
SUBVERTING	APPLE	GRAPHICS:	PRACTICAL	
APPROACHES	TO	REMOTELY	GAINING	ROOT

Liang	Chen	(@chenliang0817)
Qidan He	(@flanker_hqd)

Marco Grassi (@marcograss)
Yubin Fu	(@fuyubin1993)

About	us

• Tencent KEEN	Security	Lab (Previously	known	as	KeenTeam)

• 8	Pwn2Own	winners	in	3	years
• Mobile	Pwn2Own	2013	iOS,	Pwn2Own	2014	OS	X,	Pwn2Own	2014	Flash,	
Pwn2Own	2015	Flash,	Pwn2Own	2015	Adobe	Reader,	Pwn2Own	2016	Edge,	
Pwn2Own	2016	OS	X	*	2

• We	pwn OS	X	twice	in	Pwn2Own	2016	with	root	privilege	escalation

• KeenLab with	TencentPC	Manager	(Tencent Security	Team	Sniper)	
won	“Master	of	Pwn”	in	Pwn2Own	2016

Agenda

• Apple Graphics	Overview

• Userland Attack	Surface

• Kernel	Attack	Surface

• Summary

Apple Graphics	Overview

Apple	graphics	architecture

Sandboxed	App WindowServer Service

User	land

Kernel	land

User	land	
Graphics

IGAccelSurface IGAccelGLContext IGAccelVideoContext…

IOAcceleratorFamily2

Nvidia Graphics	
Implementation

Intel	Graphics	
Implementation

Why	graphics?

• On	OS	X,	stored	in	
/System/Library/Frameworks/We-
bKit.framework/Versions/A/Resources/com.apple.
WebProcess.sb

• On	iOS,	binary	file	embed	in	kernel:
• Sandbox_toolkit：
https://github.com/sektioneins/sandbox_tool
kit

• What’s in sandbox profile:
• File opration
• IPC
• IOKit
• Sharedmem
• Etc.

Graphic	components	allowed	in Safari sandbox profile

• Userland:	
Com.apple.windowserver.active

• Apple Graphics usermode daemon
• Manage
window/shape/session/workspace, etc.

• Running as _windowserver context

Graphic	components	allowed	in Safari sandbox profile

• Kernel
• (iokit-connection	"IOAccelerator")
• iokit-connection	allows	the	sandboxed	
process	to	open	all	the	userclient
under	the	target	IOService(much	less	
restrictive	than	iokit-user-client-class)

UserClient Name Type
IGAccelSurface 0
IGAccelGLContext 1
IGAccel2DContext	 2
IOAccelDisplayPipeUserClient
2	

4

IGAccelSharedUserClient 5
IGAccelDevice 6
IOAccelMemoryInfoUserClien
t

7

IGAccelCLContext 8
IGAccelCommandQueue 9
IGAccelVideoContext 0x100

Userland Attack	Surface

MIG overview

• Apple’s	IPC	implementation
• XPC	is	based	on	MIG

• https://www.blackhat.com/docs/us-
15/materials/us-15-Wang-Review-And-
Exploit-Neglected-Attack-Surface-In-iOS-8.pdf

mach_msg_header_tmsg

• msg is	the	key	to	send	message	to	another	process

• Msgh_bits
• Simple	message	if	0x00xxxxxx
• Complex(descriptor)	message	if	0x8xxxxxxx

mach_msg_body_t

• mach_msg_body_t is	inlined struct right	after	msg header

• Just indicate how many descriptors in this complex message

Complex	message
• Mach_msg_descriptor

• Three	types	of	descriptor	(actually	4	including	simple	message)

Simple message + 3 types of descriptor

• Simple message
• Easy to understand

• Port descriptor
• Send a port to the remote process
• Similar to DuplicateHandle inWindows (can be seen in Chrome sandbox)

• OOL descriptor
• Send a pointerto the remote process

• OOL Port descriptor
• Send a pointercontainingan array of ports to the remote process

WindowServer overview

• Two private framework:
• CoreGraphics
• QuartzCore

• Safari sandbox allows to open com.apple.windowserver.active service
• Implemented by CoreGraphics framework
• QuartzCore framework not allowed by Safari sandbox, but…

CoreGraphics API

• Client side API
• Starts with CGSxxxx

• Service side API
• Starts with __X

CoreGraphics API grouping

• Workspace
• Window
• Transitions
• Session
• Region
• Surface
• Notifications

• Hotkeys
• Display
• Cursor
• Connection
• CIFilter
• Event Tap
• Misc

Thinking as a hacker

• Before OS X Lion, no apple sandbox
• But there is WindowServer
• From OS X Lion, apple sandbox is introduced
• What we can do to WindowServer service with sandbox by easy
thinking?

• Movemouse position– Yes, by calling _XWarpCursorPosition
• Click – Yes, by calling event tap APIs like __XPostFilteredEventTapDataSync

• WindowServerwill then call IOKit IOHIDFamily to handle the event
• Set hotkey – Yes, by calling _XSetHotKey

Bypass sandbox

• Movemouse + click == bypass sandbox
• Set hotkey == bypass sandbox
• After apple sandbox is introduced, whole windowserver.active API is
allowed by safari, stupid Apple must forget to enhance windowserver?

Reality

• You are wrong, Apple is not	that	bad
• Movemouse – Still allowed
• Click – checked, no way from sandbox
• SetHotKey – checked, no way from
sandbox

How about Window related API
• Why thinking about WindowAPI

• Easy to cause UAF issues (in MS Windows)

• Connection_holds_rights_on_window
check

• Only the windowcreator holds this writer

• Some tricks to bypass this check in
history

• E.g find a DoS bug to kill the Docker, and
then all remainingWindowbelongs to you

• Many other API doesn’t have this check,
worthwhile for further research (Fuzzing,
code auditing)

Why windowserver?

• Running in root? No
• Running in user account? No
• It is running in _windowserver

• _windowserver is nothing, nothing, nothing

_windowserver 174			6.6		0.8		6910400		67708			??		Ss 三07下午
69:35.83	
/System/Library/Frameworks/ApplicationServices.framework/Framewo
rks/CoreGraphics.framework/Resources/WindowServer -daemon

But,	WindowServer is privilege	chameleon	!

CVE-2014-1314: Design issue

• Session related API
• _XCreateSession

• Create a new login session

• Fork a new process

• By default is
/System/Library/CoreServices/loginwindow.a
pp/Contents/MacOS/login

• But user can specify the customized login
path by sending amach message

• The forked process will be setuid to the
current user’s context

• Wow, we bypassed sandbox and run a sub-
process under user’s context, outside
sandbox!

CVE-2014-1314: the fix

• Deny any request from a sandboxed process to call _XCreateSession
• Seems Apple is lazy, but effective, no way to bypass
• Sandbox_check everywhere,	makes	me	tired…It	is	obvious	that	Apple	realized	it	is	
dangerous	in	CoreGraphics

QuartzCore – The hidden interface

• What is QuartzCore?
• Also knownas CoreAnimation
• More	complex	graphics	operation	

• Animation	
• Multi-layer handling

• But… Safari sandbox doesn’t allow open com.apple.CARenderServer
• Challenge? Sandbox doesn’t allow == we cannot open?

• If you think yes, you stop here
• If you think no andmake it open, then you own a new territory.

• Chrome JS renderer cannot open any file, but in fact it can do operation in
cache folder, why?

• Duplicatea handle !

QuartzCore – The hidden interface

• Another way is: a port descriptor message!
• Yes, that is CGSCreateLayerContext

• It sends a mach_msg to WindowServer
• __XCreateLayerContext handles the request in
WindowServer

• Open a port of com.apple.CARenderServer
• Send a replymessage with a port descriptor to
client

• Yay, we got the QuartzCore - Running at a
separate and new thread in WindowServer

Sandboxed process calls
CGSCreateLayerContext

WindowServer server creates
QuartzCore Client Port

Send the message back with port
descriptor

Sandboxed process obtains the Port

QuartzCore – a new territory

• No sandbox check
• Nothing…
• 3 minutes code auditing, I find something…

CVE-????-???? Logic issue

• In _XSetMessageFile
• Can specify arbitrary file path
• And append content to that file
• Content cannot be controlled
• No use?

Chameleon – Now I want you to be root!

CVE-2016-1804 :	UAF	in	multi-touch
• Misc API	in	CoreGraphics:	
_XSetGlobalForceConfig

• Introduced	for	force	touch	purpose
• Newly	introduced	API	is	easier	to	
cause	problem

• In	_mthid_unserializeGestureConfiguration it	
called	CFRelease to	free	the	CFData

• After	that,	the	CFData is	freed	again
• Double	free

Exploitable?

• Problems	to	be	solved
• Fill	in	the	controllable	data	between	two	FREEs

• Especially	the	first	8	bytes	of	the	CFData
• Heap	spraying	in	64bit	process	/	info	leak

• First	8	bytes	pointing	to	the	user	controllable	data	(vtable like	object)
• ASLR
• ROP

Exploitation of CVE-2016-1804:	Fill	in	the	data

• Looks	like	hard
• Two	frees	too	close
• No	way	to	fill	in	between	the	two	frees	in	the	same	thread

• Race	condition?
• All	CoreGraphics server	API	runs	in	a	server	loop	at	a	single	thread	(Gated	and	
queued)

• What	happened	if	race	failed?	(Crash?	Of	course!	Of	course!	Are	you	sure)

• Give	up?	(Yes,	we	give	up	this	vulnerability	for	quite	some	days)

An	interesting	and	legacy	double	free	problem
• If this is the case

• Result is:

• time window too small,
crashed in case of race
failure

• If the case is like this

• No crash!
• First 8 bytes of CFData unchanged
• Windows LFH like

• Means we can try again and
again until successful

• CoreGraphics server APIs are all
processed in a single thread…

• Any other way

QuartzCore - The	hidden	interface

• Yes,	we	need	hidden	
interface’s	help	

• That	is,	QuartzCore
• QuartzCore server	
APIs	are	singled	
threaded	also	but	it	is	
a	separate	thread	
against	CoreGraphics

Thread1: CoreGraphics Thread2:QuartzCore

First Free

Double Free

Allocate memory
with same size

Fill

Next	question?	What	server	APIs	you	choose	to	fill	in	data

• APIs	must	meet	the	following	criteria:
• Create	some	structure	that	size	is	0x30	(same	as	CFData)
• Every	byte	of	the	0x30	structure	can	be	controlled	(Or	at	least	the	first	8	byte)

• What	kind	of	message	you	choose?
• Simple	message?	Of	course	not,	at	least	the	first	8	byte	cannot	be	controlled	
fully.

• Port	descriptor?	Of	course	not.
• OOL	descriptor?	Yes,	because	it	allows	specifying	a	pointer	to	a	buffer	and	
pass	to	the	remote	process.

Bad	news	once	more
• How	many	APIs	in	QuartzCore accepts	
OOL	descriptor?

• Only	one…
• That	is	_XRegisterClientOptions(It	accepts	3	
port	descriptor	followed	by		an	OOL	
descriptor)	

What’s	in	_XRegisterClientOptions

• Accept	a	serialized	PropertyList
(Same	concept	as	List	vs	JSON)	

• What	is	CFPropertyList?
• Check	what	Apple	says
• Can	be	CFData,	CFString,	CFArray,	
CFDictionary,	CFDate,	CFBoolean,	
and	CFNumber

• Which	one	we	choose?
• Of	course	CFDictionary,	because	
this	API	only	accepts	
CFDictionaryas	valid	data

• Do	we	really	need	valid	data?	
Think	it	is	LFH,	freed	memory	is	
also	useful

• So	CFArrayalso	good

Again,	what	structure	to	fill	in

• First	thinking
• Use	CFDictionary and	put	many	CFData/CFString into	the	CFDictionary
(Because	you	can	control	content	of	CFData/CFString)

• Bad	news:	CFData not	good	because	itself	is	0x30	in	length,	the	first	8	bytes	
struct CFData itself	is	not	controllable,	but	only	its	content.	Reduce	the	
reliability	by	half

• Worse	news:	Only	CFMutableDataand	CFMutableStringhave	separate
controlledbuffer. Unserailized CFxxxx are not mutable, which the controlled
data is inlined… (Except for large data, but those are not good to fill in 0x30
data)

Our last hope

• Rely on CFPropertyListCreateWithData
• Cannot rely on CFData/CFString
• What if the CFPropertyListCreateWithData
creates some internal struct and free it

• Also useful, thanks to LFH likemechnism

• Ok, let’s focus on
CFPropertyListCreateWithData
implementation

• Wow, it is open sourced!

What is CFPropertyListCreateWithData

• Unserialization logic
• Parse serialized buffer data and
transform to basic CFxxxx structures

• A complicated implementationwith
recursive functions

• _CFPropertyListCreateWithData -
>__CFTryParseBinaryPlist ->	
__CFBinaryPlistCreateObjectFiltered

• CFBinaryPlistCreateObjectFiltered
• Token	parsing

Oh,	Unicode	saves	the	world	again!
• Case	kCFBinaryPlistMarkerUnicode16String

• A	temp	buffer	is	allocated	and	freed	after	
processing

Allocate	the	buffer,	size	
user	controlled

Copy	the	user	
controlled	data	to	the	
buffer

Free	the	buffer

Exploitation of CVE-2016-1804:Fill	in	the	data

• Wrap	up:
• Create	thread	1,	triggering	the	
vulnerability	again	and	again

• Create	thread	2,	send	a	request	to	
_XRegisterClientOptions

• With	a	CFDictionary/CFArray full of
controlled UnicodeCFString

• CFStringCreateWithCharacters creates
Unicode16CFString

Exploitation of CVE-2016-1804:Fill	in	the	data

Exploitation of CVE-2016-1804:Heap	spray

• A	simple	test

• Run	it	3	times

• The	5th byte	is	random..
• It	means	you	need	256*4G	for	reliable	heap	spray
• Bad…

Exploitation of CVE-2016-1804:Heap	spray

• Another	test

• Run	it	3	times

• 5th byte	always	0x1
• Spraying	will	be	very	reliable

Exploitation of CVE-2016-1804:Heap	spray

• Strategy is different
• Need persistent in memory
• Need to allocate large block of memory (Memory is less randomized)
• Both CoreGraphics API and QuartzCore API are good candidate

• Something is same
• Need to pick up a OOL descriptormessage

Exploitation of CVE-2016-1804:Heap	spray

• CGXSetConnectionProperty is a
good candidate

• Get the CFDictionary object from
global, if not exist then create

• Set the key/value pair according to
user’s input

• Can set the valuemany times by
sendingmultiplemessages where
keys are different

Exploitation of CVE-2016-1804: ASLR / Code
execution
• ASLR is easy as it shares the same base address with Safari webkit
• Code execution:

• http://phrack.org/issues/66/4.html
• ROP

Exploitation of CVE-2016-1804: Root?

• Wait wait, we got only _windowserver context?
• Really? Nono
• We can setuid to current user as we get code
execution, just similar as CVE-2016-1314

• Why not setuid and setgid to 0? Crazy! Let‘s
try…

• Successful…
• Why?
• Three bugs , three different privilege
obtained…So I call it Chameleon.

Demo

Kernel	Attack	Surface

The	IOAccelSurface Family

• IOAccelSurface family	plays	an	important	role	in	Apple's	Graphics	
Driver	System

• However	the	interface	was	originally	designed	for	WindowServer use	
solely	and	vulnerabilities	are	introduced	when	normal	processes	can	
call	into	this	interface

• The	vulnerability	also	indicates	the	existence	of	fundamental	design	
flaws	in	the	surface	rendering	system	and	we	believe	there're	still	
similar	ones	hiding	there.

Key	Functions

• Set_id_mode
• The	function	is	responsible	in	initialization	of	the	surface.	Bitwised presentation	type	
flags	are	specified,	buffers	are	allocated	and	framebuffers connected	with	this	
surface	are	reserved.	This	interface	must	be	called	prior	to	all	other	surface	
interfaces	to	ensure	this	surface	is	valid	to	be	worked	on.

• surface_control
• Basic	attributes	for	the	current	surface	are	specified	via	this	function,	i.e.	the	flushing	
rectangle	of	current	surface.

• surface_lock_options
• Specifies	lock	options	the	current	surface	which	are	required	for	following	
operations.	For	example,	a	surface	must	first	be	locked	before	it's	submitted	for	
rendering.

• surface_flush
• Triple	buffering	is	enabled	for	certain	surfaces.

Basic	render	unit

• The	basic	representing	region	unit	in	IOAccelerator subsystem	is	a	32	
bytes	rectangle	structure	with	fields	specified	in	surface_control
function.

• int16	x;				
• int16	y;				
• int16	w;				
• int16	h;

Typical	Graphics	Pipeline

Blit3d_submit_commands	

• Different	incoming	surface	are	cropped	and	resized	and	merged	to	
match	the	display	coordinate	system	with	specified	scaling	factor.	

• Two	flushing	rectangles	are	submitted	to	GPU	via	BlitRectList and	the	
incoming	surface	must	first	be	normalized	(scaled)	

• For	historical	reasons,	GPUs	on	OSX	expects	rectangle	areas	match	
the	range	of	[0,	0x4000]	while	incoming	surface	size	is	represented	by	
a	signed	16bit	integer,	translates	to	range	[-0x8000,	0x7fff].	

Submit_swap and	surface_control

• Submit_swap submits	the	surface	for	rendering	purpose	and	it	will	
finally	calls	into	blit opertion.	

• The	surface’s	holding	drawing	region	will	be	scaled	and	combined	
with	the	original	rectangle	region	to	form	a	rectangle	pair,	rect_pair_t

• The	drawing	region	specified	in	surface	control	is	represented	in	
After	scaling	it’s	represented	as	IEEE754	float.	

Blit_param_t

• The	pair	and	blit_param_t will	be	passed	to	
blit3d_submit_commands.

• The	two	most	interesting	fields	are	two	ints at	offset	0x14	and	0x34,	
which	is	the	current	and	target	(physical)	surface’s	width	and	height.

• The	rect will	be	scaled	based	on	scale	factor	specified	in	set_scale and	
produce	a	structure	named	rect_pair_t.	

Overflow	in	blit3d_submit_commands	

• The	OSX	graphics	coordinate	system	only	accepts	rectangles	in	range	
[0,0,0x4000,0x4000]	to	draw	on	the	physical	screen

• However	a	logical	surface	can	hold	rectangle	of	negative	coordinate	
and	length,	as	long	as	one	of	its	edge	falls	into	the	screen.	

• The	blit function	needs	to	scale	the	logical	rectangle	to	fit	it	in	the	
specific	range.

blit3d_submit_commands	check	for	current	surface's	width	and	target	surface's	height.
If	either	of	them	is	larger	than	0x4000,	Huston	we	need	to	scale	the	rectangles	now.

a	vector	array	is	allocated	with	size	height/0x4000	hoping	to	store	the	scaled	output	
valid	rectangles.	The	target	surface's	height	always	comes	from	a	full-screen	resource,	
i.e.	the	physical	screen	resolution.	Like	for	non-retina	Macbook Air,	the	height	will	be	
900.	As	non	mac	has	a	resolution	of	larger	than	0x4000,	the	vector	array's	length	is	
fixed	to	1.

Revisit	the	IGVector

• struct IGVector{			
• int64	currentSize;				
• int64	capacity;				
• void*	storage;

• }
• The	vulnerable	allocation	of	blit3d_submit_commands	allocation	falls	
at	kalloc.48,	which	is	crucial	for	our	next	Heap	Feng	Shui.

Rectangle	transformations

OOB	leads	the	way

• The	code	implicitly	assumes	that	if	the	width	is	smaller	than	0x4000,	
the	incoming	surface's	height	will	also	be	smaller	than	0x4000,	which	
is	the	case	for	benign	client	like	WindowServer,	but	not	sure	for	funky	
clients.	

• By	supplying	a	surface	with	rect2.x	set	to	value	larger	than	0x4000,	
LINE1	will	perform	access	at	vector_array[1],	which	definitely	goes	
out-of-bound	with	function	IGVector::add	called	on	this	oob location,

Determine	the	surface	attributes

• By	supplying	size	(0x4141,	0x4141,	0xffff,	0xffff)	for	surface	and	
carefully	prepare	other	surface	options,	we	hit	the	above	code	path	
with	rectangle	(16705,	16705,	-1,	-1).	

• The	rectangle	is	absolutely	in	screen	and	after	preprocessing,	the	
rectangle	is	transformed	to	y	16705,	x	321,	height	-1,	len -1.	

• These	arguments	will	lead	to	out-of-bound	access	at	vec[1],	and	bail	
out	in	while	condition,	triggering	one	oob write.

CVE-2016-1815 – ‘Blit’zard - our P2O
bug
• This	bug	lies	in	IOAcceleratorFamily
• A	vector	write	goes	out-of-bound	under	certain	carefully	prepared	
situations	(8	IOkit calls)	in	a	newly	allocated	kalloc.48	block

• Finally	goes	into	IGVector::add	lead	to	OOB	write

0x28 0x1 size capa storage deadbeefsize capa storage size capa storage

IGV ector

48′block controlled 48′block

Fake IGV ector Fake IGV ector

• rect_pair_t is	pair	of	two	rectangles,	totally	8	floats,	in	range	[-0xffff,	0xffff](hex)
• Overwrite	starts	at	storage	+	24,	ends	at	storage
• In	IEEE.754	representation	the	float	is	in	range	[0x3f800000,	0x477fff00],	 [0xbf800000,	0xc77fff00]
• We	will	not	discuss	about	the	detailed	reason	of	this	vulnerability	here

Heap	Fengshui in	kalloc.48

• kalloc.48	is	a	zone	used	frequently	in	Kernel	with	IOMachPort acting	
as	the	most	commonly	seen	object	in	this	zone	and	we	must	get	rid	of	
it

• Previous	work	mainly	comes	up	with	openServiceExtended and	
ool_msg to	prepare	the	kernel	heap.

• However	these	are	not	suitable	for	our	exploitation

Heap	Fengshui in	kalloc.48	(cont.)

• ool_msg has	small	heap	side-effect,	but	ool_msg's head	0x18	bytes	is	
not	controllable	while	we	we	need	control	of	8	bytes	at	the	head	0x8	
position.	

• openServiceExtendedhas	massive	side	effect	in	kalloc.48	zone	by	
producing	an	IOMachPort in	every	opened	spraying	connection		

• openServiceExtendedhas	the	limitation	of	spraying	at	most	37	items,	
constrained	by	the	maximum	properties	count	per	
IOServiceConnection can	hold

• The	more	items	we	can	fill,	the	less	side	effect	we	will	need	to	consider

IOCatalogueSendData

• The	addDrivers functions	accepts	an	OSArray with	the	following	easy-
to-meet	conditions:

• OSArray contains	an	OSDict
• OSDict has	key	IOProviderClass
• incoming	OSDictmust	not	be	exactly	same	as	any	other	pre-exists	OSDict in	
Catalogue

IOCatalogueSendData (cont.)

• prepare	our	sprayed	content	in	the	array	part	as	the	XML	shows,	and	
slightly	changes	one	char	at	end	of	per	spray	to	satisfy	condition	3

• We	only	need	control	of	+8-+16	bytes	region

Final	spray	routine

• Spray	0x8000	combination	of	1	ool_msg and	50	IOCatalogueSendData
content	of	which	totally	controllable	(both	of	size	0x30),	pushing	
allocations	to	continuous	region.	

• free	ool_msg at	1/3	to	2/3	part,	leaving	holes	in	allocation
• trigger	vulnerable	function,	vulnerable	allocation	will	fall	in	hole	we	
previously	left

In	a	nearly	100%	chance	the	heap	will	layout	as	this	figure	illustrated,	which	exactly	match	what	we	expected.	
Spraying	50	or	more	0x30	sized	controllable	content	in	one	roll	can	reduce	the	possibility	of	some	other	irrelevant	
0x30	content	such	as	IOMachPort to	accidentally	be	just	placed	after	free	block	occupied	in.

KALLOC.8192 ZONE

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000
0xff… bf800000

IntelAccelerator …

+0x1528

vm_map_copy …

0xff… bf801000

0xff… 62389000

+0x528

+0x288

0xff… bf800000

vm_map_copy

0xff… bf7ff000

+0x140

0xff… 6238a000

Exploitation:	now	what?

• We	have	an	arbitrary-write-where	but	our	value	written	is	
constrained.

• For	example	we	can	use	this	4	byte	overwrite	with	value	“0xbf800000”	
to	do	a	partial	overwrite	of	the	less	significant	4	bytes	of	the	“service”	
pointer	of	a	IOUserClient.

• This	new	overwritten	pointer	will	be	“0xffffff80bf800000”.
• We	control	this	heap	location	at	”0xffffff80bf800000”!

A0	00	DE	AD	FF	80	FF	FF 00	00	BF	80	FF	80	FF	FF

BEFORE	OOB	WRITE AFTER	OOB	WRITE

Exploitation:	kASLR bypass	turning	this	into	a	
infoleak

• On	OS	X	the	kernel	is	randomized,	we	need	to	bypass	kASLR.
• Our	target	IOUserclient is	of	type	IGAccelVideoContext
• We	overwrite	the	“accelerator”	field	of	this	userclient (offset	0x528),	
like	explained	in	the	previous	slide	pointing	it	to	our	controlled	
location

• We	then	abuse	the	external	method	
IGAccelVideoContext::get_hw_steppings to	leak	1	byte	to	userspace,	
to	read	a	vtable 1	byte	at	a	time.

• With	the	vtable address	we	follow	it	to	read	a	TEXT	address	
(OSObject::release)	to	finally	get	the	kASLR slide,	bypassing	it.

Exploitation:	kASLR bypass	turning	this	into	a	
infoleak (2)

IGAccelVideoContext::get_hw_steppings(__int64
this, _DWORD *a2) {
…
__int64 accelerator = *(this + 0x528); // this
is 0xffffff80bf800000
...
a2[3] = *(unsigned __int8 *)(*(_QWORD
*)(accelerator + 0x1230) + D0); // this is
returned to userspace!
…
}

Exploitation:	rebasing	and	ROP	Chain

• Now	with	the	kASLR slide	we	can	dynamically	rebase	our	ROP	Chain	
that	we	use	for	kernel	code	execution.

• At	the	end	of	the	ROP	chain	we	will	abuse	kern_return_t
KUNCExecute(char executionPath[1024], int uid,
int gid) to	spawn	a	arbitrary	executable	as	root	in	userspace,	
bypassing	all	the	mitigations	 (SMEP/SMAP,	SIP)

• Spawn	a	root	OS	X	Calculator	for	teh lulz!	Microsoft	Windows	
calculators	sucks	:D	

Exploitation:	gaining	RIP	control

• The	last	missing	piece	of	the	puzzle	is	to	get	RIP	control	and	execute	
our	ROP	payload	in	kernel	and	gain	kernel	codexec

• We	will	again	abuse	a	IGAccelVideoContext and	his	superclass	
IOAccelContext2.

• If	you	recall	from	the	previous	slides,	we	corrupted	a	pointer	at	offset	
0x528	to	point	to	our	controlled	location.

• We	choose	then	to	target	another	method,	named	“context_finish”,	
which	will	make	a	virtual	function	call	that	we	can	totally	control.

• RIP	Control	is	achieved	and	we	start	execute

Exploitation:	gaining	RIP	control	(2)

IOAccelContext2::context_finish
push rbp
mov rbp, rsp
…
mov rbx, rdi //this
mov rax, [rbx+528h] // rax is a location with
controlled content
…
call qword ptr [rax+180h] // RIP control
…

Demo

Acknowledgements

• Wushi
• Windknown
• Luca	Todesco

Thank you!

