communication with kextd

§ Modify the reverse dns name.

§  Or patch the place where it happens.

§  kextload will now talk directly to the kernel.

§  And still check code signatures in user land.

Loading unsigned kexts

§  Cost/benefit.

§  I still strongly believe you can’t load ring zero

code with ring three checks.

§  Doesn’t make any sense otherwise.

Loading unsigned kexts

§  Can’t we really build a reasonably secure

x509 code signing feature into our kernels?

§  If not what are we really doing in this

industry?

APT?

§  Bypass SIP this or some other way.

§  Install APT on protected folder.

§  Restore SIP.

§  Enjoy free SIP “protection racket”.

APT?

§  Requires user intervention to disable SIP

§  Recovery mode, cmd line... GTFO!

§  Special Apple entitled shell/app?

§  FBI: Can I haz it? Pleaze?

§  AVs to bypass/disable SIP?

§  “AV tends to be a different kind of rootkit”.

Conclusions

§  Designing security systems is hard.

§  Move to defense and give it a try.

§  Secrecy doesn’t buy you much.

§  Release white paper with design goals, so we

can understand you!

Conclusions

§  I don’t need to tell you this right?

§  Logic and race conditions are great

vulnerabilities.

§  They can live for many many years.

Conclusions

§  Patches are out for El Capitan and iOS 9.3.

§  No patches for other versions.

§  No idea why, needs some IDA magic ;-)

Greetings

§  SyScan360 team, Thomas, Grace, Jacob Torrey,

@trimosx, Apple Product Security Team and a

few other guys there, and all the meme

“characters”.

https://reverse.put.as

https://github.com/gdbinit

reverser@put.as

@osxreverser

#osxre @ irc.freenode.net
PGP key

https://reverse.put.as/wp-content/uploads/2008/06/publickey.txt

PGP Fingerprint
7B05 44D1 A1D5 3078 7F4C E745 9BB7 2A44 ED41 BF05

References

§  Images from images.google.com. Credit due to all their authors.

§  SyScan photo archives.

§  “Mac OS X and iOS Internals”, Jonathan Levin.

§  “Mac OS X Internals”, Amit Singh.

§  http://web.mit.edu/darwin/src/modules/xnu/osfmk/man/.

