Escaping The Sandbox By Not
Breaking It

Marco Grassi (@marcograss)

Qidan He (@flanker_hqd)
K) KEEN
security

lab

About Us

* Marco Grassi

* Senior Security Researcher @ Tencent KEEN Lab
e Main Focus: Vulnerability Research, Android, OS X/iOS, Sandboxes

 Qidan He

e Senior Security Researcher @ Tencent KEEN Lab
* Main Focus: Bug huntingand exploitingon *nix platform

KD ceen

security

lab

Tencent KEEN Security Lab

* Previously known as KeenTeam
 All the researchers moved to Tencent for business requirements
* New name: Tencent KEEN Security Lab

* In March of this year our union team with Tencent PC Manager

(Tencent Security Team Sniper) won the title of “Master Of Pwn” at
Pwn20wn 2016
K.> KEEN

security

lab

Agenda

* Introduction to Sandboxes

 Safari Sandbox on OS X (WebContent Sandbox)

* Google Chrome Sandbox on Android (Isolated Process)

* Comparison of the Sandbox implementation of the 2 platforms
* Auditing Sandboxes and Case Studies

* Full Sandbox Escape demo from the browser renderer process
e Summary and Conclusions

KD ceen

security

lab

Introduction to Sandboxes

K e

lab

Sandbox

* In modern operating systems, a “Sandbox” is a mechanism to run
code in a constrained environment.

* A Sandbox specifies which resources this code has access to.

* It became a crucial component for security in the last years after it
became clear that it’s currently impossible to get rid of a big part of
the bugs, especially in very complex software like browser.

* Shift of approach/complementary approach:

e Let’s confine software, so even if it’s compromised it has restricted access to
the system.

KD ceen

security

lab

A couple of Sandboxes implementations methods

K e

lab

First type (Discretionary access control):
Android base Sandbox mechanism

* Android from its initial version had a sandbox mechanism
implemented mainly on top of standard Linux process isolation with
unique UIDs, and GIDs specifying a capability (like access to external
storage).

* Almost every application (usually, except shared UID) have a unique
UID.

* Very well studied and understood by countless resources and talks,
we will not talk about it a lot in this talk.

e Simpler to understand and implement, but not very flexible.

K o

securi
lab

Second type (Mandatory Access Control):
SELINnuUX

* Mechanism to specify access to resources based with decision policy.

e SELinux is an example of this, you can specify which policy the
process is subject to.

* When a resource is accessed, the policy is evaluated and a decision is
made.

e SELinux was introduced in Android 4.3 officially and it became
enforcing short after.

* Quite flexible but the policies can become very complex and difficult
to understand.
K.> I(EE_lt{Y

Securi
lab

WebContent Sandbox on OS X

K e

lab

Structure of the Safari Sandbox

e Safari code is split to runin
multiple processes, based on
the purpose of the code,
leveraging WebKit2.

* The 2 main processes that
interests us more are the Web
Process and the Ul Process.

* The Ul Process is the parent
and in charge of managing the
other processes

WebKit2

Ul Process

Application

APl Boundary
WebKit (Ul Process)

WebKit (Web Process)
WebCore

JS Engine

Web Process

Image courtesy of:

https://trac.webkit.org/attachment/ K) e

wiki/WebKit2/webkit2-stack.png security

WebContent process

* The WebContent process is the process responsible for handling
javascript, webpages, and all the interesting stuff.

e Usually you get your initial code execution inside here, thanks to a
browser bug.

* This process is heavily sandboxed, unlike his UIProcess parent.

 WebProcess can talk to UIProcess thanks to a “broker” interface, so
he can request resources (such as when you have to open a file from
your computer) under the supervision of the higher privileged
UIProcess.

KD ceen

security

lab

WebContent sandbox

e Regular OS X sandbox implemented on top of Sandbox.kext

* The sandbox profile definition is currently located at:
“/System/Library/Frameworks/WebKit.framework/Versions/A/Resour
ces/com.apple.WebProcess.sb”

» Sandbox.kext specifies callbacks for a lot of TrustedBSD MAC
framework, which places hooks in the kernel where decisions has to
be made, to authorize access to a resource or not (for example, on file
access, the sandbox profile is used to decide if access should be
granted or not)

KD ceen

security
lab

Example profile snippets

(version 1)
(deny default (with partial—symbolication))_

(allow system-audit file-read-metadata)

D e S portng “system b sandbex defton fle

(allow mach-lookup
(global-name
(global-name
(global-name
(global-name

"com.apple.DiskArbitration.diskarbitrationd")
"com.apple.FileCoordination")
"com.apple.FontObjectsServer")
"com.apple.FontServer")

System Integrity Protection (SIP)

* In addition to those Sandboxes, on recent OS X versions you are also
subject to System Integrity Protection.

* “SIP” is a security policy that applies to every process running on the
system, even the root ones.

e Usermode root have not unrestricted access anymore

-» ~ sudo touch /System/SIPtest

touch: /System/SIPtest: Operation not permitted
»

* Kernel bugs become more appealing because they allow an attacker
to escape the sandbox and also disable SIP.
K.)KEEN

security

lab

Google Chrome Sandbox on Android
(Isolated Process)

K2 o

lab

Chromium Android Sandbox (1)

* On Android, Chromium leverages the isolatedProcess feature to
implement its sandbox.

{% for i in range(num sandboxed services) %}

<service android:name="org.chromium.content.app.SandboxedProcessService{{ i }}"
android:process=":sandboxed process{{ i }}"
android:permission="{{ manifest package }}.permission.CHILD SERVICE"
android:isolatedProcess="true"
android:exported="{{sandboxed service exported|default(false)}}"

{% if (sandboxed service exported|default(false)) == 'true' %}
tools:ignore="ExportedService"
{% endif %}
{{sandboxed service extra flags|default('')}} />
{% endfor %}

KD ceen

security

lab

Chromium Android Sandbox (2)

* |solated process was introduced around Android 4.3

» "If set to true, this service will run under a special process that is
isolated from the rest of the system and has no permissions of its

7

own.
* Chromium render process

$ adb shell ps -Z | grep chrome [22:53:22]
u:r:untrusted_app:s0:c512,c768 u@_a39 7215 520 com.android.chrome
u:r:isolated_app:s0:c512,c768 u@_i0 7243 520 com.android.chrome:sandboxe
d_process@

u:r:untrusted_app:s0:c512,c768 u@_a39 7272 520 com.android.chrome:privileg
ed_process@

K) KEEN

security

lab

Chromium Android Sandbox (3)

* So even if code execution in the render process is achieved, we don’t
have a lot of capabilities, and actually we have lot of restrictions.

* In order to do something more meaningful, a sandbox escape must
e chained after initial code execution.

e Usually it can be a kernel exploit, or a chromium broker exploit, or
targeting another available attack surface.

* But what about SELinux? We have to check its SELinux policy,
“isolated_app.te”, under external/sepolicy/ in AOSP

KD ceen

security

lab

Chromium Android Sandbox (4)

type isolated app, domain;
app_domain(isolated app)

e Very restrictive Sandbox

Access already open app data files received over Binder or local socket IPC.

allow isolated app app data file:file { read write getattr lock }; F)r()fﬁIEE
allow isolated app activity service:service manager find;
allow isolated app display service:service manager find;) NO data file access at a”
only allow unprivileged socket ioctl commands
o

allow isolated app self:{ rawip socket tcp socket udp socket } unpriv_sock ioctls;

Only 2 IPC services

o b 4 R . .
Neverallow * Minimum interaction with

i
sockets

Isolated apps should not directly open app data files themselves.

neverallow isolated app app data file:file open; . .
* No graphic drivers access ®

b/17487348

Isolated apps can only access two services,

activity service and display service ¢ SerViCEManager aISO

neverallow isolated app {

service menager type restricts implicit service
-activity service

-display service EXpO rt

}:service manager find; K.}
KEEN

Isolated apps shouldn't be able to access the driver directly. E%?FKY

neverallow isolated app gpu device:chr file { rw file perms execute };

Per interface constraint

* Isolated app inherits from app_domain (app.te)
* Only interfaces without enforceNotlsolatedCaller can be invoked

void [enforceNotIsolatedCaller(String caller) {
(UserHandle. isIsolated(Binder.getCallingUid())) {
SecurityException("Isolated process not allowed to call " + caller);

}

void enforceShellRestriction(String restriction, int userHandle) {
(Binder.getCallinguid() Process.SHELL_UID) {
(userHandle < 0
mUserManager. hasUserRestriction(restriction, userHandle)) {
SecurityException("Shell does not have permission to access user "
userHandle);

}

@Override
int getFrontActivityScreenCompatMode() {
enforceNotIsolatedCalle r[@Sid dge]iiv Yo AVAR Vi ol g == (T Te R d L[0T (SR H
(this) {
mCompatModePackages . getFrontActivityScreenCompatModeLocked();

} EEN
} acurity

Auditing and Case Studies

K e

lab

How to audit a sandbox profile?

e Just look at the definitions and see what attack surfaces are allowed!
* We will try with the WebContent sandbox on OS X.

(version 1)
(deny default (with partial-symbolication))

systemsb s imported, 50 we need o check that as well - e 000

(import "system.sb")

;3 Graphics

(system-graphics) syemgaphiss deine n syt e chck

How to audit a sandbox profile? (2)

;53 (system—graphics) — Allow access to graphics hardware.
(define (system—graphics)

;; Preferences
(allow user—preference-read

(preference-domain "com.apple.opengl")
(preference-domain "com.nvidia.OpenGL"))

;3 OpenGL memory debugging
(allow mach-lookup

(global-name "com.apple.gpumemd.source"))

;3 CVMS
(allow mach-lookup

(global-name "com.apple.cvmsServ"))

;; OpenCL
(allow iokit-open

(iokit—-connection "IOAccelerator")

(iokit-user-client-class
(iokit-user—client-class
(iokit-user-client-class

;3 CoreVideo CVCGDisplayLink

(allow iokit-open
(iokit-user-client-class

;; H.264 Acceleration

(allow iokit-open
(iokit-user—client-class

;i QuartzCore

(allow iokit-open
(iokit-user-client-class
(iokit-user-client-class
(iokit-user-client-class

;3 OpenGL

(allow iokit-—open
(iokit-user-client-class

;; DisplayServices

(allow iokit-set-properties

Graphics seems definetely a nice attack
surface,

Now we can start finding vulnerabilities
in those 10Kit clients by fuzzing or
manual auditing, since we can interact
with them from the WebContent
process, where we have initial code
execution, to escape the sandbox,
getting kernel code execution.

K} KEEN

security

lab

"IOAccelerationUserClient")
"T0SurfaceRootUserClient")
"I0SurfaceSendRight"))

"I0FramebufferSharedUserClient"))

"AppleSNBFBUserClient"))

"AGPMClient")
"AppleGraphicsControlClient")
"AppleGraphicsPolicyClient"))

"AppleMGPUPowerControlClient!'

(require-all (iokit-connection "IODisplay")

How to audit a sandbox profile? (3)

 “allow-iokit-open” (iokit-connection
"IOAccelerator") is definetely interesting

* jokit-connection allows the sandboxed process
to open all the userclient under the target
|OService(much less restrictive than iokit-user-
client-class)

* In the table on the left we see the Userclients
that we can obtain on the IntelAccelerator
(default driver in most of the recent Apple
machines)

IGAccelSurface
IGAccelGLContext
IGAccel2DContext

IOAccelDisplayPipeUserClient2

IGAccelSharedUserClient

IGAccelDevice

I0OAccelMemorylnfoUserClient

IGAccelCLContext

IGAccelCommandQueue

IGAccelVideoContext

K) KEEN

security

lab

|OKit vulnerability: CVE-2016-1744

e Race conditionin an externalMethod in ApplelntelBDWGraphics.
» Affects every recent Mac with Intel Broadwell CPU/Graphics.

* Discovered by code auditing when looking for sandbox escapes into 10Kit
UserClients reachable from the Safari WebProcess sandbox.

* Unfortunately it got partially patched 1-2 weeks before Pwn20wn! ®®® .
A replacement was needed. ®

* Unpatchedin OSX 10.11.3, only partial fix in 10.11.4 beta6.
* Reliably exploitable.

* Finally it came out that we had a bug collision with lan Beer of Google
Project Zero, which reported the bug to Apple.
K.> KEEN

security

lab

|OKit Vulnerability — CVE-2016-1744(cont.)

* Wrong/partial fix mistake responsibly disclosed to Apple.
* Fixed in 10.11.5 beta2
* CVE-2016-1860

K ceen

Securi
lab

|OKit vulnerability: CVE-2016-1744

° |GACC€|CLCOnteXt and 7| IGAccelCLContext::IGAccelCLContext(void)
. 7| IGAccelCLContext::IGAccelCLContext(void)
IGAccelGLContext are 2 USEfCllentS ,ﬂ IGAccelCLContext::getTargetAndMethodForindex(l... __
that can be reached from the 7| IGAccelCLContext::populateContextConfig(IOAccel... _te
WebPrOCESS Safari Sandbox. | 7| IGAccelCLContext::attach(IOService *) _te
7| IGAccelCLContext::map_user_memory(IntelCLMapU... _ te
e The |Ocking mechanisms in these 7 | IGAccelCLContext::unmap_user_memory(IntelCLUn... _te
UserCIIentS Is not too gOOd’ some ,ﬂ IGAcceICLContext::get:wa_table(_WA_TABLE * WA_... :te
methOdS eXPECtS Only d WE” | 7| IGAccelCLContext::get_timestamp(uint *ulong long *) _te

behaved Sing|e th read ed access. 7| IGAccelCLContext::gst_configure(GstConfiguration... _te
| 7] IGAccelCLContext::contextStart(void) _te

* First we targeted
unmap_user_memory

KD ceen

security

lab

|OKit vulnerability: some unsafe code

__int64 __ fastcall IGAccelCLContext::unmap_user_memory(__int64 al, const void *a2, __int64 a3)
{

unsigned int v3; // erl4@l

_QWORD *v4; // rax@s

_QWORD *xv5; // ril5@3

IOGraphicsAccelerator2 xv6; // rbx@3

IOGraphicsAccelerator2 xv7; // rbx@3

v3 = -536870206;
if (a3 ==
&& IGHashTable<[omitted]>::contains(
al + 4072,
az2))

v4 = (_QWORD *)IGHashTable<[omitted]>::get(
al + 4072,
a2);
v5 = (_QWORD sx)xv4;
IGHashTable<[omitted]>::remove(
(__int64)v4,

(_QWORD =*) (al + 4072),

a2);
v6 = *(I0OGraphicsAccelerator2 *x)(a 1320);
IOLockLock(x((_QWORD *)v6 + 17));

I0GraphicsAccelerator2::lock_busy(v6); K’) KEEN

v3 = 0; security
lab

Race condition — How to trigger it?

Open your target UserClient (IGAccelCLContext)

Call map_user_memory to insert one element into the IGHashTable
Call with 2 racing threads unmap_user_memory.

Repeat 2 and 3 until you are able to exploit the race window.
Double free on first hand

PROFIT!

o Uk Wb

KD ceen

security

lab

The ideal situation is both threads passes hash table::contains, and when one is
retrieving IOAccelMemoryMap™ after get returns valid pointer, the other frees it and
we control the pointer

LN

IGElement IGElement IGElement
mach_vm_addr_t mach_vm_addr_t mach_vm_addr_t
IOAccelMemoryMap* IOAccelMemoryMap* IOAccelMemoryMap*
next next next

prev prev prev

NNV

However in reality more frequently they do passes contains
but thread 1 will remove it before thread 2 do get

and thread 2 hit a null pointer dereference

After 2 is removed

After 3 is removed

.
)
[}

IGElement IGElement : IGElement IGElement
mach_vm_addr_t | mach_vm_addr_t | mach_vm_addr_t mach_vm_addr_t
|OAccelMemoryMap* I I_O_A_cgglM_em_o_r;Lqu*_i' |OAccelMemoryMap* |OAccelMemoryMap*
next | next | next next

prev 'prev. | prev prev

tail element

/* tail element
\
PR heap address leaked!
s AN
/ \WN
/ W
/ \\“
/
IGElement IGElement IGElement | IGElement
mach_vm_addr_t mach_vm_addr_t ! mach_vm_addr_t : mach_vm_addr_t
|OAccelMemoryMap* |OAccelMemoryMap* I I_O_A_cgglﬁ/l_em_o_rxl\ﬂa_p_*_i |OAccelMemoryMap*
next next : next | next
prev prev lprev } prev

For further info, check our talk slides

“Don't Trust Your Eye: Apple Graphics Is Compromised!”

The Python bites your apple: fuzzing and exploiting
OSX kernel bugs

K e

lab

For Android Sandbox Escape

* solated app inherits app.te, app.te (appdomain

H##

Domain for all zygote spawned apps

###

This file is the base policy for all zygote spawned apps.

Other policy files, such as isolated_app.te, untrusted_app.te, e
extend from this policy. Only policies which should apply to ALL
zygote spawned apps should be added here.

H##

Dalvik Compiler JIT Mapping.
allow appdomain self:process execmem;
allow appdomain ashmem_device:chr_file execute;

Receive and use open file descriptors inherited from zygote.
allow appdomain zygote:fd use;

gdbserver for ndk-gdb reads the zygote.

valgrind needs mmap exec for zygote

allow appdomain zygote_exec:file rx_file_perms;

inherits domain.te

Rules for all domains.

Allow reaping by init.
allow domain init:process sigchld;

Read access to properties mapping.

allow domain kernel:fd use;

allow domain tmpfs:file { read getattr };
allow domain tmpfs:lnk_file { read getattr

Search /storage/emulated tmpfs mount.
allow domain tmpfs:dir r_dir_perms;

Intra-domain accesses.
allow domain self:process {
fork
sigchld
sigkill
sigstop
signull

} KEEN
security
getsched lab

signal

For Android Sandbox Escape(cont.)

 Attacking the binder interface is still an option

* Exploitingvulnerable basic classes

* SharedStorageintegeroverflow
e CVE-2015-3875

* Parcel at Java level accepts deserialization on class nhame specified by
string when processing bundle

* A hidden path to trigger de/serialization code in system_server context

KD ceen

security

lab

@@ -2271,15 +2273,19 @@
. ‘ * process when the bindApplication() IPC is sent to the process. They're
FO r An d ro I d * lazily setup to make sure the services are running when they're asked for.
*/
- private HashMap<String, IBinder> getCommonServicesLocked() {
+ private HashMap<String, IBinder> getCommonServicesLocked(boolean isolated) {
if (mAppBindArgs == null) {

¢ AttaCkIng the bind - mAppBindArgs

+ mAppBindArgs

new HashMap<String, IBinder>();

. new HashMap<>();

* Unintend-export:

- // Setup the application init args

- mAppBindArgs.put("package", ServiceManager.getService("package"));

- mAppBindArgs.put("window", ServiceManager.getService("window"));

mAppBindArgs.put (Context.ALARM SERVICE,
ServiceManager.getService(Context.ALARM SERVICE));

// Isolated processes won't get this optimization, so that we don't

// violate the rules about which services they have access to.
if (!isolated) {
// Setup the application init args
mAppBindArgs.put("package", ServiceManager.getService('"package"));
mAppBindArgs.put("window", ServiceManager.getService("window"));
mAppBindArgs.put(Context.ALARM SERVICE,
ServiceManager.getService(Context.ALARM SERVICE));

+ + + + + + + + +

}
return mAppBindArgs;

For Android Sandbox Escape(cont.)

 Attacking the binder interface is still an option

* Exploitingvulnerable basic classes/ reachable via bundleinterfaces
* SharedStorageintegeroverflow

e Attacking the Chrome IPC
 Attacking WebGL

* GL process runs in host process in Android

 Attacking the Kernel
* CVE-2015-1805?

KD ceen

security

lab

1805 In action

* Good news
* No pipe policyinisolated app

* Bad news:
* Cannot create socket and spray kernel memory use sendmmsg ®

05-18 21:49:48.024 19955 19955 W le.isolatedtest: type=1400 audit(0.0:101700): avc: denied { create }
for scontext=u:r:isolated_app:s@:c512,c768 tcontext=u:r:isolated_app:s@:c512,c768 tclass=tcp_socket
permissive=0

05-18 21:49:48.030 19955 19955 D FUCK : main socket fail

05-18 21:49:48.031 20041 20041 W le.isolatedtest: type=1400 audit(0.0:101701): avc: denied { create }
for scontext=u:r:isolated_app:s@:c512,c768 tcontext=u:r:isolated_app:s@:c512,c768 tclass=tcp_socket

permissive=0
05-18 21:49:48.034 19955 20041 D FUCK : sock_create_fuc socket failed
05-18 21:49:48.072 4915 4934 W libprocessgroup: failed to open /acct/uid_10089/pid_19955/cgroup.pro

cs: No such file or directory

05-18 21:49:48.073 4915 4934 I ActivityManager: Process com.example.isolatedtest (pid 19955) has di K’) KEEN
ed security
AR_1R 214042 A7 770 770 T 7vnanta * Drnnrace 100RK avitad ~lannly 72D Iab

Prevent vendor’s binder mistake

* Integer overflow in Huawei hw_ext_service running in system_server

int __fastcall HWExtMotion::unflatten(HWExtMotion *this,

{

HWExtMotion *v3;
void %v4;

int v5;

size_t v6;

void %v7;

v3 = this;

v4 = buf;

*((_DWORD x)this + 1) = *(_DWORD x)buf;
*((_DWORD x)this + 2) = *((_DWORD *)buf + 1);
v5 = x((_DWORD x)buf + 2);

*((_DWORD x)this + 3) = v5;

(v5>0)
{
vb = 4 % V5;
v7 = malloc(4 % v5);

*((_DWORD x)v3 + 4) = memcpy(v7, (char x)v4 + 12, v6);

}
0;

void xbuf, unsigned int a3)

KD ceen

security

lab

Comparison

K e

lab

Comparison

* Both platforms share lot of traits. They both implement a sandbox
policy in files that specify it and can be audited

* In general between the 2, the Chromium Android sandbox feels
stronger because it exposes a smaller attack surface.

* On Android we have more layer of sandboxing:
* Android sandbox, chrome is an application, it’s restricted by its DAC sandbox
* |solatedProcess, the render processes run in their own unprivileged process
» Restrictive SELinux policyisolated app.te

KD ceen

security

lab

Full Sandbox Escape DEMO!

K2 o

lab

Summary and Conclusions

K ceen

securi
lab

Summary and Conclusions

e Sandboxes are a great security mitigation.

* They require usually at least another additional bug to escape them
and compromise the system, especially from the browser context.

* They have the great advantage of a very concise (and smaller) attack
surface, much more defined to audit.

* A determined and knowledgeable attacker can still compromise the
system, but with more efforts.

KD ceen

security
lab

Acknowledgments

* Liang Chen

* Qoobee

* Wushi

 All our other colleagues of KEEN Lab

K ceen

securi
lab

Questions?

Twitter: @keen lab

K o

KD e

Security

lab

