
Duo Labs Report

The
Apple of
Your EFI
Findings From an

Empirical Study of EFI Security

 Research Questions & Objectives 1

 Our Dataset 3

 Summary of Findings 4

0.0 What is (U)EFI and Why Does Its Security Matter? 6

1.0 A Brief History of Apple EFI and Related Security Research 8

2.0 How Does a Mac Update Its EFI Firmware/How Do You Find Your Version? 11

3.0 EFI Updater Board ID Behavior 16

 Results

4.0 Initial Research Questions 20

5.0 Research Methodology 21

6.0 Analyzing the Data, What Was Found? 24

7.0 Mitigation 37

8.0 Conclusion 35

 References 40

 Appendix A 41

 Appendix B 59

Table of Contents

AUTHORS

Rich Smith

Pepijn Bruienne

EDITOR

Thu T. Pham

DESIGNER

Chelsea Lewis

© 2017 Duo Security, Inc.

The Apple of
Your EFI
Findings From an Empirical Study
of EFI Security

1

Research Questions
& Objectives
In a modern system, the EFI (Extensible Firmware Interface) environment holds particular fascination for

security researchers and attackers due to the level of privilege it affords if compromise is successful. EFI is

often talked about as operating at privilege level ring -2, which indicates it is operating at a lower level than

both the OS (ring 0) and hypervisors (ring -1).

In a nutshell, this means that attacking at the EFI layer gives you control of a system at a level that allows you

to circumvent security controls put in place at higher levels, including the security mechanisms of the OS

and applications.

In light of recent public releases, there has been increased interest in the security of platform firmware. More

specifically, focus has centered on the security of a system’s EFI due to the availability of several publicly

discussed exploits.

Our Hypotheses:
Firmware Security
Support & Visibility
The state of firmware security as it relates to

software security was of particular interest.

Our research started with a working hypothesis

that there is an asymmetric relationship between

the security support vendors provide in the form

of patches to their software, as compared to

their firmware.

We further hypothesized that both end users and

admins make assumptions around the security

support provided by vendors to their firmware,

while, at the same time, having limited visibility to the

reality of the security support actually received.

Finally, we suspected that there would be a

divergence between the state of the EFI firmware

deployed on systems used in production

environments and the expected state of the EFI

firmware that should be running, based on the

system’s hardware and OS versions. The size and

characteristics of this discrepancy, was, however,

something we were interested in investigating.

2

Our Research & Analysis:
Why Apple?
Our research and analysis sought to shine light

upon the security of Apple’s EFI environment, and

to measure the current security state of deployed

EFI firmware as compared to the security state of

deployed software.

The analysis we conducted focused on Apple’s Mac

ecosystem. Apple’s control over the entire stack

across hardware, software, and firmware means

its ecosystem provided a more manageable dataset

to study.

Equally important is the fact that Apple releases its

EFI firmware updates bundled within its OS updates

and installs them at the same time, meaning that

we could build a definitive map of OS version to EFI

version for any given model of Mac hardware. The

Wintel PC/OEM ecosystem is far more fragmented

and complex in terms of vendor responsibility for the

security of the various components, making it more

difficult to study and derive conclusive results.

Our Findings:
Expected vs. Actual EFI Versions
A significant finding of our research was the sizeable

deviance between the EFI firmware versions running

on production systems and the expected versions

based on the OS and hardware versions.

Apple’s approach of releasing EFI firmware updates

as a component of its overall OS updates allowed

us to use the running build version of the OS and

the hardware model of the Mac to predict, with

certainty, the version of EFI we would expect to

be running. We then compared the expected EFI

version to the actual EFI version we found to identify

discrepancies.

• Our analysis of 73,324 Macs deployed in

production environments showed that, on average,

4.2% were running versions of firmware that did

not match the versions we would expect them

to — which could leave them open to publicly

disclosed vulnerabilities.

• The level of discrepancy increased significantly

above the mean for certain Mac models, with the

highest being 43.0% for the iMac 21.5” late 2015

model where 941 out of 2190 real world systems

were running incorrect versions of EFI firmware.

The size of this discrepancy is somewhat surprising,

given that the latest version of EFI firmware should

be automatically installed alongside the OS updates.

As such, only under extraordinary circumstances

should the running EFI version not correspond to

EFI version released with the running OS version.

3

Software Secure but
Firmware Vulnerable
Other notable findings detail the discrepancies

between the different Mac models that receive

software security updates vs. firmware security

updates from Apple. It appears that the eligibility for

a system to receive firmware updates is dependent

on both the model of hardware as well as the

version of the OS. This creates multiple possibilities

for a system to be seen as software secure but

firmware vulnerable.

• 16 combinations of Mac hardware and OSs have

never received any EFI firmware updates over

the lifetime of the 10.10 to 10.12 versions of OS

X/macOS that we analyzed. They do, however,

continue to receive security updates from Apple

for their OS and bundled software.

• Put in terms of our real world dataset of 70,000+

systems, there were 3,400 (4.6%) systems

identified that are still considered supported

by Apple and continue to receive software

security updates, but have not received EFI

firmware updates.

As a result, those systems continue to be exposed

to a number of publicly disclosed EFI vulnerabilities,

despite being patched against known public security

vulnerabilities in the OS and bundled applications.

Compounding this situation is the lack of easily

available information about which systems are

currently receiving software and/or firmware

security updates from Apple, as we are unable

to find any official documentation pertaining to

this anywhere. For users and administrators of

Apple systems, this means it can be difficult-to-

impossible to accurately build a risk profile for

their Apple infrastructure since they cannot know

which systems will be left exposed to EFI firmware

vulnerabilities, or even which versions of firmware

contain which known vulnerabilities.

Our Dataset
Our data details the firmware security support

provided by Apple based on an analysis of the

security updates they have released since 2015-

01-27 and covers versions 10.10.0 to 10.12.6. As part

of this work, we will be making this data openly

available to help admins and end users make more

informed risk decisions about the EFI firmware

security of their Apple fleets.

This dataset also augments the gathered data with

additional context, such as which vulnerabilities

specific EFI firmware versions are vulnerable to. We

also intend to release RESTful APIs around the data

alongside client apps that can easily make use of

them to allow admins and users gain more visibility

into the state of their fleets’ EFI firmware and make

remediation recommendations.

Finally, it is important to note that we do not believe

that the issues highlighted by our research are

limited to just Apple, and are in fact, indicative of

industry-wide problems regarding the lower levels

of security support and visibility given by vendors

to a system’s firmware security as compared to a

system’s software security. In fact, given the more

fragmented and heterogeneous environment of the

Wintel space, we would expect the situation there to

be potentially worse.

4

Summary
of Findings
The high-level summary of the observations and findings are:

—
 On average, 4.2% of real-world Macs used in the

production environments analyzed are running an

EFI firmware version that’s different from what they

should be running, based on the hardware model,

the OS version, and the EFI version released with

that OS version.

—
 The percentages of incorrect EFI versions varies

greatly depending on the particular Mac model:

• The late 2015 21.5” iMac has the highest

occurrence of incorrect EFI firmware with 43%

of systems running incorrect versions.

• This is followed by the 3 variants of the late 2016

13” MacBook Pro with rates of deviance between

35% and 25%.

• In fifth and sixth places came two variants of

the early 2011 MacBook Pro showing a deviance

from expected EFI firmware versions of 15%

and 12%.

—
Variance from the expected EFI firmware versions is

also markedly different across versions of the OS:

• macOS 10.12 (Sierra) had significantly higher

average rate of deviance at 10%

• This is followed by OS X 10.11 (El Capitan) with

3.4% and OS X 10.10 (Yosemite) with 2.1%

—
 The data we gathered suggests that there are

possible underlying issues with the mechanisms

and procedures used by system administrators to

update their fleets’ OSs that cause systems to fail

to update their firmware while successfully updating

their OS. It is also not out of the question that

Apple’s EFI updating mechanisms themselves have

an issue that cause EFI updates to fail to install,

though we have found no evidence indicating this

during our analysis.

—
 An analysis of Apple’s update packages indicates

that there are 16 Mac models that have not received

EFI firmware updates since Apple changed how

it deploys the updates in any of analysed OS and

security updates despite being able to run one

of the three most recent OS versions that still

receive software security updates from Apple. This

means these systems can be software secure but

firmware vulnerable.

5

—
Our analysis of the Apple OS updates that cite

EFI security issues as part of the patch present

interesting data showing significant numbers of

Mac models that do not actually have a patch

available to fix the known EFI firmware issues,

despite continuing to receive OS and software

security updates:

• Thunderstrike 1 (CVE-2014-4498)

47 models capable of running 10.12, 10.11, 10.10

did not have an EFI firmware patch addressing

this vulnerability released

• Thunderstrike 2 (CVE-2015-3692,

CVE-2015-3693)

31 models capable of running 10.12, 10.11, 10.10 did

not have an EFI firmware patch addressing this

vulnerability released

• CVE-2015-7035

25 models capable of running 10.12, 10.11, 10.10

did not have an EFI firmware patch addressing

this vulnerability released

• CVE-2016-7585

22 models capable of running 10.12, 10.11, 10.10

did not have an EFI firmware patch addressing

this vulnerability released; iMac version 16,2

was an anomaly in that it did not receive an

EFI update in Security Update 2017.001 for

10.11.x, but did receive an update in OS update

10.12.4 - all comparable iMac models received

EFI firmware updates in updates for both 10.11

and 10.12

—
Further analysis of Apple’s updates also highlighted

what seems to be the erroneous inclusion of 43

versions of EFI binaries in the 2017-001 security

updates for 10.10 and 10.11 that were older than the

versions of EFI binaries that were released in the

previous updates 2016-003 (10.11) and 2016-007

(10.10). This would indicate a regression or a release

QA failing where incorrect versions of EFI firmware

were shipped in OS security updates.

—
The identification of 18 Mac models with only one,

two, or three low-numbered versions of EFI firmware

in the production dataset and no new EFI binaries

in any of the analysed OS updates. This strongly

suggests that these models of Mac have never seen

a field update of their EFI firmware and continue to

have the version they left the factory with.

—
A variety of other more one-off anomalies and

discrepancies within the large corpus of Apple

EFI-related data we have gathered, all of which

raise questions about the level of QA being afforded

to these EFI firmware updates as compared to

software security updates.

—
The research also points to the lack of information

and on-system support for EFI firmware security

given to Mac admins and users, despite the

increasing number of publicly available information

and exploits for EFI attacks.

—
Without exception, the Apple system admins who

provided us the version data for their fleets were

very surprised by the EFI firmware discrepancies

we discovered across their systems as they have

received no notification of those discrepancies from

the fleet management systems they use.

6

0.0

What is (U)EFI
& Why Does Its
Security Matter?
UEFI stands for Unified Extensible Firmware

Interface specification1 and has become the

industry’s standard replacement for the legacy

BIOS platform that had been used, revised and held

together with much string and sticking tape since

it was introduced by IBM in 1975. Both BIOS and

UEFI bridge a system’s hardware, firmware and OS

together to enable it to go from power-on to booting

the operating system. The development of the UEFI

standard helped address a number of technical

limitations of the legacy BIOS introduced so many

years ago.2

It also helped the industry move away from

the largely proprietary and incompatible

implementations that the legacy BIOS had devolved

into. In many regards, the adoption of UEFI enabled

modern system paradigms developed elsewhere in

systems engineering over the preceding 40 years

to be applied to the pre-boot environments of PC

systems, supporting more ubiquitous and modular

approaches to be taken.

Such standardization has numerous advantages

to OEMs, as well as to hardware and software

vendors through the lowering of development and

support costs - however, it is also worth recognizing

that malicious actors looking to attack systems

also benefit from lower costs of development

and deployment that a standards-based system

presents. The previously highly fragmented and

system-specific environment of the legacy BIOS

has now been flattened out into a standards-based

pre-boot environment that is common across

different platforms and architectures. What had

previously required very targeted attacks has now

become one where the same vulnerabilities and

capabilities can be used across large populations of

devices.

Aside from the standardization of systems, attacking

UEFI implementations is attractive to security

researchers due to the level of privilege and stealth

it affords an adversary who is successful in their

exploitation. The UEFI environment provides a

somewhat unique vantage point in terms of system

attacks that is often referred to as Ring -2 to

indicate how they operate at a level that is below

both the OS (Ring 0) and the hypervisor/VMM

(Ring -1) and, as such, can undermine the security

controls in both.

Successful attack of a system’s UEFI

implementation provides an attacker with powerful

capabilities in terms of stealth, persistence, and

direct access to hardware, all in an OS and VMM

independent manner. While a detailed discussion

of these capabilities is beyond the scope of the

background section of this paper, a number of

references are given for the interested reader to find

out more.3,4,5

7

The point we want to ensure all readers have in

mind as we discuss the research in this paper is that

for a modern computer system to be considered

secure, it is not enough to just focus on the security

and up-to-dateness of the OS and software. One

also needs to consider the security of the pre-boot

environment, which, in a majority of cases, means

UEFI. The unfortunate truth is that insecure UEFI

can undermine all of the security put in place at the

layers above it in the VMM, OS, and applications.

Despite the critical nature of the security of UEFI,

it is an area that can often be overlooked by

both vendors, admins and end users, and it is for

these reasons we took the time to evaluate the

security support and awareness of a popular UEFI

environment.

Note:

While in the above discussion the term ‘UEFI’

is used to refer to the pre-boot environment,

throughout the rest of the paper the

abbreviated term ‘EFI’ is used. The reasons

for this are not only to aid readability, but

also in recognition that Apple refers to its

pre-boot environment as ‘EFI’ in all of its

documentation. Likewise, many contemporary

papers released on similar security topics

also use ‘EFI’ in favor of the ‘UEFI’ acronym

and it feels appropriate to follow their lead in

this regard.

8

1.0

A Brief History of
Apple EFI & Related
Security Research
The importance of ensuring that up-to-date EFI firmware is installed on Macs is well-known among security

experts, however, outside of the security scene, this knowledge may be less common. As such, before we

jump into the research itself, we thought it useful to give a little history of the security research done on

Apple’s EFI-enabled platforms, discussing a number of high-profile EFI vulnerabilities and their accompanying

exploits that have been publicly disclosed. If you are already familiar with both the security history and

mechanisms involved with Apple’s EFI, then jump to Section 6 to see our new findings.

Using Apple’s EFI Implementation
& Gaining Persistence
In 2012, Loukas K, better known as “snare,”

presented EFI-related research at the 12th annual

Black Hat USA conference in Las Vegas.6 In

his research, he outlined the process of finding

vulnerabilities in Apple’s EFI implementation

and presented a number of ways to use these

vulnerabilities to gain persistence.

The two most promising, and therefore most

concerning, methods of gaining persistence

identified by snare included:

• Using PCIe option ROMs on external peripherals

to inject and run malicious code in the EFI

environment.

• Re-flashing the EFI firmware from userland with

a modified version that enables malicious code to

survive complete OS reinstalls. This only applied to

older Mac models that did not use signed firmware

code.

9

The Birth of ThunderStrike
to Run Malicious Code
The work done by snare was expanded upon in 2014

by Trammell Hudson of Two Sigma who presented

at the 31st edition of the Chaos Computer Club

Conference (or 31c3).7,8 Hudson took both the PCIe

option ROM and firmware flash research done

by snare and was able to create a PoC (proof of

concept) combining hardware and software, using

an Apple Thunderbolt to Ethernet adapter, which he

named ThunderStrike.

The adapter contained modified firmware code that,

when connected to a vulnerable Mac, performed an

EFI flash rewrite with modified firmware that allowed

the attacker to run arbitrary code at the Ring -2 level

while at the same time “fixing” Apple’s vulnerable

code and effectively closing the door behind itself,

preventing further exploitation.

This facilitated simple “evil maid” or physical

drive-by attacks where an attacker with a modified

adapter would be able to plug it into a target system,

perform a forced reboot, wait, unplug the adapter

and walk away knowing that the target Mac had

been successfully compromised with permanently

modified EFI firmware. Apple first addressed the

PCIe option ROM vulnerability in the OS X 10.10.2

and Security Update 2015-001 for OS X 10.9.59 as

CVE-2014-4498.10

ThunderStrike 2:
Less Hardware, More Viral
Following up his earlier work, Trammell Hudson then

partnered with Xeno Kovah and Corey Kallenberg

of LegbaCore at DEF CON 23 in 2015 to present

ThunderStrike 2.11 This improved version of the

original ThunderStrike PoC combined a number

of previously disclosed vulnerabilities to enable

attacking the EFI firmware without the need for

a physical adapter to be used, while, at the same

time, adding the ability to further infect any attached

Thunderbolt devices in order to virally spread the

exploit to other targets.

The main vulnerabilities used in ThunderStrike 2

were patched by Apple in the OS X 10.10.4 update

and Security Update 2015-005 on 06/30/2015, as

CVE-2015-369212 and CVE-2015-3693.13

A New Exploit Toolkit Emerges:
Sonic Screwdriver
Related to these two major PoCs, it was revealed

in March 2017 that as part of the alleged CIA “Vault

7” leaks released by Wikileaks, a very similar exploit

toolkit had existed even prior to Hudson’s and

snare’s work, dubbed “Sonic Screwdriver.”14

This exploit toolkit has been shown to have used

the same vulnerabilities that have been publicly

discussed in order to implement CIA-created

payloads such as the one contained in the same

leaked documents named “DerStarke.”15 These tools

were developed in November 2012 shortly after

the publication of snare’s work and thought to be

directly based on it.

file:///Users/chelsea/Dropbox%20(Duo%20Creative)/Archived%20Projects/Chelsea/Docs/Labs%20papers/2017-09%20Apple%20Firmware/#h.zaji98w6tu58

10

Recent DMA Attacks
& Apple’s eficheck Tool
Security researcher Ulf Frisk published his findings

related to using the PCIe bus to perform DMA

(Direct Memory Access) attacks on against data on

disk or in-memory using an external device,16, 17 once

again leveraging unpatched vulnerabilities in Apple’s

EFI to gain access to sensitive data such as Filevault

2 (FDE) decryption passphrases.

It was shortly after Apple patched this most recent

DMA vulnerability that it started work on a new tool

called eficheck .

As of macOS 10.13 High Sierra, Apple is consistently

shipping this tool. Its purpose appears to be

aimed at user notification by presenting an alert if

the active EFI version is not one contained in an

Apple-maintained whitelist, allowing the user to

electronically submit the EFI information to Apple.

From what we have seen of eficheck at this time,

we do not believe it alerts users to out-of-date, but

otherwise official, versions of running EFI firmware.

Our Commentary
While not exhaustive, the above illustrates that both

public and private research into EFI security, and

how to exploit any vulnerabilities found, has been

actively pursued by a range of organizations for

at least the last five years and likely quite a while

longer.

Even though the volume of EFI vulnerabilities

is nowhere near as high as for software-based

vulnerabilities, the threats are real and carry with

them some extra complexity given the system layer

being attacked is below the OS’s kernel (Ring 0),

making it inherently hard to detect the presence

of any firmware-based compromise and harder to

remove.

When taken in combination with the generally low

level of knowledge most admins and users have

about the role of EFI in their systems as compared

to the OS and applications, alongside the lack of

visibility to the ‘up-to-dateness’ of the installed

EFI firmware, we quickly get to a point where the

majority of Apple consumers need to rely on Apple

to take full responsibility for ensuring their EFI

firmware is patched against the latest vulnerabilities.

Apple has made obvious efforts in trying to make

the updates of EFI firmware something that admins

and users don’t have to consider separately and

we think this is an approach that adds significant

security to Mac systems. As of OS X 10.10, Apple

has consistently bundled EFI firmware updates with

the OS and security updates themselves, instead of

as a separate update with its own installer, improving

the likelihood that important EFI security patches

are actually applied.

To offer some background on this, it is important to

know how EFI firmware updates were treated prior

to 2015. Before then, EFI firmware updates were

distributed separately and they required manual

intervention on each Mac in order to boot into a

dedicated EFI firmware update mode.18 This process

was end-user-unfriendly and labor-intensive for Mac

admins who were in charge of many hundreds or

thousands of Macs.

As a result, the EFI firmware updates would often

be skipped and, because there had been no major

public security vulnerabilities prior to 2015, they

were mostly ignored. The laissez-faire attitude

was finally shattered when Thunderstrike 1 was

published which seemed to force Apple’s hand to

make changes in order to ensure that EFI firmware

updates deploy alongside OS and security updates.

11

2.0

How Does a Mac
Update Its EFI
Firmware &
How Do You Find
Your EFI Version?

Warning! Running some of the commands seen below could result in bricking your Mac. This data is
included for background and completeness, but we do not encourage messing with your EFI firmware
unless you know how to recover, should an error occur. Consider yourselves duly warned!

While the standard route by which Apple’s Mac EFI

firmware gets installed alongside an OS update is

deliberately invisible to the end user, it is still worth

understanding the process by which EFI firmware is

updated so we can understand the EFI lifecycle in

more detail. This also allows for manual intervention

as needed. There doesn’t appear to be any official

Apple documentation on the technical details of the

EFI update process, so what is found in this and

the following sections is a combination of what was

learned as the research was conducted, as well as

what we learned from other sources of information

we found in research released by others.

12

Mac EFI Firmware Installation

Within an Apple OS update, there is a FirmwareUpdate.pkg bundle to install EFI firmware containing a

postinstall action shell script located at FirmwareUpdate.pkg/postinstall_actions/update which

triggers the firmware installation. The content of the shellscript shows the two main actions taken to update

the firmware:

#!/bin/sh
/usr/libexec/FirmwareUpdateLauncher -p “$PWD/Tools”
/usr/libexec/efiupdater -p “$PWD/Tools/EFIPayloads”

Figure 1.
Contents of the FirmwareUpdate.pkg/postinstall_action/update shell script

The script shows two separate updaters being ran: /usr/libexec/FirmwareUpdateLauncher and

/usr/libexec/efiupdater. FirmwareUpdateLauncher seems to be a multi updater that is able to

update pretty much all the other non-EFI firmware in a modern Mac system such as the SMC, SSD, and

USB-C controllers. Such hardware can also have EFI elements to enable the installation process for other

firmware (e.g. like MultiUpdater.efi and ThorUtil.efi), but these EFI components are out of scope for

the discussion of core EFI updates themselves. For the sake of this paper, we will focus on efiupdater, as

that is the binary that is responsible for updating the EFI.

While the efiupdater binary is not well documented, it’s relatively easy to reverse engineer how it works

(see also Section 3. EFI updater board ID behavior). The method used in the postinstall script simply calls

the binary with a ‘-p’ argument and the path to a directory containing all of the EFI firmware updates within

an OS update. The determination of which update is the correct one to install on a system is made by the

efiupdater binary itself, and is based on the board ID of the Mac running the command and the board ID(s)

contained in the firmware binaries themselves. There doesn’t appear to be a way to direct the efiupdater to

install a single EFI update - it wants a whole directory to pick from.

The efiupdater binary needs to be run as root and takes care of all of the steps of copying the EFI update

where it needs to go as well as blessing19 it, it’s a one stop and simple way to update the EFI firmware.

Example output from running this command is given in Figure 2:

13

bash-3.2# /usr/libexec/efiupdater -p ~/FirmwareUpdatesTest/
Raw EFI Version string: MBP111.88Z.0138.B18.1702171721
EFI currentVersion: [0000000001380018]
EFI updateVersion: [0000000001380021]
EFI found at IODeviceTree:/efi
Will need to copy 8523776 bytes to EFI system partition
Aggregate boot path is IODeviceTree:/PCI0@0/RP06@1C,5/SSD0@0/PRT0@0/PMP@0/@0:2
GPT detected
Booter partition required at index 3
System partition found
Booter partition found
Preferred system partition found: disk0s1
Returning booter information dictionary:
<CFBasicHash 0x7f99db7002a0 [0x7fffbe787da0]>{type = mutable dict, count = 3,
entries =>
 0 : <CFString 0x1063d8a60 [0x7fffbe787da0]>{contents = “System Partitions”} = (
 disk0s1
)
 1 : <CFString 0x1063d9240 [0x7fffbe787da0]>{contents = “Data Partitions”} = (
 disk0s2
)
 2 : <CFString 0x1063d9260 [0x7fffbe787da0]>{contents = “Auxiliary Partitions”} = (
 disk0s3
)
}

Substituting ESP disk0s1
Mounting at /Volumes/bless.lFhE
Executing “/sbin/mount”
Returned 0
Creating /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE if needed
Deleting previous contents of /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE
Deleting /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE/MBP111_0138_B18_LOCKED.scap (8520304
bytes)
Opened dest at /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap for
writing
preallocation not supported on this filesystem for /Volumes/bless.lFhE/EFI/APPLE/
FIRMWARE//MBP111_0138_B21_LOCKED.scap

/Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap created
successfully
Relative path of /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap is
\EFI\APPLE\FIRMWARE\MBP111_0138_B21_LOCKED.scap
IOMedia disk0s1 has UUID A99B4ECD-E003-4057-9F8F-9E27F4CFB546
Executing “/sbin/umount”
Returned 0
Write to RTC: 0
Setting EFI NVRAM:
<CFBasicHash 0x7f99db405420 [0x7fffbe787da0]>{type = mutable dict, count = 1,
entries =>
 2 : <CFString 0x1063d8aa0 [0x7fffbe787da0]>{contents = “efi-apple-recovery”} =
<CFString 0x7f99db700e70 [0x7fffbe787da0]>{contents = “<array><dict><key>IOMatch</
key><dict><key>IOProviderClass</key><string>IOMedia</string><key>IOPropertyMatch</
key><dict><key>UUID</key><string>A99B4ECD-E003-4057-9F8F-9E27F4CFB546</
string></dict></dict><key>BLLastBSDName</key><string>disk0s1</string></
dict><dict><key>IOEFIDevicePathType</key><string>MediaFilePath</string><key>Path</
key><string>\EFI\APPLE\FIRMWARE\MBP111_0138_B21_LOCKED.scap</string></dict></array>”}
}

Background color default set successfully

Figure 2.
Output from running the efiupdater application

14

The efiupdater will only attempt to upgrade an EFI firmware that is newer than the firmware that it detects

you are currently running. If an older firmware update is detected, it just prints out the version strings and exits

with a return code of 1.

Raw EFI Version string: MBP111.88Z.0138.B25.1702171721
EFI currentVersion: [0000000001380025]
EFI updateVersion: [0000000001380021]

There is a ‘--force-update’ switch to the efiupdater that causes versions to be ignored, meaning that

older versions of firmware can be set for installation upon the next reboot, while the older firmware can be

set up for installation; whether a downgrade actually occurs is down to the checks enforced by the currently

running EFI firmware. During our research, we found no situation where Apple’s EFI allowed downgrades to

occur. Shortened output from using the switch is below and shows that the EFI currentVersion has been

nulled out to pass the version check:

/usr/libexec/efiupdater -p ~/FirmwareUpdatesTest/ --force-update
EFI currentVersion: [0000000000000000]
EFI updateVersion: [0000000001380021]
EFI found at IODeviceTree:/efi
Will need to copy 8523776 bytes to EFI system partition
...
...

Once the efiupdater command has run, you can inspect that the EFI file has been copied to the EFI partition

and has been blessed by running the following commands:

#Mount the EFI partition
bash-3.2# mount -tmsdos /dev/disk0s1 /tmp/efi
#Look at the contents of the FIRMWARE directory
bash-3.2# ls /tmp/efi/EFI/APPLE/FIRMWARE/
MBP111_0138_B21_LOCKED.scap

This shows the EFI update has been copied to the EFI partition. The following command shows the protected

nvram variable that has been set by the bless command that causes the EFI update file that has been copied

to the partition to be flashed during recovery mode boot. Manually trying to set the nvram variable always fails.

bash-3.2# nvram -px efi-apple-recovery
<output redacted>
efi-apple-recovery <array><dict><key>IOMatch</
key><dict><key>IOProviderClass</key><string>IOMedia</
string><key>IOPropertyMatch</key><dict><key>UUID</key><string>C7BE0AAC-
8FB7-4C11-BF3C-B988FD479B24</string></dict></dict><key>BLLastBSDName</
key><string>disk0s1</string></dict><dict><key>IOEFIDevicePathType</
key><string>MediaFilePath</string><key>Path</key><string>\EFI\APPLE\FIRMWARE\
MBP111_0138_B21_LOCKED.scap</string></dict></array>%00

As can be seen in the green above, the efi-apple-recovery nvram variable has been set to a plist type

structure containing the path to the EFI update file located on the partition we previously observed.

15

In all our tests using the ‘--force-update’ switch, there appears to be another level of checking that takes

place within Apple’s pre-boot EFI environment that prevents rollback to an older version of EFI. While the EFI

update process has been set up by the OS, a reflash never takes place in the pre-boot update environment.

Now that we understand how Apple’s EFI updater works, we can recreate the main steps of blessing a new

EFI update manually with the following command that makes use of the undocumented -firmware switch to

the bless command. It is also important to use the -recovery switch as, without that, the bless command

fails with the error ‘Could not set boot properties: 0xe00002bc Error while writing firmware updater for EFI.’

bless -mount / -firmware ~/Desktop/MBP111_0138_B21_LOCKED.scap --verbose
--recovery
EFI found at IODeviceTree:/efi
Will need to copy 8523776 bytes to EFI system partition
Aggregate boot path is IODeviceTree:/PCI0@0/RP06@1C,5/SSD0@0/PRT0@0/PMP@0/@0:2
GPT detected
...
...
<output redacted>

Much of the output from this command is the same as the output you see when you run the efiupdater

command as it just calls bless directly after doing a variety of checks and validations.

This concludes the whistle-stop overview of how Apple updates EFI firmware and provides you the tools to

take control of updating EFI firmware manually, should you desire.

16

3.0

EFI Updater
Board ID Behavior
While most Mac models have a one-to-one relation with the physical EFI firmware upgrades, some models

do not have a dedicated named upgrade file associated with them. Examples of such models are the

MacBookPro11,3 and MacBookPro11,5 as well as a few others (see Table 2 in Appendix A for a full list).

Throughout our dataset, we observed that the entries for these models appeared to be using the same EFI

firmware as that of the previous model in the range, i.e. MacBookPro11,3 received MacBookPro11,2 firmware,

while MacBookPro11,5 received MacBookPro11,4 firmware. While this seemed somewhat logical considering

the MBP11,3 and MBP11,5 models were very minor revisions to the model line, we wanted to better understand

the process that determines what EFI firmware version these “orphaned” models are assigned.

3.1.
Reverse Engineering efiupdater:
How Does It Pick an Eligible
Firmware File?
As already discussed, the EFI upgrade is initiated by /usr/libexec/efiupdater by enumerating a target

folder containing EFI firmware updates and selecting an eligible firmware file to perform an update with. If the

target folder does not contain an eligible firmware upgrade file because no compatible and/or newer version

was found, the tool takes no action. We decided to reverse engineer efiupdater in order to understand how

it picks eligible firmware. Here’s a summary of that work:

When efiupdater runs, it checks for the presence of two possible option flags: -p (payload) and --force-

update. When no option flags are provided, the tool simply prints the currently installed EFI firmware version

to stdout; both as a simplified string and as a raw version string:

17

Raw EFI Version string: MBP133.88Z.0226.B23.1704201604
 EFI currentVersion: [0000000002260023]
 EFI updateVersion: [0000000000000000]

When run with the -p flag, a path containing one or more EFI firmware update files is expected and the tool

iteratively inspects them, looking for a compatible update:

/usr/libexec/efiupdater -p ~/Documents/EFI/MacBookPro/
Raw EFI Version string: MBP133.88Z.0226.B23.1704201604
 EFI currentVersion: [0000000002260023]
 EFI updateVersion: [0000000002230000]

In the above example, an EFI firmware update file compatible with the model the tool was run on was found

but its version (EFI updateVersion) was older than what is currently installed (EFI currentVersion). This

means no update would be possible since efiupdater does not allow downgrading. The force flag can be

used, and while this will cause the EFI update to be copied to the correct partition and the nvram variables to

be set, a reflash does not occur in the pre-boot EFI environment as the currently running EFI firmware does

not allow downgrading.

After disassembling efiupdater, we found the option flag handling in the main() function together with a

number of other functions that made it clear how the tool determines model eligibility. As part of the code that

handles the force flag, a subroutine creates a force-efi-update property in the “option” IORegistry

realm using IORegistryEntryCreateCFProperty, which results in an nvram variable that is read at boot

time and initiates the EFI firmware update.

Next, a subroutine uses IORegistryEntrySearchCFProperty to search IORegistry for two properties:

board-id and board-rev. The board-id property is an internal Apple identifier that uniquely labels a Mac

model in a way that the more generic model identifier can not. The board-id is formatted as Mac-<8 byte

hex value> and can be retrieved from the command line using this command:

 $ ioreg -p “IODeviceTree” -r -n / -d 1 | perl -n -e ‘/board-
id.*\<\”(.*)\”\>.*/ && print “$1\n”’

 Mac-A5C67F76ED83108C

18

3.2.
Do EFI Firmware Updates
Store a List of Board-ID Entries?
To our knowledge, the board-rev property is rarely

used outside of Apple, so we concluded that, in

most cases, the board-id would be the logical

identifier for efiupdater to use for determining

eligibility. The question was then: do EFI firmware

updates store a list of compatible board-id entries

that tell efiupdater whether a Mac model is

compatible or not?

To answer this, we decided to take a look at

the firmware for a model which we knew was

found to be installed for more than one model:

MacBookPro11,4. We had observed this version of

firmware also being installed on the MacBookPro11,5

so our first task was to determine the board-ids for

the MacBookPro11,4 and MacBookPro11,5.

Luckily, there are multiple online sources that

have complete lists of board-id to Mac model

mappings.20, 21, 22 We determined that MBP115 has

the board-id Mac-06F11F11946D27C5, while

MBP114 has Mac-06F11FD93F0323C5. Our next

step was to load an EFI firmware update for the

MBP114 in UEFITool23 and perform a hex string

search for the hex component of the board-id for

both models.

As expected, we found single entries for both

06F11F11946D27C5 and 06F11FD93F0323C5

in the GUID 781F254A-C457-5D13-9275-

1BF5D56E0724 - a raw entry consisting of a 4-byte

header (0x7C000019) followed by one or more

8-byte hex entries representing the hex portion of

a typical Mac-<hex string> board-id , with

a maximum of 120 bytes available for board-id

storage, or 15 unique entries.

With this knowledge in hand, we returned to the

decompiled efiupdater code to continue our

analysis. Following the retrieval of the board-id, we

determined that the next step is to iterate through

the EFI firmware updates found at the path passed

in with -p.

For each file, the subroutine in charge of finding and

opening firmware update files steps into another

subroutine that reads the file into memory and

jumps to the correct offset within the firmware file

(0xbc0 or 0x1060, depending on the relative age of

the model) for the 781F254A-C457-5D13-9275-

1BF5D56E0724 GUID, which we now know contains

compatible board-id entries.

These subroutines continue to iterate over

firmware files until the newest firmware version

is found. The version of the on-disk firmware is

determined by scanning the file for the hex string

0x2449534f49424924 which is “$IBIOSI$” in

ASCII representation.

The next 24 bytes following this identifier are then

split on the “.” character using strtok() and

subsequently scanned for “88Z” which is the start

of the EFI version string. The contents of the version

string, formatted as XXXX.YYY where X and Y are

both hexadecimal values are converted to unsigned

long integers with strtoul() for numerical

comparison.

A complete table of all known EFI models to Board

ID mappings is given in Table 1, a table showing

Mac models that use firmware versions named after

other Mac models is given in Table 2. Both tables

can be found in Appendix A.

19

Entrypoint

Obtain board-id with
IORegistryEntrySearchCFProperty

Iterate EFI files

Go to known offset for board ID
mapping GUID

Have board-id
match?

Assign
EFI firmware

END

Path flag File path containing
EFI firmware updates

GUID found

Yes

No

No

No

Yes

Figure 3.
Flow diagram of the process efiupdater follows to locate the correct EFI update file

3.3.
How efiupdater Handles
EFI Firmware Updates for Macs
Based on Their Board-ID
We now have a complete understanding of how efiupdater handles EFI firmware updates for Mac models

without dedicated EFI updates: the tool retrieves the board-id for the Mac it is run on, loads one or more

firmware updates, parses the contents of a specific GUID in the EFI bundle and attempts to find a match

for the board-id it retrieved. This allows Apple to use one firmware update for multiple compatible models

without the need to ship multiple identical files. A simplified flowchart of the above process is illustrated in

Figure 3.

20

4.0

Initial Research
Questions
Like all research, we had a series of questions we wanted to answer.

The questions we started this project with were:

• If you are fully patched and up to date with regards

to the macOS/OS X software, are you also fully

patched in terms of your EFI firmware?

• Is there a difference between the firmware security

patches that are available between the different

major OS versions (in this case, 10.10, 10.11 and

10.12) even though EFI is independent of the

running OS?

• Is there a difference between the firmware security

patches that are available between different

models of Mac hardware?

• Are there any discrepancies between the

expected version of firmware that a system

is running and the actual version of firmware

a system is running when we look over large

numbers of real-world systems that would be

indicative of more widespread EFI update issues?

• More generally, is there information that could be

shared about non-obvious areas of EFI updates

and their security that could help Apple admins

and users make their systems more secure?

These questions came from the more general hypothesis that there was an unequal relationship between the

security support provided for software as opposed to firmware. Additionally, we hypothesized that the exact

situation with firmware security patches and which systems received them was not well-understood, nor

something that had been investigated publicly.

It was with these points in mind that we began the project.

Results

21

5.0

Research
Methodology
Our research consisted of two main activities:

• The first focused on the analysis of the Mac software update packages themselves, the firmware updates

they contained, and which systems the firmware updates would apply to.

• The second was a large-scale data collection and analysis of 73,383 Mac systems and the versions of

software, hardware and firmware they were running.

The analysis of the firmware and software updates released by Apple covered all Mac updates released

during the period between OS X 10.10 (released October 16, 2014) and macOS 10.12.6 (released July 19 2017),

54,744 in total from the full dataset - the full list of updates analyzed and the firmware they contained is given

in Table 3 in Appendix A.

Firmware updates from Apple come bundled within the OS updates and are held in a package file called

FirmwareUpdate.pkg. This can be extracted from the larger OS update bundle manually using standard

system tools or through the use of an application like Pacifist.24 Since Apple update packages are really just

xar archives, the following commands will allow you to extract the FirmwareUpdate.pkg package from the

overall OS update package:

xar -xf /tmp/mac_os_upd_10-12-2.pkg FirmwareUpdate.pkg -C /tmp/extracted_
firmware

The FirmwareUpdate.pkg package is, in turn, a directory that contains four files, one of which is a gzip

compressed tar archive named Scripts. It can have its contents extracted using the following:

tar -zxf /tmp/extracted_firmware/FirmwareUpdate.pkg -C Scripts

A second method of extracting the payload from the package is to use the native pkgutil tool and its

expand verb:

pkgutil --expand /tmp/mac_os_upd_10-12-2.pkg /tmp/extracted_firmware
cd /tmp/extracted_firmware/FirmwareUpdate.pkg/Scripts/Tools/EFIPayloads

Either method will produce the directory structure of Scripts that contains a Tools subdirectory that, in turn,

contains the EFIPayloads directory.

22

It is in the EFIPayloads directory where the actual EFI update binaries are stored. The naming of the files in

that directory indicate the Mac hardware model in the section before the first underscore, which is followed by

the version of the EFI firmware file itself.

The only deviation from the recipe of analysis outlined above was for two EFI specific updates released by

Apple called EFI Update Mac 2015 and EFI Update Mac 2015-002 that contained a differently named package

called EFIUpdate.pkg, rather than FirmwareUpdate.pkg. The structure and contents of that package

was, however, consistent with what is described above aside from the name of the package.

Now that we know how to get access to the EFI binaries in an update, we can build up our dataset correlating

EFI binary versions observed in an Apple update against the model of Mac hardware the EFI binary was for;

this is repeated for every OS update. This produced datasets that were similar to those in Table A.

OS Update MBP91 MBP121 IM142

com.apple.pkg.update.security.2017-
001Yosemite.14F2315

00D3 B0C 0167 B14 0118 B12

com.apple.pkg.update.os.SecUpd2017-
002El Capitan.15G1510

00D3 B15 0167 B24 0118 B20

com.apple.pkg.update.
os.MacBookProUpdate.16F2104

00D3 B15 0167 B24 0118 B44

Table A.
An example of the OS update, Mac hardware model and EFI firmware lookup tables that were constructed from analysis of the
update packages.

Figure 4.
Contents of an
EFIPayloads directory in an
FirmwareUPdate.pkg bundle

23

In order to make the analysis of these large sets of Apple firmware updates easier and quicker, a small

script was written to automate the task of extracting and tabulating the firmware’s characteristics. As part

of this research, the tooling developed is being released for end users and admins to use to get a better

understanding of their systems’ EFI state.25

The second area of analysis was across 73,383 Mac systems deployed in production roles across a range of

organizations. Administrators at these organizations were kind enough to help in this research by supplying

anonymized data regarding the software and firmware versions of their fleets. This data allowed us to work

with a representative dataset of real world production Mac systems that we could query and compare against

the idealized dataset derived from the OS updates themselves.

The data was gathered by running a distributed query of endpoints using one of two methods:

• A prepared osquery26 statement that gathers Model ID, OS version, OS build and EFI boot rom version

select hardware_model, os_version.version as os_version, build as os_build,
p.version as rom_version from os_version, platform_info as p JOIN system_
info;

A one-liner shell script that uses system tools to gather the same information:

echo “$(ioreg -l | awk ‘/product-name/ { split($0, line, “\””); printf(“%s\n”,
line[4]); }’)\t$(sw_vers -productVersion)\t$(sw_vers -buildVersion)\t$(ioreg -d
3 -p IODeviceTree -n rom | awk -F\” ‘/version/{print $4}’)”

Sample output from methods looks as following:

+----------+---------+----------+---------------------------+
| hw_model | os_vers | os_build | rom_vers |
+----------+---------+----------+---------------------------+
| iMac12,1 | 10.12.5 | 16F73 | IMP121.NNZ.NNNN.BNN.NNNN |
+----------+---------+----------+---------------------------+

Once collected, these were put into a single large dataset that comprised the real world data observed about

the hardware, software and firmware on a range of systems deployed in production roles across a range of

organizations.

With both of these datasets in hand, we were in a position to be able to cross-correlate the observed real

world data against the idealized data derived from Apple’s updates. Since Apple automates the installation of

firmware updates within the larger OS updates, we were able to strongly correlate the expected versions of

firmware that should be present on a system given the model of the Mac hardware and the build version of the

OS. It is the intersection and analysis of these two fairly simple datasets that allowed us to answer many of

our initial questions.

24

6.0

Analyzing the Data,
What Was Found?
Now that we have created our two main datasets and have a way to correlate them, we could dig into the

actual analysis. What follows is a discussion of the main items of interest that we discovered during our

analysis alongside additional context of what the security impacts of the findings may be.

6.1.
Comparing the Running to
the Expected Firmware Version,
Based on the Current OS Patch Level
As described in the Research Methodology section,

a large-scale data analysis was conducted across

73,324 Mac systems. Of those systems, there were

65,853 Mac systems that were running an OS build

in the 10.10 (Yosemite), 10.11 (El Capitan) or 10.12

(Sierra) families for which we had the corresponding

OS and EFI update data from the analysis of update

packages themselves. The remaining 7,471 systems

were running versions of OS X older than 10.10.

For these 65,853 systems, we then compared the

version of the EFI that was installed against the

version of EFI that we would expect to be installed

based upon the running OS version and the EFI

binaries we observed being bundled in that update.

At the top level, this analysis showed that over 4.2%

(or 2,282) of the sampled Apple Mac systems were

not running the version of EFI firmware that was

released with the OS version they were running.

This figure was unexpectedly high given that Apple

Mac’s firmware updates come bundled with their

OS update and should be installed automatically,

rather than relying on a separate EFI specific update

having to be applied.

Given a version of the OS a Mac system is running,

there should be a high degree of certainty as to

which firmware version it is running. As part of the

installation process that updates the OS to a given

version, it should also automatically update the

firmware to the latest version that comes bundled

with it.

Digging deeper into the data showed a number of

other interesting trends. A breakdown of the most

interesting observations are given below:

25

 When segmented on the basis of different Mac models, there were certain newer models of hardware that

had significantly higher rates of unexpected versions of EFI running. The top five models of Mac showing

above-average deviations had the following percentages of unexpected EFI firmware:

• The iMac16,2 (iMac 21.5”, discontinued 6/5/2017)

topped the list with 43% having unexpected EFI

firmware versions.

• All members of the MacBookPro13 series (late

2016 MacBook Pro) were found to have between

35% and 25% of reported endpoints running an

unexpected version of EFI firmware that was

older than the version that shipped with their

current OS build version.

• In fifth place was the Macbook Pro 8,2 (early

2011 models) with 14.9% that had older-than-

expected EFI firmware.

• These significant deviations from the average

across all models of 4.2% of systems running

an older-than-expected version of EFI firmware

raises significant questions as to why some

models are more prone than others to have

older EFI firmware. Particularly interesting

is the clustering of the three models of the

MacbookPro13 series.

When segmented on the basis of OS version, there was also a significant clustering of discrepancies:

• Macs running builds of macOS 10.12 Sierra

appeared to have the highest overall incidence of

out-of-date EFI firmware with an average of 9.5%

running a version of firmware that was older than

the versions that shipped with that OS’s build.

• Macs running OS X 10.11 El Capitan were second

with an average of 3.4% running older-than-

expected EFI versions.

• Systems running OS X 10.10 Yosemite had the

lowest percentage with 2.1% of EFI firmware

versions that were older than expected.

• This gave a combined percentage across OS

X 10.10, OS X 10.11 and macOS 10.12 as 4.2%

running an older-than-expected version of EFI

firmware.

• Overall, our analysis across different OS builds

suggests that Mac systems with more recent

versions of macOS are up to 4.5 times as likely to

have an EFI version that was older than expected

in relation to the installed OS build version: 2.1%

for those running OS X Yosemite vs. 9.5% for

macOS Sierra.

A more granular breakdown of the systems running unexpected firmware versions is given below in Table 3 in

Appendix A.

26

Factors Contributing to the Failure to Update EFI

While we are able to observe that older-than-

expected and vulnerable versions of firmware are

running on large populations of deployed Macs, we

are not able to determine the exact root cause that

is behind these figures. In reality, we expect that

there are likely a variety of different factors at play

that contribute to the results we observed.

The sheer number of affected systems alongside

the manner in which they cluster depending on OS

and hardware version gives us confidence that the

anomalies are not purely a result of user error on the

part of system owners and it is, in fact, reflective of

some kind of failure in the way EFI firmware updates

are installed.

Not every method of updating OS X/macOS is

equivalent and some methods are seemingly not

able to update the EFI firmware. One notable

example of this is if the update is being performed

via an update source that is using Target Disk Mode.

In such a scenario, the OS will update but the

EFI will remain at the previous version. This may

explain some of the EFI version discrepancies if

systems had a new major OS build installed via

the target disk installation method, however it

would not account for the discrepancies arising

from OS updates installed after the initial base OS

installation.

It would also be reasonable to assume that there

may be other conditions where installation methods

are not able to update the EFI, although the

conditions that could preclude the update of the EFI

are not seemingly documented anywhere and so

would be unknown to most admins and users.

A more concerning potential contributing factor is

that, if the EFI update process fails for some reason,

the user is not notified, and continues to not be

notified, about the fact that their version of EFI is

old and, in some cases, potentially vulnerable. This

creates a situation where end users and admins

believe they are running the most secure and up-to-

date system components they can and are, in fact,

in a position of potential blind vulnerability to attacks

they thought they were secured against.

Compounding this issue further is that without

manually carving up an OS update package and

knowing the undocumented commands you have

to run to update an EFI firmware image, there is no

official way to update the EFI image without a full

reinstall of the OS update. An anecdotal sampling

of the experienced admins at the organizations

who shared their system version data with us for

this study showed that, without exception, they

were all very surprised at the discrepancies in their

fleet’s EFI versions and that they have received

no notifications of those discrepancies from the

management systems they use.

Regardless of the root cause, the fact that this is

the real-world state of EFI firmware security for Mac

deployments strongly indicates there is some form

of widespread failure at play, further highlighting the

lack of visibility, notification, and control that users

and admins have over the security of their system’s

firmware.

27

6.2.
Discrepancies in the Systems Receiving
Firmware vs. Software Security Patches
Though all the EFI vulnerabilities discussed in section 6.4 were eventually patched by Apple, the way in which

this seems to have been achieved appears somewhat arbitrary and differs significantly depending on the

combination of the Mac model and OS version.

For example, older iMac models from the iMac11,1 range did not appear to have received any updated EFI

firmware until it was bundled with either the OS X 10.11.1 update, or applied with the EFI Security Update

2015-002. These two updates were released in October 2015 and contained patches for the Thunderstrike

vulnerability. That same patch had been made previously available for newer Mac models back in June 2015,

meaning certain models of Mac were left vulnerable almost four months longer than others.

Older and no longer shipping models received their EFI updates much later, or not at all, vs. newer models that

were still available. This could make more sense if the systems not receiving EFI security patches were also

no longer supported by the OS versions that Apple continues to provide software security patches for, but

this is not the case.

Overall, our analysis of the security patches identifies the following 16 models of Mac systems that are still

supported from the perspective of security updates for the OS and built-in applications, but that also appear

to no longer receive security updates for their EFI firmware.

iMac iMac7,1 iMac8,1 iMac9,1 iMac10,1

MacBook MacBook5,1 MacBook5,2

MacbookAir MacBookAir2,1

MacBookPro MacBookPro3,1 MacBookPro4,1 MacBookPro5,1 MacBookPro5,2

MacBookPro5,3 MacBookPro5,4

Macmini N/A

MacPro MacPro3,1 MacPro4,1 MacPro5,1

These delays and lack of EFI updates would make more sense if those older models also no longer supported

the then-current shipping OS, but this is not the case. All of the “delayed” older models were fully capable of

running the current OS at the time, yet did not receive EFI firmware updates (if they received them at all) until

a later Security Update release, or updates to the OS itself.

28

This creates a situation where there are models of Macs that are secure and patched against known security

issues from the perspective of their software, but are still vulnerable and out of date in terms of their firmware

- or, to put it another way, they are software secure but firmware vulnerable.

There were other unexplained omissions from the list of Mac models that received EFI firmware updates as

well. Certain models that, at the time of writing, had supported every shipping version of the OS had either not

received any EFI firmware updates or only started receiving them much later. Some examples include:

• Mid-2010 MacBook 13” (MacBook7,1)

• Mid-2010 MacBook Pro 17” (MacBookPro6,1)

• Mid-2010 MacBook Pro 13” (MacBookPro7,1)

• Early 2009 Mac Mini (Macmini3,1)

The Mid-2010 MacBook 13” (MacBook7,1) did not appear to have received any EFI firmware updates until

macOS 10.12 Sierra shipped in September 2016. Since this is a model that first shipped in 2010, it would be

reasonable to expect that some, if not all, of the EFI firmware patches that shipped between January 2015 and

September 2016 were applicable to its firmware, even though it does not have any PCI-connected peripheral

ports.

Patch Protection Against ThunderStrike 1 & 2

You may recall that while the first Thunderstrike vulnerability used PCI-attached peripherals to force loading

option ROM code that attacked the EFI firmware, later vulnerabilities did not require physical malicious

hardware to be present, thus potentially making the 2010-era 13” MacBook vulnerable.

The Mid-2010 17” MacBook Pro did not receive an EFI firmware update until EFI Update 2015-002 was

released, providing protection against Thunderstrike 2. Since the earlier EFI Update 2015-001 patched the

hardware-based Thunderstrike 1 vulnerability, this means there was a gap in coverage of about four months

during which MacBookPro6,1 was vulnerable.

In comparison, the id-2010 13” MacBook Pro went without any EFI firmware updates until macOS 10.12.4 when

a MacBookPro7,1-specific update appeared. Lacking any evidence of earlier EFI firmware updates for this

model, we must conclude that the Mid-2010 13” MacBook Pro was vulnerable to any vulnerabilities starting

with Thunderstrike 1 and continuing until 10.12.4 patched the PCI DMA attack by Ulf Frisk.

It is unclear if this update also provided “true up” patches for other historical EFI vulnerabilities or if it only

patched the DMA attack vulnerability. We would be more inclined to assume that these models were simply

not affected by any of the vulnerabilities found over the course of 2015 and 2016, but since they have now also

started receiving regular EFI firmware updates, the reason for this late inclusion might very well be because of

security concerns that arose later.

29

6.3.
Lack of Visibility, User Alerts
& Mac Model/OS Inventory
Compounding these issues further is the lack of

visibility into the discrepancy between the security

support provided to software vs. firmware, as well

as no available data detailing which Mac models on

which OSs will receive firmware security patches.

Compared to software updates, there is a lack

of alerts provided to notify a user of the need for

firmware updates, or that the currently running

EFI firmware is out of date.

Additionally, there is a lack of readily-available

information describing the known security issues

any particular EFI version may be vulnerable to;

this means users and admins are rarely aware

of the risks associated with running unpatched

EFI firmware.

The state and visibility of firmware security updates

appears significantly lacking when compared to the

security updates of OS and application software.

As a result, Apple infrastructure is exposed to the

risk of a compromise due to a variety of public

exploits that target EFI firmware.

In addition, Apple arbitrarily and gradually phases

out security updates for older OS versions, causing

those versions to quietly miss out on important

EFI firmware updates. The lack of a reliable and

published roadmap for current and past OS version

support makes it hard to establish an enforceable

OS deprecation timeline for most IT organizations.

This may inadvertently soothe some into thinking

that their older models running older OS versions

are still fully supported. Apple’s only standing advice

for anyone managing Mac models and OS versions

of any age is to always run current hardware and

software.

30

6.4.
Anomalies in Firmware Versions
Suggest Incorrect Firmware May Have
Shipped With Security Updates
As we were analyzing the various OS updates and

building up our lookup tables for which versions of EFI

firmware shipped for which Mac models, we encountered

an unexpected situation where it seems that Security

Update 2017-001 (released March 27 2017) for both OS X

10.10.x (Yosemite) and 10.11.x (El Capitan) were released

containing EFI binaries that were older than the EFI

binaries released with the previous OS updates (Security

Update 2016-007 for Yosemite and Security Update 2016-

003 for El Capitan).

MD5 hashes of the EFI files contained in the 2017-001

updates show that they match the versions of firmware

that were released in security updates from October 2016.

Tables 4 and 5 in Appendix A provide the breakdown

of EFI firmware that shipped with the 2017-001 security

updates and in the previous two security updates.

In total, there were 24 EFI binaries that shipped with

Security Update 2017-001 for Yosemite (Build 14F2315)

that were older versions than shipped with Security

Update 2016-007 for Yosemite (Build 14F2109). There

were also 23 EFI binaries that shipped with Security

Update 2017-001 for El Capitan (Build 15G1421) that were

older versions than shipped with Security Update 2016-

003 for El Capitan (Build 15G1217).

After this discovery, we wanted to confirm whether there

was ever a situation in which this might have caused

an unintended downgrade of the EFI firmware of any

of the supported Macs. Our analysis showed that in

normal use, neither of the EFI firmware updater tools

MultiUpdater.efi or efiupdater would have caused

older versions of EFI to be reflashed on a system as the

pre-boot EFI update environment independently checks

the version of the new firmware image and will not allow

downgrades.

Even if the updater applications were used with non-

standard options to force an older EFI firmware binary to

be set for installation (or if the whole EFI update process

was done manually), security mechanisms within the EFI

update pre-boot environment itself prevent a firmware

downgrade from occurring. As such, we do not believe

a widespread downgrade of EFI firmware was likely to

have occurred. This means that the EFI binaries shipping

with Security Update 2017-001 look like dead weight and

would not serve any purpose to an end user, which further

supports the assumption that the presence of the old

EFI firmwares in the two 2017-001 security updates were

an error by Apple in the packing of the updates. As of

the time of writing, this is an error that has still not been

addressed by Apple.

Upon the release of Security Update 2017-002 (15 May

2017), these regressions were fixed for OS X 10.11 (El

Capitan) with EFI binaries of a completely new version

being released, however Security Update 2017-002 for

10.10 (Yosemite) did not address the version issues, as

it released without any EFI binaries at all. This creates a

confusing situation whereby there are 27 Mac models that

would be running more up-to-date firmware if they were at

OS update 2016-006 rather than at OS update 2017-002,

but would obviously be running out-of-date software.

While an interesting anomaly in and of itself, the fact

that Apple shipped what appears to be the incorrect

versions of EFI firmware in a security update also raises

some concerns around the QA release process that goes

into the production release of security updates, as well

as the internal coordination between the engineering

teams responsible for the Mac software and firmware.

This further goes to show the asymmetric relationships

that exist in terms of software and firmware security,

depending on complex intersections of specific versions

of hardware and software.

31

6.5.
Public EFI Vulnerabilities &
Associated Patch Releases
Tables 6, 7, 8 & 9 in Appendix A show the updates

released that address the range of known public

EFI vulnerabilities that have been either explicitly

called out as being fixed in Apple’s release notes

or that were verified as being patched through

testing by vulnerability authors (it is assumed that

any updates released subsequently to the versions

cited as addressing a vulnerability also contain

the fix, although, at this time, this has not been

independently verified through reverse engineering

or comprehensive testing for exploitability).

To our knowledge, there is no currently available

dataset that maps Apple’s EFI versions to the

vulnerabilities that impact them. As part of this work,

we will be releasing the data and APIs to make those

queries simple to make.

Beyond the data surrounding which EFI firmware

versions patch which vulnerabilities, the collation

of these vulnerability-specific datasets themselves

allows further analysis, which presents some

interesting results that are discussed below in more

detail. In tables 6, 7, 8 & 9 in Appendix A, anomalies

are highlighted with green text.

Thunderstrike 1 (CVE-2014-449827) patches - This patch looks relatively straightforward. All systems

receiving the patch receive it evenly across the board, regardless of whether they are running 10.10, 10.11, or

10.12.

In all, there were 47 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to receive

a patch against the Thunderstrike 1 vulnerability:

iMac
iMac7,1, iMac8,1, iMac9,1, iMac10,1, iMac11,1, iMac11,2, iMac11,3, iMac12,1, iMac12,2,
iMac13,1, iMac13,2

MacBook MacBook5,2, MacBook6,1, MacBook7,1

MacBookAir
MacBookAir2,1, MacBookAir3,1, MacBookAir3,2, MacBookAir4,1, MacBookAir4,2,
MacBookAir5,1, MacBookAir5,2

MacBookPro
MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2, MacBookPro5,3,
MacBookPro5,4, MacBookPro5,5, MacBookPro6,1, MacBookPro6,2, MacBookPro7,1,
MacBookPro8,1, MacBookPro8,2, MacBookPro8,3, MacBookPro9,1, MacBookPro9,2

Macmini Macmini3,1, Macmini4,1, Macmini5,1, Macmini5,2, Macmini5,3

MacPro MacPro3,1, MacPro4,1, MacPro5,1, and MacPro6,1

Thunderstrike 2 (CVE-2015-3692,28 CVE-2015-369329) patches - This patch set is also consistent in the

versions of EFI that are being patched across all OS versions that contained the EFI updates. Exceptions

worth noting would be iMac15,1 and MacBook8,1 that did not have updated firmware shipped in Security

Update 2015-005 for 10.9 or 10.8. This was most likely because these models were released with OS X 10.10.x

installed and so are not considered supported for 10.9 or 10.8.

32

In all, there were 31 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to receive a

patch against the Thunderstrike 2 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1, iMac11,1, iMac11,2, iMac11,3, iMac12,1

MacBook MacBook5,1, MacBook5,2, MacBook6,1, MacBook7,1

MacbookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacBookPro
MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2, MacBookPro5,3,
MacBookPro5,4, MacBookPro5,5, MacBookPro6,1, MacBookPro6,2, MacBookPro7,1

Macmini Macmini3,1, Macmini4,1

MacPro MacPro3,1, MacPro4,1, and MacPro5,1

CVE-2015-703530 patches - This patch set had quite a number of anomalies focused on the uneven

distribution of EFI updates across the range of OS and security patches that should have contained them. A

summary of the anomalies is given below:

• No EFI patches for this vulnerability were released

for systems running OS X 10.9.x.

• Certain models of Mac seem to have had

EFI firmware patches missing from Security

Update 2015-004 for 10.10 and only updated

firmware included in 10.11.1 and EFI Security

Update 2015-002. The models in question are

MacBookAir4,1, MacBookAir4,2, MacBookPro8,1,

MacBookPro8,2, MacBookPro8,3, Macmini5,1,

Macmini5,2, Macmini5,3. The absence of firmware

updates for them in Security Update 2015-004

for 10.10 is in contrast to the many other models

receiving patches for CVE-2015-7035 across

the board, looking at the heatmap (duo.sc/EFI-

heatmap) helps make these anomalies clear.

• iMac16,2 does not have an EFI update included

in 10.11.1 whereas iMac17,2 does. This model of

Mac was released only a short time before the

CVE-2015-7035 patch and so it is conceivable that

the EFI firmware it shipped with from the factory

was already patched against the vulnerability,

though this raises the question as to why that

wasn’t also the case for iMac17,1.

• Another anomaly is the absence of EFI patches in

the EFI Security Update 2015-002 for the following

models: iMac15,1, MacBook8,1, MacBookAir7,1,

MacBookAir7,2, MacBookPro11,4, MacBookPro11,5

and MacMini7,1. These models break the pattern

of other closely related models that ship firmware

patches in EFI Security Update 2015-002 and

is also noteworthy for the fact that all of these

models had firmware patches contained in EFI

Security Update 2015-001.

https://docs.google.com/spreadsheets/d/1gzgm9i4Qd7RigmaBTfb11sYKrMHRHMQfZJ858bSu0EY/edit#gid=950358173

33

In all, there were 25 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to receive

a patch against the CVE-2015-7035 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1

MacBook MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacbookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacBookPro MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2, MacBookPro5,3,
MacBookPro5,4, MacBookPro5,5, MacBookPro7,1

Macmini Macmini3,1, Macmini4,1

MacPro MacPro3,1, MacPro4,1, and MacPro5,1

DMA attack (CVE-2016-758531) patches - This patch set contained a number of anomalies relating to the

combinations of Mac hardware and OS version that see patches for the vulnerability being shipped.

• Singular in its occurrence was the anomaly of iMac16,2 that seems to be missing a patch for 10.11 even

though it receives a patch for 10.12 and 10.10

• Distinct as compared to the other security patches discussed so far was the number of models that

received EFI security updates that had never seen them before. However, they only received the fix for

CVE-2016-7585 if they were running 10.12; if they were running OS versions 10.11 or 10.10, they remained

vulnerable. The models in questions are: MacBook7,1, MacBookPro7,1, and MacMini4,1.

• The patch set also exhibited a characteristic not seen in other EFI vulnerability patches where the version

numbers of the EFI firmware were different depending on which software patch contained them. While these

different version numbers are not necessarily vulnerabilities in and of themselves, it is an artifact of the

inconsistencies observed in the way EFI firmware security patches are being provided across different OS

versions.

In all, there were 22 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to receive

a patch against the CVE-2016-7585 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1

MacBook MacBook5,1, MacBook5,2, MacBook6,1

MacbookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacBookPro
MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2, MacBookPro5,3,
MacBookPro5,4, MacBookPro5,5

Macmini Macmini3,1

MacPro MacPro3,1, MacPro4,1, and MacPro5,1

Additionally, these 22 models did not receive security patches for any of the four public vulnerabilities

discussed above.

34

Overall, the level of inconsistency that seems to be present with regards to which systems are receiving EFI

patches for known public vulnerabilities is concerning due to the likelihood of systems remaining inadvertently

unpatched and vulnerable with end users and admins possibly having a false sense of security in thinking their

systems had been patched. This heatmap shows a more graphical overview of which systems did or did not

receive a patch for a given vulnerability at the time of initial release.

We would encourage Apple and other vendors to be both explicit and transparent with the systems that are,

and are not, receiving EFI firmware patches for known public vulnerabilities in order to provide the users of

systems full visibility to the state of their systems and any associated risks.

6.6.
Incorrect CVE Assigned
to Unused EFI Functions
A smaller finding discovered as part the research was the incorrect CVE ID given in the release notes for

Apple’s OS update for OS X El Capitan 10.11.1 and related security updates for Yosemite and Mavericks.

The discrepancy was that in the Apple security release notes,32 the CVE attribution for this issue was listed as

CVE-2015-4860.33 This was incorrect as it refers to an entirely unrelated Oracle Java vulnerability. The correct

CVE that should have been referenced for the vulnerability is CVE-2015-7035.

We raised this as a Radar item that got assigned ID 32995209.34

35

6.7.
Miscellaneous & Interesting
Anomalies in the Dataset
This section just captures a few other observations made during the research, and while they are not as

concerning as some of the other findings above, they are worth noting and could warrant more investigation

or explanation in the future.

Analyzing the released firmware updates and looking at the highest version available for each Mac model

seen in Table 10 in Appendix A reveals some interesting anomalies (note that due to a range of reasons

discussed elsewhere in the paper, the highest numbered version of EFI firmware does not always relate to the

most recently released).

A collection of high-level observations from this data include:

• Mac model Mac11,1 seems to have never received

a newer EFI firmware version since the standalone

2015-002 EFI update.

• Mac model MacBookPro6,1 saw no EFI updates for

an OS version since the standalone 2015-002 EFI

update until the 10.12.4 update released in March

2017. After that, two month delay until Security

Update 2017-002 (El Capitan) was released in

May 2017.

• There are six systems where the most recent

version of EFI firmware shipping with OS X 10.11 (El

Capitan) do not match the most recent versions of

EFI firmware shipping with macOS 10.12 (Sierra).

These systems are iMac14,1, iMac14,2, iMac14,3,

MacBookAir6,1, MacBookAir7,1 and MacMini7,1.

• With the exception of iMac11,1, any system running

OS X 10.10 (Yosemite) runs older EFI firmware than

the same system running OS X 10.11 (El Capitan) or

macOS 10.12 (Sierra).

• Given the possibility of the EFI firmware version

regression already discussed in section 6.4, the

highest versions of EFI firmware for Yosemite

systems were released in early December 2016.

6.7.1.
Mac Models With Multiple Observed Versions in
Production but No Observed EFI Updates

An analysis of the real world dataset alongside the

EFI firmware updates released with the OS patches

shows a number of Mac models that have only been

observed with either a singular, or small number of

deployed versions. Single versions of observed EFIs

strongly indicate that those Mac models have never

received a field update to their EFI and are running

the firmware that they left the factory with.

Two or three observed versions that are very close

in build number could indicate that either there were

a small number of different firmware versions that

were used on shipping Macs, or that there were field

updates - but they were before the release of OS X

10.10 and were not part of our analysis. If the latter is

the case, then the EFI firmware of those models has

gone many years without seeing an in-field update

and are likely open to multiple vulnerabilities.

Table 11 in Appendix A shows the models that had

no EFI updates between OS versions 10.10.0 to

10.12.6 and where the real world data shows only

one, two or three EFI versions observed in the wild.

36

All of the models here are capable of running 10.11 or

were newer, older models were not included as part

of this analysis.

6.7.2.
An Anomaly in EFI Firmware Updates for Macbook Pros

There were three models of Macbook Pros (MBP111, MBP114 & MBP121) where, for Security Update 2016-003

(El Capitan), the firmware in the OS update did not appear to have their versions increased in the same way

that EFI’s for other related Macbook Pros did. Table B shows the observed anomalies:

Update Date MBP101 MBP102 MBP111 MBP112 MBP114 MBP121

2016-007
(Yosemite)

2016/12/13 00EE B0B 0106 B0B 0138 B18 0138 B18 0172 B10 0167 B18

2016-003
(El Capitan)

2016/12/13 00EE B0B 0106 B0B 0138 B17 0138 B18 0172 B09 0167 B17

10.12.2
(Sierra)

2016/12/13 00EE B0B 0106 B0B 0138 B18 0138 B18 0172 B10z 0167 B18

Table B - EFI firmware versions released in Security Update 2016-003 (El Capitan) that did not appear to receive an update
while other Macbook Pro models did

Table B shows in green the three models of

Macbook Pro with versions of firmware that did not

seem to receive updates in the OS update package

despite other Macbook Pro models receiving an

incremental update for the same 2016-003 (El

Capitan) security update, and the same Macbook

Pro models also receiving updated firmware in the

updates for 10.12.2 and 2016-007 (Yosemite).

This data tends to suggest that there could have

been another FirmwareUpdate.pkg QA issue

where the three Macbook Pros erroneously didn’t

receive the firmware update they should have; it

also could have been intentional on Apple’s part.

It’s impossible for us to know, but it is interesting

nonetheless.

6.7.3.
EFI Update Filename Anomalies

Some EFI update filenames seem to flip the

endianness of the numbers used in the file naming

of the build number in OS update 10.12.4 released

in March 2017. The differently-named EFI updates

were confirmed to be identical through comparing

the SHA-256 hashes on the files themselves.

For example, Mac model iMac12,1 had an EFI update

named ‘IM121_0047_B29’ in OS update 10.12.4, and

it converted back to ‘IM121_0047_29B’ in OS update

10.12.5. While this is not a security issue in and of

itself, it does raise questions about the level of

automation and associated QA processes involved

in the release of new EFI updates. Inconsistencies

in the versioning of updates quickly leads to worries

about inconsistencies elsewhere that may be less

visible. Aside from any security issues, naming

convention discrepancies like this can make tooling

that inspects things like versions more of a pain to

write as there has to be unique exceptions for such

anomalies.

The full list of systems where we observed this EFI

file name change is: iMac11,2, iMac12,1, MacBook7,1,

and MacBookPro6,1.

37

7.0

Mitigation
While the age of Macs and the OS running on them as used by an organization in combination with the

management tools in use can make for a complicated picture when it comes to keeping track of the actual

deployed versions of EFI firmware, the ways to mitigate out-of-date versions are straightforward:

• Always deploy the full update package as released

by Apple, do not remove separate packages from

the bundle updater. Some Mac sysadmins will

separate the OS and EFI firmware updates for

historical purposes but this should no longer be

necessary.

• When possible, deploy Combo OS updates instead

of Delta updates. After the initial .1 point update

to macOS, Apple releases both Combo and Delta

updates. Mac sysadmins in the field report better

update success rates when choosing the Combo

update.

• Verify that endpoints received the expected

EFI firmware version as shipped with the OS

update that was applied. Refer to the Research

Methodology section for directions on how to find

the versions of EFI firmware as part of an OS or

security update or make use of the EFIgy tooling

we have released along with this paper.35

• Since Apple no longer provides separate EFI

firmware updaters through their Support website,

it is imperative that any endpoints that did not

receive the expected EFI firmware update are

scheduled to re-install their most recent OS or

security update.

• Although faster, it is important to keep in mind

that when using imaging workflows instead

of file-based installations of the OS, there is a

significant chance that the target Mac will not

receive EFI firmware updates. Imaging workflows

simply write the blocks of a precreated disk image

to disk and unless the post-imagine workflow is

followed up with an installation of the appropriate

EFI firmware update for the just deployed OS

version, the endpoint firmware may go out of date.

This includes imaging via Target Disk Mode and

NetBoot or NetInstall-based imaging workflows.

• As a general rule of thumb, always run the latest

version of macOS (10.12 at the time of writing).

While Apple has historically provided security

updates for at least the two previous OS versions,

they typically do not contain all the security

patches that ship for the current OS version and

this seems increasingly true for EFI firmware

updates.

38

8.0

Conclusion
This research has shone a light on some of the ways in which security patch support provided by Apple for

firmware is quite different than the security patch support they provide for software. Our findings highlighted

five main areas of note regarding Apple’s EFI security:

1. You can be software secure but firmware

vulnerable. The EFI firmware security patch

support does not map 1:1 to software security

patch support provided by Apple. As a result,

you can be unknowingly running systems that

are fully up to date for OS and applications,

but years out of date in terms of EFI firmware,

leaving your Mac vulnerable to publicly disclosed

vulnerabilities and exploitation.

2. There seems to be something interfering with

the way bundled EFI firmware updates are

getting installed, leading to systems running

old EFI versions. We are not able to give an

exact reason why, but there are significant

discrepancies between the firmware version

that is actually running on real world production

systems and the version that is expected to be

running, given the OS build. This means that

even if your Mac is still receiving security patch

support, there is a non-trivial chance that your

system is not running the latest version, even

though you thought it was installed.

3. The release QA on the FirmwareUpdate

bundles is concerning - The presence of what

looks like version regressions on the included EFI

firmware bundles for recent security updates is

very surprising to find. Additionally, the seemingly

erroneous absence of security-specific EFI

updates for some models of hardware is even

more worrying. The fact that it has not been

detected and fixed by Apple retrospectively

is more surprising still, as is the fact that the

following 2017-002 security update only rectified

the issue for El Capitan systems and not for

Yosemite.

4. There is very little visibility to the state of EFI

firmware security for Apple systems. From a

variety of perspectives, access to information

about EFI firmware security is hard or impossible

to find. There are no published timelines for how

long EFI firmware will be supported for firmware

patches, or any lists of which systems are no

longer going to receive firmware updates, despite

continuing to receive software security updates.

Visibility is also lacking for the admins and users

of Mac systems who are not notified when their

systems are running out-of-date firmware, nor

are they able to find out in a direct fashion which

vulnerabilities apply to their current version of

EFI firmware.

5. Mac sysadmins too often ignore the

importance of EFI firmware updates, or

actively remove them due to past issues with

their deployment. The process of applying EFI

firmware updates used to be a laborious process

that required hands-on interaction by IT support

staff. Due to this, many Mac sysadmins over time

decided to remove or disable the deployment of

EFI firmware updates alongside OS or security

updates, deciding to “deal with it” as needed.

While at one point this may have been an

acceptable workaround if combined with diligent

manual application of EFI firmware updates,

the current automated process of deploying

EFI firmware updates alongside OS or security

updates should be followed. Despite the possible

gaps in coverage as described by this paper,

it is still vastly superior to either not applying

them at all or only at certain larger “catch-up”

intervals or when a specific new EFI vulnerability

is announced and patched.

39

As was noted at the start of this report, while Apple

systems were the subject of this study, we fully

expect the same issues, and in all likelihood far

worse issues, with Wintel PC systems. We chose

the Apple ecosystem to study as it’s a far more

controlled environment and therefore easier to

analyze and arrive upon conclusions. The far more

heterogeneous nature of the PC ecosystem likely

exacerbates the issues related to visibility, QA, and

availability of EFI firmware security patches. It would

certainly be an area we will look into researching at

a future date.

The advent of UEFI brought with it a far more

modern pre-boot environment and finally put an

end to the many years of legacy workarounds that

had to be applied to the aging IBM BIOS ‘standard,’

providing a common, uniform and higher-level

platform to innovate upon. However, that uniformity

and accessibility also opened the door to far

more generic and useful pre-boot environment

attack opportunities. Much of the publicly available

evidence suggests it has been an active, lucrative

area of security research.

As the pre-boot environment becomes increasingly

like a full OS in and of its own, it must be likewise

be treated like a full OS in terms of the security

support and attention applied to it. This attention

goes beyond just releasing well QA’d EFI patches - it

extends to the use of appropriate user and admin

notifications to message the security status of the

firmware alongside easy-to-apply remedial actions.

Overall, we are pleased to have been able to share

what we learned with you alongside the datasets,

APIs and tools36 that will help provide better visibility

into the security state of your Apple Mac fleet’s EFI

security.

40

References
1 “ Specifications and Tools | Unified Extensible Firmware ... - UEFI Forum.” http://www.uefi.org/specsandtesttools. Accessed 1 Sep. 2017.

2 “Beyond BIOS | Intel® Software.” https://software.intel.com/en-us/articles/beyond-bios. Accessed 1 Sep. 2017.

3 “IntroBIOS - Open Security Training.” 14 Oct. 2015, http://opensecuritytraining.info/IntroBIOS.html. Accessed 1 Sep. 2017.

4 “ GitHub - advanced-threat-research/firmware-security-training.” https://github.com/advanced-threat-research/firmware-security-training.
Accessed 1 Sep. 2017.

5 “ BIOS Necromancy: Utilizing “Dead Code” for BIOS Attacks - LegbaCore.” 14 Oct. 2015, http://www.legbacore.com/Research_files/
BIOSNecromancy.pdf. Accessed 1 Sep. 2017.

6 “ assurance - Black Hat.” https://media.blackhat.com/bh-us-12/Briefings/Loukas_K/BH_US_12_LoukasK_De_Mysteriis_Dom_Jobsivs_Slides.pdf.
Accessed 1 Sep. 2017.

7 “Thunderstrike 31c3 - Trammell Hudson’s Projects.” 15 Feb. 2015, https://trmm.net/Thunderstrike_31c3. Accessed 1 Sep. 2017.

8 “Thunderstrike FAQ - Trammell Hudson’s Projects.” 31 Jan. 2015, https://trmm.net/Thunderstrike_FAQ. Accessed 1 Sep. 2017.

9 “ apple-sa-2015-01-27-4 - Apple - Lists.apple.com.” https://lists.apple.com/archives/security-announce/2015/Jan/msg00003.html. Accessed 1 Sep.
2017.

10 “CVE - CVE-2014-4498.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498. Accessed 1 Sep. 2017.

11 “ Thunderstrike2 details - Trammell Hudson’s Projects.” 14 Aug. 2015, https://trmm.net/Thunderstrike2_details. Accessed 1 Sep. 2017.

12 “CVE - CVE-2015-3692.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692. Accessed 1 Sep. 2017.

13 “CVE - CVE-2015-3693.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693. Accessed 1 Sep. 2017.

14 “WikiLeaks - Sonic Screwdriver.” https://wikileaks.org/vault7/document/SonicScrewdriver_1p0/. Accessed 1 Sep. 2017.

15 “WikiLeaks - DerStarke v1.4.” https://wikileaks.org/vault7/document/DerStarke_v1_4_DOC/. Accessed 1 Sep. 2017.

16 “ presentations/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel” https://github.com/ufrisk/presentations/blob/master/DEFCON-24-Ulf-
Frisk-Direct-Memory-Attack-the-Kernel-Final.pdf. Accessed 1 Sep. 2017.

17 “ Security | DMA | Hacking: macOS FileVault2 Password Retrieval.” 15 Dec. 2016, http://blog.frizk.net/2016/12/filevault-password-retrieval.html.
Accessed 1 Sep. 2017.

18 “ About EFI and SMC firmware updates for Intel-based ... - Apple Support.” 4 May. 2016, https://support.apple.com/en-us/HT201518. Accessed 1 Sep.
2017.

19 “ bless Man Page - macOS - apple.com.” https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/
bless.8.html. Accessed 1 Sep. 2017.

20 “Pike’s Universum” https://pikeralpha.wordpress.com. Accessed 1 Sep. 2017.

21 “Apple Hardware Test Download Links” https://github.com/upekkha/AppleHardwareTest. Accessed 1 Sep. 2017.

22 “Customizing hardware model filters for netboot” https://macops.ca/customizing-hardware-model-filters-for-netboot. Accessed 1 Sep. 2017.

23 “ GitHub - LongSoft/UEFITool: UEFI firmware image viewer and editor.” https://github.com/LongSoft/UEFITool. Accessed 1 Sep. 2017.

24 “CharlesSoft — Pacifist” https://www.charlessoft.com/cgi-bin/pacifist_download.cgi?type=zip. Accessed 1 Sep. 2017.

25 “EFIgy.” https://github.com/duo-labs/EFIgy . Accessed 20 Sep. 2017.

26 “Osquery.” https://osquery.io/. Accessed 1 Sep. 2017.

27 “CVE - CVE-2014-4498.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498. Accessed 1 Sep. 2017.

28 “CVE - CVE-2015-3692.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692. Accessed 1 Sep. 2017.

29 “CVE - CVE-2015-3693.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693. Accessed 1 Sep. 2017.

30 “CVE - CVE-2015-7035.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7035. Accessed 1 Sep. 2017.

31 “CVE - CVE-2016-7585.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7585. Accessed 1 Sep. 2017.

32 “ About the security content of OS X El Capitan 10.11.1 ... - Apple Support.” 30 Jun. 2017, https://support.apple.com/en-us/HT205375. Accessed 1
Sep. 2017.

33 “CVE - CVE-2015-4860.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860. Accessed 1 Sep. 2017.

34 “ rdar://32995209: Incorrect CVE listed in HT205375 ... - Open Radar.” 26 Jun. 2017, https://openradar.appspot.com/32995209. Accessed 1 Sep.
2017.

35 “EFIgy.” https://github.com/duo-labs/EFIgy . Accessed 20 Sep. 2017.

36 “EFIgy.” https://github.com/duo-labs/EFIgy . Accessed 20 Sep. 2017.

http://www.uefi.org/specsandtesttools
https://software.intel.com/en-us/articles/beyond-bios
http://opensecuritytraining.info/IntroBIOS.html
https://github.com/advanced-threat-research/firmware-security-training
http://www.legbacore.com/Research_files/BIOSNecromancy.pdf
http://www.legbacore.com/Research_files/BIOSNecromancy.pdf
https://media.blackhat.com/bh-us-12/Briefings/Loukas_K/BH_US_12_LoukasK_De_Mysteriis_Dom_Jobsivs_Slides.pdf
https://trmm.net/Thunderstrike_31c3
https://trmm.net/Thunderstrike_FAQ
https://lists.apple.com/archives/security-announce/2015/Jan/msg00003.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498
https://trmm.net/Thunderstrike2_details
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693
https://wikileaks.org/vault7/document/SonicScrewdriver_1p0/
https://wikileaks.org/vault7/document/DerStarke_v1_4_DOC/
https://github.com/ufrisk/presentations/blob/master/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel-Final.pdf
https://github.com/ufrisk/presentations/blob/master/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel-Final.pdf
http://blog.frizk.net/2016/12/filevault-password-retrieval.html
https://support.apple.com/en-us/HT201518
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/bless.8.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/bless.8.html
https://pikeralpha.wordpress.com
https://github.com/upekkha/AppleHardwareTest
https://macops.ca/customizing-hardware-model-filters-for-netboot
https://github.com/LongSoft/UEFITool
https://www.charlessoft.com/cgi-bin/pacifist_download.cgi?type=zip
https://github.com/duo-labs/EFIgy
https://osquery.io/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7585
https://support.apple.com/en-us/HT205375
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860
https://openradar.appspot.com/32995209
https://github.com/duo-labs/EFIgy
https://github.com/duo-labs/EFIgy

41

Appendix A
Below are a series of tables related to the analysis in the preceding sections.

Table 1.
EFI Model ID to Apple Board ID Mapping
A complete table of all known EFI model to Board ID mappings is as follows:

EFI Model ID Board ID

IM141 Mac-031B6874CF7F642A

IM142 Mac-27ADBB7B4CEE8E61

IM143 Mac-77EB7D7DAF985301

IM144 Mac-81E3E92DD6088272

IM151 Mac-42FD25EABCABB274, Mac-FA842E06C61E91C5

IM161 Mac-A369DDC4E67F1C45

IM162 Mac-FFE5EF870D7BA81A

IM171 Mac-DB15BD556843C820, Mac-B809C3757DA9BB8D, Mac-65CE76090165799A

IM181 Mac-4B682C642B45593E

IM183 Mac-77F17D7DA9285301, Mac-BE088AF8C5EB4FA2

MB101 Mac-EE2EBD4B90B839A8

MB81 Mac-BE0E8AC46FE800CC, Mac-F305150B0C7DEEEF

MB91 Mac-9AE82516C7C6B903

MBA61 Mac-35C1E88140C3E6CF, Mac-7DF21CB3ED6977E5

MBA71 Mac-9F18E312C5C2BF0B, Mac-937CB26E2E02BB01

MBP111 Mac-189A3D4F975D5FFC, Mac-D1FF70AF6D8C849A

MBP112 Mac-3CBD00234E554E41, Mac-2BD1B31983FE1663

MBP114 Mac-06F11FD93F0323C5, Mac-06F11F11946D27C5

MBP121 Mac-E43C1C25D4880AD6

MBP131 Mac-473D31EABEB93F9B

MBP132 Mac-66E35819EE2D0D05, Mac-1BDAB09B689867E2

MBP133 Mac-A5C67F76ED83108C

MBP141 Mac-B4831CEBD52A0C4C

MBP142 Mac-CAD6701F7CEA0921

MBP143 Mac-551B86E5744E2388

MM71 Mac-35C5E08120C7EEAF

42

Table 2.
Mapping of Mac Models Using EFI Firmware Files Named for Other Mac Models
Table showing the aliases between models of Mac that use firmware versions named after other Mac models.

These firmware files contain the board-ID used to identify all of the systems they are compatible with,

regardless of the filename.

Mac Model
Model of Mac EFI
Firmware Used

Notes

IM113 IM112

IM122 IM121

IM132 IM131

MBA32 MBA31

MBA42 MBA41

MBA52 MBA51

MBA62 MBA61

MBA72 MBA71

MBP113 MBP112

MBP115 MBP114

MBP54 MBP53
MP53 is one of the firmwares that never appears to have
been updated in the field, meaning MBP54 has never seen an
update either

MBP62 MBP61

MBP82 MBP81

MBP83 MBP81

MBP92 MBP91

MM52 MM51

MM53 MM51

MM62 MM61

IM182 IM183

Only a single datapoint for this model, but interesting to see
IM182 use firmware named for IM183 and not IM181. All other
aliased firmware seem to use firmware from models of a
lower ID

43

Table 3.
Breakdown of Systems Running Different-Than-Expected EFI Versions, Based on OS
Version

Mac Model
% Running Older-
Than-Expected EFI
Version

Raw Count of Systems
Running Older EFI

Total Count of Systems
Running Older EFI

iMac16,2 43.0% 941 2190

MacBookPro13,2 34.8% 114 328

MacBookPro13,1 28.5% 39 137

MacBookPro13,3 24.8% 78 314

MacBookPro8,2 14.9% 89 598

MacBookPro8,1 11.9% 59 498

Macmini3,1 11.5% 6 52

Macmini6,1 6.7% 13 194

iMac16,1 5.2% 15 287

MacBookAir6,1 5.0% 29 586

MacBook9,1 4.9% 10 206

Macmini7,1 4.8% 50 1035

MacBookAir4,1 4.4% 6 138

MacBookPro8,3 4.4% 3 69

iMac13,1 4.1% 86 2119

MacBookAir6,2 3.6% 81 2244

Macmini5,2 3.0% 4 135

MacBookPro9,1 2.8% 40 1419

iMac12,1 2.8% 75 2725

MacBookAir5,2 2.6% 16 619

MacBookPro9,2 2.4% 55 2257

MacBookPro12,1 2.3% 116 5048

MacBookPro11,2 2.3% 38 1659

MacBookAir4,2 2.2% 7 313

iMac17,1 2.2% 47 2103

MacPro6,1 2.2% 13 582

MacBookAir7,1 2.1% 19 894

MacBookPro11,1 1.9% 28 1458

MacBookPro11,4 1.8% 30 1635

44

Mac Model
% Running Older-
Than-Expected EFI
Version

Raw Count of Systems
Running Older EFI

Total Count of Systems
Running Older EFI

iMac11,3 1.7% 6 350

MacBook8,1 1.6% 5 309

MacBookPro11,3 1.6% 17 1080

iMac14,1 1.5% 42 2781

iMac14,4 1.4% 5 347

Macmini6,2 1.4% 8 563

MacBookAir5,1 1.3% 3 227

MacBookPro10,1 1.2% 16 1336

iMac14,2 1.1% 39 3602

iMac15,1 1.0% 11 1064

iMac11,2 0.8% 6 749

MacBookPro10,2 0.8% 4 529

iMac13,2 0.4% 9 2099

iMac14,3 0.1% 4 4644

iMac11,1 0.0% 0 1009

iMac12,2 0.0% 0 1547

MacBook5,1 0.0% 0 37

MacBook7,1 0.0% 0 10

MacBookAir3,1 0.0% 0 58

MacBookPro5,5 0.0% 0 80

MacBookPro6,1 0.0% 0 14

MacBookPro7,1 0.0% 0 237

Macmini4,1 0.0% 0 155

Macmini5,1 0.0% 0 44

Macmini5,3 0.0% 0 31

45

Table 4.
EFI Firmware for Security Update 2017-001, OS X 10.11
This table reflects EFI firmware contained in the Security Update 2017-001 for OS X 10.11 (El Capitan), showing

the one-to-one match between its EFI binary versions and the versions shipped with the security update two

versions prior.

Mac
Model

Security Update 2017-001 (10.11)
[Released March 27, 2017]

Security Update 2016-003 (10.11)
[Released Dec 13, 2016]

Security Update 2016-002 (10.11)
[Released Oct 24, 2016]

IM121 0047 23B 0047 25B 0047 23B

IM131 010A B09 010A B0A 010A B09

IM141 0118 B13 0118 B14 0118 B13

IM142 0118 B13 0118 B14 0118 B13

IM143 0118 B13 0118 B14 0118 B13

IM144 0179 B13 0179 B14 0179 B13

IM151 0207 B06 0207 B08 0207 B06

IM161 0207 B03 0207 B04 0207 B03

MB81 0164 B14 0164 B19 0164 B14

MB91 0154 B05 0154 B09 0154 B05

MBA41 077 B14 077 B15 077 B14

MBA51 00EF B04 00EF B05 00EF B04

MBA61 0099 B22 0099 B23 0099 B22

MBA71 0166 B12 0166 B13 0166 B12

MBP81 0047 2CB 0047 2DB 0047 2CB

MBP91 00D3 B0D 00D3 B0E 00D3 B0D

MBP101 00EE B0A 00EE B0B 00EE B0A

MBP102 0106 B0A 0106 B0B 0106 B0A

MBP112 0138 B17 0138 B18 0138 B17

MM51 0077 B14 0077 B15 0077 B14

MM61 0106 B0A 0106 B0B 0106 B0A

MM71 0220 B07 0220 B08 0220 B07

MP61 0116 B17 0116 B21 0116 B17

46

Table 5.
EFI Firmware for Security Update 2017-001 for OS X 10.10
This table reflects EFI firmware contained in the Security Update 2017-001 for OS X 10.10 (El Capitan),

showing the one-to-one match between its EFI binary versions and the versions shipped with the security

update two versions prior.

Mac
Model

Security Update 2017-001 (10.10)
[Released March 27, 2017]

Security Update 2016-007 (10.10)
[Released Dec 13, 2016]

Security Update 2016-006 (10.10)
[Released Oct 24, 2016]

IM121 0047 23B 0047 25B 0047 23B

IM131 010A B09 010A B0A 010A B09

IM141 0118 B12 0118 B14 0118 B12

IM142 0118 B12 0118 B14 0118 B12

IM143 0118 B12 0118 B14 0118 B12

IM144 0179 B12 0179 B14 0179 B12

IM151 0207 B05 0207 B08 0207 B05

MB81 0164 B09 0164 B19 0164 B09

MBA41 077 B14 077 B15 077 B14

MBA51 00EF B04 00EF B05 00EF B04

MBA61 0099 B20 0099 B23 0099 B20

MBA71 0166 B08 0166 B13 0166 B08

MBP81 0047 2CB 0047 2DB 0047 2CB

MBP91 00D3 B0C 00D3 B0E 00D3 B0C

MBP101 00EE B0A 00EE B0B 00EE B0A

MBP102 0106 B0A 0106 B0B 0106 B0A

MBP111 0138 B16 0138 B18 0138 B16

MBP112 0138 B16 0138 B18 0138 B16

MBP114 0172 B06 0172 B10 0172 B06

MBP121 0167 B14 0167 B18 0167 B14

MM51 0077 B14 0077 B15 0077 B14

MM61 0106 B0A 0106 B0B 0106 B0A

MM71 0220 B06 0220 B08 0220 B06

MP61 0116 B16 0116 B21 0116 B16

47

Table 6.
EFI Versions Patched for the CVE-2014-4498 Vulnerability and Observed Anomalies

Vulnerability / CVE : Thunderstrike 1

CVE Number(s): CVE-2014-4498

Updates Containing Patch:
10.10.2
Security Update 2015-001 (10.8, 10.9)

Date of Update(s): 2015/01/27

Mac Model EFI Version Update(s) Containing EFI

iMac14,1 IM141_0118_B09
10.10.2
Security Update 2015-001 (10.8, 10.9)

iMac14,2 IM142_0118_B09
10.10.2
Security Update 2015-001 (10.8, 10.9)

iMac14,3 IM143_0118_B09
10.10.2
Security Update 2015-001 (10.8, 10.9)

iMac14,4 IM144_0179_B08
10.10.2
Security Update 2015-001 (10.8, 10.9)

iMac15,1 IM151_0207_B01
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookAir6,1 MBA61_0099_B18
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookAir6,2 MBA61_0099_B18
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookPro10,1 MBP101_00EE_B07
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookPro10,2 MBP102_0106_B07
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookPro11,1 MBP111_0138_B14
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookPro11,2 MBP112_0138_B14
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacBookPro11,3 MBP112_0138_B14
10.10.2
Security Update 2015-001 (10.8, 10.9)

Macmini7,1 MM71_0220_B01
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacPro6,1 MP61_0116_B11
10.10.2
Security Update 2015-001 (10.8, 10.9)

MacPro6,2 MP61_0116_B11
10.10.2
Security Update 2015-001 (10.8, 10.9)

48

Table 7.
EFI Versions Patched for CVE-2015-3692 & CVE-2015-3692 and Observed Anomalies

Vulnerability: Thunderstrike 2

CVE Number(s):
CVE-2015-3692
CVE-2015-3693

Updates Containing Patch: 10.10.4
Security Update 2015-005 (10.8, 10.9)
EFI Security Update 2015-001

Date of Update:
2015/06/30
2015/06/30 (EFI update)

Mac Model EFI Version Update(s) Containing EFI

iMac12,1 IM121_0047_21B
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac12,2 IM121_0047_21B
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac13,1 IM131_010A_B08
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac13,2 IM131_010A_B08
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac14,1 IM141_0118_B11
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac14,2 IM142_0118_B11
10.10.4, Secuity Update 2015-005
EFI Update 2015-001

iMac14,3 IM143_0118_B11
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac14,4 IM144_0179_B10
10.10.4, Security Update 2015-005
EFI Update 2015-001

iMac15,1 IM151_0207_B03 10.10.4, EFI Update 2015-001

MacBook8,1 MB81_0164_B06 10.10.4, EFI Update 2015-001

MacBookAir4,1 MBA41_0077_B12
10.10.4, Security Update2015-005
EFI Update 2015-001

MacBookAir4,2 MBA41_0077_B12
10.10.4, Security Update2015-005
EFI Update 2015-001

MacBookAir5,1 MBA51_00EF_B03
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookAir5,2 MBA51_00EF_B03
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookAir6,1 MBA61_0099_B19
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookAir6,2 MBA61_0099_B19
10.10.4, Security Update 2015-005
EFI Update 2015-001

49

Mac Model EFI Version Update(s) Containing EFI

MacBookAir7,1 MBA71_0166_B06
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro8,1 MBP81_0047_2AB
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro8,2 MBP81_0047_2AB
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro8,3 MBP81_0047_2AB
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro9,1 MBP91_00D3_B0B
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro9,2 MBP91_00D3_B0B
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro10,1 MBP101_00EE_B09
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro10,2 MBP102_0106_B08
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro11,1 MBP111_0138_B15
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro11,2 MBP112_0138_B15
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro11,3 MBP112_0138_B15
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro11,4 MBP114_0172_B04
10.10.4, Security Update 2015-005
EFI Update 2015-001

MacBookPro12,1 MBP121_0167_B07
10.10.4, Security Update2015-005
EFI Update 2015-001

Macmini5,1 MM51_0077_B12
10.10.4, Security Update2015-005
EFI Update 2015-001

Macmini5,2 MM51_0077_B12
10.10.4, Security Update2015-005
EFI Update 2015-001

Macmini5,3 MM51_0077_B12
10.10.4, Security Update2015-005
EFI Update 2015-001

Macmini6,1 MM61_0106_B08
10.10.4, Security Update2015-005
EFI Update 2015-001

Macmini6,2 MM61_0106_B08
10.10.4, Security Update2015-005
EFI Update 2015-001

Macmini7,1 MM71_0220_B03
10.10.4, Security Update2015-005
EFI Update 2015-001

MacPro6,1 MP61_0116_B15
10.10.4, Security Update2015-005
EFI Update 2015-001

50

Table 8.
EFI Versions Patching the CVE-2015-7035 Vulnerability and Observed Anomalies

Vulnerability:

A local authenticated attacker may be able to execute arbitrary code
with the privileges of system firmware, potentially allowing for persistent
firmware level rootkits, bypassing of Secure Boot, or permanently
DoS’ing the platform.

CVE Number(s): CVE-2015-7035

Update Containing Patch: 10.11.1
Security Update 2015-004 (10.10)
EFI Security Update 2015-002

Date of Update: 2015/10/21

Mac Model EFI Version Update(s) Containing EFI

iMac11,1 IM111_0034_04B 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac11,2 IM112_0057_03B 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac11,3 IM112_0057_03B 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac12,1 IM121_0047_21B 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac12,2 IM121_0047_B21 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac13,1 IM131_010A_B09 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac13,2 IM131_010A_B09 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac13,1 IM131_010A_B09 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac14,1 IM141_0118_B12 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac14,2 IM142_0118_B12 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

51

Mac Model EFI Version Update(s) Containing EFI

iMac14,3 IM143_0118_B12 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac14,4 IM144_0179_B12 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

iMac15,1 IM151_0207_B05 10.11.1
Security Update 2015-004

iMac16,1 IM161_0207_B01 10.11.1

iMac17,1 IM171_0105_B04 10.11.1

MacBook8,1 MB81_0164_B09 10.11.1
Security Update 2015-004

MacBook8,2 MB81_0164_B09 10.11.1
Security Update 2015-004

MacBook8,3 MB81_0164_B09 10.11.1
Security Update 2015-004

MacBookAir4,1 MBA41_0077_B12 10.11.1
EFI Security Update 2015-002

MacBookAir4,2 MBA41_0077_B12 10.11.1
EFI Security Update 2015-002

MacBookAir5,1 MBA51_00EF_B04 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookAir5,2 MBA51_00EF_B04 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookAir6,1 MBA61_0099_B20 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookAir6,2 MBA61_0099_B20 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookAir7,1 MBA71_0166_B08 10.11.1
Security Update 2015-004

MacBookAir7,2 MBA71_0166_B08 10.11.1
Security Update 2015-004

MacBookPro6,1 MBP61_0057_11B 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro6,2 MBP61_0057_11B 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro8,1 MBP81_0047_2AB 10.11.1
EFI Security Update 2015-002

MacBookPro8,2 MBP81_0047_2AB 10.11.1
EFI Security Update 2015-002

52

Mac Model EFI Version Update(s) Containing EFI

MacBookPro8,3 MBP81_0047_2AB 10.11.1
EFI Security Update 2015-002

MacBookPro9,1 MBP91_00D3_B0C 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro9,2 MBP91_00D3_B0C 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro10,1 MBP101_00EE_B0A 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro10,2 MBP102_0106_B0A 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro11,1 MBP111_0138_B16 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro11,2 MBP112_0138_B16 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro11,3 MBP112_0138_B16 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

MacBookPro11,4 MBP114_0172_B06 10.11.1
Security Update 2015-004

MacBookPro11,5 MBP114_0172_B06 10.11.1
Security Update 2015-004

MacBookPro12,1 MBP121_0167_B14 10.11.1
Security Update 2015-004

Macmini5,1 MM51_0077_B12 10.11.1
EFI Security Update 2015-002

Macmini5,2 MM51_0077_B12 10.11.1
EFI Security Update 2015-002

Macmini5,3 MM51_0077_B12 10.11.1
EFI Security Update 2015-002

Macmini6,1 MM61_0106_B0A 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

Macmini6,2 MM61_0106_B0A 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

Macmini7,1 MM71_0220_B06 10.11.1
Security Update 2015-004

MacPro6,1 MP61_0116_B16 10.11.1
Security Update 2015-004
EFI Security Update 2015-002

53

Table 9.
EFI Versions Patching the CVE-2016-7585 Vulnerability and Observed Anomalies

Vulnerability: DMA Attack

CVE Number(s): CVE-2016-7585

Update Containing Patch: 10.12.4
Security Update 2017-001 (10.11, 10.10)

Date of Update: 2017/03/27

Mac Model EFI Version Update(s) Containing EFI

iMac11,1 IM111_0034_04B
10.12.4
Security Update 2017-001 (10.11, 10.10)

iMac11,2 IM112_0057_B09 10.12.4

IM112_0057_03B Security Update 2017-001 (10.11, 10.10)

iMac11,3 IM112_0057_B09 10.12.4

IM112_0057_03B Security Update 2017-001 (10.11, 10.10)

iMac12,1 IM121_0047_B29 10.12.4

IM121_0047_B23 Security Update 2017-001 (10.11)

IM121_0047_23B Security Update 2017-001 (10.10)

iMac12,2 IM121_0047_B29 10.12.4

IM121_0047_B23 Security Update 2017-001 (10.11, 10.10)

iMac13,1 IM131_010A_B11 10.12.4

IM131_010A_B09 Security Update 2017-001 (10.11, 10.10)

iMac13,2 IM131_010A_B11 10.12.4

IM131_010A_B09 Security Update 2017-001 (10.11, 10.10)

iMac14,1 IM141_0118_B20 10.12.4

IM141_0118_B13 Security Update 2017-001 (10.11)

IM141_0118_B12 Security Update 2017-001 (10.10)

iMac14,2 IM142_0118_B20 10.12.4

IM141_0118_B13 Security Update 2017-001 (10.11)

IM141_0118_B12 Security Update 2017-001 (10.10)

iMac14,3 IM143_0118_B20 10.12.4

IM141_0118_B13 Security Update 2017-001 (10.11)

IM141_0118_B12 Security Update 2017-001 (10.10)

iMac14,4 IM144_0179_B21 10.12.4

54

Mac Model EFI Version Update(s) Containing EFI

IM141_0118_B13 Security Update 2017-001 (10.11)

IM141_0118_B12 Security Update 2017-001 (10.10)

iMac15,1 IM151_0207_B16 10.12.4

IM151_0207_B06 Security Update 2017-001 (10.11)

IM151_0207_B05 Security Update 2017-001 (10.10)

iMac16,1 IM161_0207_B11 10.12.4

IM161_0207_B03 Security Update 2017-001 (10.11)

iMac16,2 IM162_0207_B11 10.12.4

iMac17,1 IM171_0105_B20 10.12.4

IM171_0105_B08 Security Update 2017-001 (10.11)

MacBook7,1 MB71_0039_B15 10.12.4

MacBook8,1 MB81_0164_B25 10.12.4

MB81_0164_B14 Security Update 2017-001 (10.11)

MB81_0164_B09 Security Update 2017-001 (10.10)

MacBook9,1 MB91_0154_B17 10.12.4

MB91_0154_B05 Security Update 2017-001 (10.11)

MacBookAir3,1 MBA31_0061_B0E 10.12.4

MacBookAir4,1 MBA41_0077_B1B 10.12.4

MBA41_0077_B14 Security Update 2017-001 (10.11, 10.10)

MacBookAir4,2 MBA41_0077_B1B 10.12.4

MBA41_0077_B14 Security Update 2017-001 (10.11, 10.10)

MacBookAir5,1 MBA51_00EF_B0C 10.12.4

MBA51_00EF_B04 Security Update 2017-001 (10.11, 10.10)

MacBookAir5,2 MBA51_00EF_B0C 10.12.4

MBA51_00EF_B04 Security Update 2017-001 (10.11, 10.10)

MacBookAir6,1 MBA61_0099_B33 10.12.4

MBA61_0099_B22 Security Update 2017-001 (10.11)

MBA61_0099_B20 Security Update 2017-001 (10.10)

MacBookAir6,2 MBA61_0099_B33 10.12.4

MBA61_0099_B22 Security Update 2017-001 (10.11)

MBA61_0099_B20 Security Update 2017-001 (10.10)

MacBookAir7,1 MBA71_0166_B19 10.12.4

MBA71_0166_B12 Security Update 2017-001 (10.11)

55

Mac Model EFI Version Update(s) Containing EFI

MBA71_0166_B08 Security Update 2017-001 (10.10)

MacBookAir7,2 MBA71_0166_B19 10.12.4

MBA71_0166_B12 Security Update 2017-001 (10.11)

MBA71_0166_B08 Security Update 2017-001 (10.10)

MacBookPro6,1 MBP61_0057_B17 10.12.4

MBP61_0057_11B Security Update 2017-001 (10.11, 10.10)

MacBookPro6,2 MBP61_0057_B17 10.12.4

MBP61_0057_11B Security Update 2017-001 (10.11, 10.10)

MacBookPro7,1 MBP71_0039_B15 10.12.4

MacBookPro8,1 MBP81_0047_32B 10.12.4

MBP81_0047_2CB Security Update 2017-001 (10.11, 10.10)

MacBookPro8,2 MBP81_0047_32B 10.12.4

MBP81_0047_2CB Security Update 2017-001 (10.11, 10.10)

MacBookPro8,3 MBP81_0047_32B 10.12.4

MBP81_0047_2CB Security Update 2017-001 (10.11, 10.10)

MacBookPro9,1 MBP91_00D3_B15 10.12.4

MBP91_00D3_B0D Security Update 2017-001 (10.11)

MBP91_00D3_B0C Security Update 2017-001 (10.10)

MacBookPro9,2 MBP91_00D3_B15 10.12.4

MBP91_00D3_B0D Security Update 2017-001 (10.11)

MBP91_00D3_B0C Security Update 2017-001 (10.10)

MacBookPro10,1 MBP101_00EE_B12 10.12.4

MBP101_00EE_B0A Security Update 2017-001 (10.11, 10.10)

MacBookPro10,2 MBP102_0106_B12 10.12.4

MBP101_00EE_B0A Security Update 2017-001 (10.11, 10.10)

MacBookPro11,1 MBP111_0138_B25 10.12.4

MBP111_0138_B17 Security Update 2017-001 (10.11)

MBP111_0138_B16 Security Update 2017-001 (10.10)

MacBookPro11,2 MBP112_0138_B25 10.12.4

MBP111_0138_B17 Security Update 2017-001 (10.11)

MBP111_0138_B16 Security Update 2017-001 (10.10)

MacBookPro11,3 MBP112_0138_B25 10.12.4

MBP111_0138_B17 Security Update 2017-001 (10.11)

56

Mac Model EFI Version Update(s) Containing EFI

MBP111_0138_B16 Security Update 2017-001 (10.10)

MacBookPro11,4 MBP114_0172_B16 10.12.4

MBP114_0172_B09 Security Update 2017-001 (10.11)

MBP114_0172_B06 Security Update 2017-001 (10.10)

MacBookPro11,5 MBP114_0172_B16 10.12.4

MBP114_0172_B09 Security Update 2017-001 (10.11)

MBP114_0172_B06 Security Update 2017-001 (10.10)

MacBookPro12,1 MBP121_0167_B24 10.12.4

MBP121_0167_B17 Security Update 2017-001 (10.11)

MBP121_0167_B14 Security Update 2017-001 (10.10)

MacBookPro13,1 MBP131_0205_B15 10.12.4

MacBookPro13,2 MBP132_0226_B15 10.12.4

MacBookPro13,3 MBP133_0226_B15 10.12.4

Macmini4,1 MM41_0042_B09 10.12.4

Macmini5,1 MM51_0077_B1B 10.12.4

MM51_0077_B14 Security Update 2017-001 (10.11, 10.10)

Macmini5,2 MM51_0077_B1B 10.12.4

MM51_0077_B14 Security Update 2017-001 (10.11, 10.10)

Macmini5,3 MM51_0077_B1B 10.12.4

MM51_0077_B14 Security Update 2017-001 (10.11, 10.10)

Macmini6,1 MM61_0106_B12 10.12.4

MM61_0106_B0A Security Update 2017-001 (10.11, 10.10)

Macmini6,2 MM61_0106_B12 10.12.4

MM61_0106_B0A Security Update 2017-001 (10.11, 10.10)

Macmini7,1 MM71_0220_B14 10.12.4

MM71_0220_B07 Security Update 2017-001 (10.11)

MM71_0220_B06 Security Update 2017-001 (10.10)

MacPro6,1 MP61_0116_B25 10.12.4

MP61_0116_B17 Security Update 2017-001 (10.11)

MP61_0116_B16 Security Update 2017-001 (10.10)

57

10.10.x 10.11.x 10.12.x

IM111 0034 04B 0034 04B 0034 04B

IM112 0057 03B 0057 09B 0057 09B

IM121 0047 25B 0047 29B 0047 29B

IM131 010A B0A 010A B11 010A B11

IM141 0118 B14 0118 B20 0118 B42

IM142 0118 B14 0118 B20 0118 B44

IM143 0118 B14 0118 B20 0118 B43

IM144 0179 B14 0179 B21 0179 B21

IM151 0207 B08 0207 B16 0207 B16

IM161 - 0207 B11 0207 B11

IM162 - 0207 B11 0207 B11

IM171 - 0105 B20 0105 B20

IM181 - - 0145 B06

IM183 - - 0145 B05

MB101 - - 0147 B00

MB71 - - 0039 15B

MB81 0164 B19 0164 B25 0164 B25

MB91 - 0154 B17 0154 B17

MBA31 0061 B0E

MBA41 0077 B15 0077 B1B 0077 B1B

MBA51 00EF B05 00EF B0C 00EF B0C

MBA61 0099 B23 0099 B33 0099 B51

10.10.x 10.11.x 10.12.x

MBA71 0166 B13 0166 B19 0166 B26

MBP101 00EE B0B 00EE B12 00EE B12

MBP102 0106 B0B 0106 B12 0106 B12

MBP111 0138 B18 0138 B25 0138 B25

MBP112 0138 B18 0138 B25 0138 B25

MBP114 0172 B10 0172 B16 0172 B16

MBP121 0167 B18 0167 B24 0167 B24

MBP131 - - 0205 B20

MBP132 - - 0226 B22

MBP133 - - 0226 B23

MBP141 - - 0159 B00

MBP142 - - 0159 B00

MBP143 - - 0159 B00

MBP61 0057 11B 0057 17B 0057 17B

MBP71 - - 0039 B15

MBP81 0047 2DB 0047 32B 0047 32B

MBP91 00D3 B0E 00D3 B15 00D3 B15

MM41 - - 0042 B09

MM51 0077 B15 0077 B1B 0077 B1B

MM61 0106 B0B 0106 B12 0106 B12

MM71 0220 B08 0220 B14 0220 B21

MP61 0116 B21 0116 B25 0116 B25

Table 10.
Highest Released Versions of EFI Firmware, Segmented by Major OS Version and
Mac Model

Anomalies are marked in green and discussed in section 6.7. A ‘-’ indicates no firmware for this Mac model/OS

version was found. This is usually due to the Mac model being new and only supported by more recent

OS versions.

58

Table 11.
Potentially Vulnerable Mac Models With Low Build Numbers
This table lists Mac models from the real world dataset that have only been observed with one, two or three

updates with low build numbers. This suggests they haven’t been updated from the versions of firmware they

were originally shipped with from the factory - making them likely to contain unpatched vulnerabilities.

Mac Model
EFI Versions Observed in
the Real World Data

IM101 IM101.00CC.B00

IM71 IM71.007A.B00 IM71.007A.B01 IM71.007A.B03

IM81 IM81.00C1.B00

IM91 IM91.008D.B00 IM91.008D.B04 IM91.008D.B08

MB51 MB51.007D.B03 MB51.0073.B06

MB52 MB52.0088.B06

MB61 MB61.00C8.B00

MBA21 MBA21.0075.B03 MBA21.0075.B05

MBP31 MBP31.0070.B07

MBP41 MBP41.00C1.B03

MBP51 MBP51.007E.B05 MBP51.007E.B06

MBP52 MBP52.008E.B05

MBP53 MBP53.00AC.B03

MBP55 MBP55.00AC.B03

MM31 MM31.00AD.B00 MM31.0081.B06

MP31 MP31.006C.B02 MP31.006C.B05

MP41 MP41.0081.B04 MP41.0081.B07 MP41.0081.B08

MP51 MP51.007F.B00 MP51.007F.B01 MP51.007F.B03

Table 12.
Heat Map of EFI Updates for Public Vulnerabilities
(duo.sc/EFI-heatmap)

https://docs.google.com/spreadsheets/d/1gzgm9i4Qd7RigmaBTfb11sYKrMHRHMQfZJ858bSu0EY/edit#gid=950358173

59

Appendix B
The disclosure timeline related to the findings of our research and our communications with Apple are below,

Duo Labs’ responsible disclosure policy and further information can be found here duo.com/labs/disclosure.

Date Action

June 26, 2017 Radar item 32995209 raised citing the incorrect CVE being cited for
issue APPLE-SA-2015-10-21-4 in the release notes of OS X El Capitan
10.11.1 and Security Update 2015-007.

June 28, 2017 Initial contact with Apple sending a PDF summary of the research
findings as well as offers of discussing the problems and extra context.

July 14, 2017 Follow up email sent to Apple contacts enquiring if Apple had any
questions or concerns we may be able to help with. We also requested
technical clarification on a point within the 10.13 beta 3 release note.

August 2, 2017 Follow up email sent to Apple contacts enquiring if Apple had any
questions or concerns we may be able to help with. August 31, 2017 was
given as the date after which our findings would no longer be private.

September 5, 2017 Follow up email sent to Apple contacts enquiring if Apple had any
questions or concerns we may be able to help with. Informed Apple that
a presentation of our research would be publicly released at Ekoparty on
September 29, 2017 in Buenos Aires.

Draft version of the research paper sent to our Apple contacts to allow
them to see its content and respond with any questions before it’s
released publicly.

Apple product security team reached out to ask for further technical
details; the draft research paper was sent over to them.

September 11, 2017 Follow up email sent to Apple product security team enquiring if Apple
had any questions or concerns we may be able to help with.

September 15, 2017 Follow up email sent to Apple product security team enquiring if Apple
had any questions or concerns we may be able to help with.

September 16, 2017 Response from Apple product security team acknowledging receipt and
setting up a phone call to discuss on September 19, 2017.

September 19, 2017 Phone call with the Apple product security team discussing the research
and the content of the paper.

September 29, 2017 First public release of this paper and presentation discussing the work
given at Ekoparty. 90+ days since initially contacting Apple with details
of the research findings.

https://duo.com/labs/disclosure
https://openradar.appspot.com/32995209

60

Pepijn Bruienne
@bruienne

Research & Development
Engineer

Pepijn Bruienne is an R&D Engineer at Duo Security

and a former long-time Mac Admin who recently

made the jump from administering Macs to breaking

them in order to better protect them for his

employer’s customers.

Prior to that he worked for the University of

Michigan as a senior Mac operations and

development specialist, at Cengage Learning as a

Senior Mac systems administrator and various other

smaller Mac-based shops in a darker past. He has

written a number of FOSS tools for Mac admins and

contributed to a number of other projects as well.

About the Authors

Rich Smith
@iodboi

Director of Research
& Development

Rich Smith is the Director of R&D for Duo Labs,

supporting the advanced security research agenda

for Duo Security. Prior to joining Duo, Rich was

Director of Security at Etsy, co-founder of Icelandic

red team startup Syndis, and has held various

roles on security teams at Immunity Inc., Kyrus,

Morgan Stanley, and HP Labs among others.

Rich has worked professionally in the security space

since the late 90s covering a range of activities

including building security organizations, security

consulting, penetration testing, red teaming,

offensive research, and developing exploits and

attack tooling. More recently, Rich co-authored

a new book for O’Reilly titled Agile Application

Security: Enabling Security in a Continuous

Delivery Pipeline. He has worked in both the

public and private sectors in the U.S., Europe, and

Scandinavia, and currently spends most of his time

bouncing between Detroit, Reykjavik and NYC.

https://twitter.com/bruienne
https://twitter.com/iodboi

61

The Trusted Access
Company duo.com

Our mission is to protect
your mission.

Experience advanced two-factor authentication, endpoint
visibility, custom user policies & more with your free 30 day trial.

Try it today at duo.com.

Duo Security makes security painless, so you can focus on

what’s important. Our scalable, cloud-based Trusted Access

platform addresses security threats before they become a

problem, by verifying the identity of your users and the health of

their devices before they connect to the applications you want

them to access.

Thousands of organizations worldwide use Duo, including

Facebook, Toyota, Panasonic and MIT. Duo is backed by Google

Ventures, True Ventures, Radar Partners, Redpoint Ventures

and Benchmark. We’re located from coast to coast and across

the sea.

Follow @duosec and @duo_labs on Twitter.

http://duo.com
https://duo.com/product
https://twitter.com/duosec
https://twitter.com/duo_labs

	h.2us3juwme59b
	h.xjpoo4ai9672
	h.louvzv7mta5b

