
/30

Playing with Mach-O
and DYLD
A peek into macOS

Stanislas `P1kachu` Lejay
March 14, 2017

1

/30Playing with Mach-O and DYLD

Initial goal

▸ Learn something about macOS internals

▸ Learn how Apple tries to secure iOS and macOS

▸ How do these measures differ from the one we already
know about ?

▸ Learn about Mach-O executables as a vector of
exploitation and for fun

▸ How to play with them?

2

/30Playing with Mach-O and DYLD

Where to begin

1. Take something simple that works but few really know how

2. Find a way to turn it into something overly complicated

3. And well, do it

Our lab’s pick: calling ‘printf’
‣ Look for the mapped libc by using the system and dynamic

linker’s structures only (ninja mode: no syscall)

‣ Use the executable format to find printf’s address inside.

3

/30

Looking for the libc

4

/30Playing with Mach-O and DYLD

Determining where printf is

▸ gdb tells us to look into /usr/lib/system/libsystem_c.dylib

▸ This is a Mach-O universal binary (fat binary)

▸ Extract executable corresponding to our architecture, and find where it is
mapped

5

▸ macOS/iOS classic dynamic linker - open source

▸ Interesting from a security perspective (often abused)

▸ Relevant headers in /usr/include/mach[-o]/

One solution: exploring DYLD

/30Playing with Mach-O and DYLD

dyld_image_info

6

▸ Represents an image’s memory mapping

▸ Direct access to image’s name and loaded address (ASLR independent)

▸ Stored in an array in dyld_all_image_infos structure

from /usr/include/mach-o/dyld_images.h

/30Playing with Mach-O and DYLD

dyld_all_image_infos

7

▸ The almighty structure

▸ Direct access to a process’s address space and linker informations

▸ Quite subject to changes

from /usr/include/mach-o/dyld_images.h

/30Playing with Mach-O and DYLD

Getting dyld_all_image_infos

8

▸ To get it, we need to call the task_info function

▸ Returns informations regarding the flavor argument

▸ If flavor is TASK_DYLD_INFO, we obtain a struct task_dyld_info

from /usr/include/mach/task_info.h

/30Playing with Mach-O and DYLD

Putting it all together

9

▸ We first get the task_dyld_info structure

/30Playing with Mach-O and DYLD

Putting it all together

10

▸ We then get the dyld_image_info array

/30Playing with Mach-O and DYLD

Putting it all together

11

▸ And finally we look for libsystem_c.dylib

/30

Finding
printf

12

/30Playing with Mach-O and DYLD

libsystem_c

▸ Now we have the libc binary (Mach-O format)

▸ We need to find printf’s offset in it

▸ So we need to observe the libc’s exported symbols

▸ How does one, and particularly DYLD, perform this ?

13

/3014

El
Mach-O

/30Playing with Mach-O and DYLD

The Mach-O Format in 2 slides

‣ One Mach-O header
‣ Multiple Load commands
‣ One or more segments, each containing [0, 255] sections

15

/30Playing with Mach-O and DYLD 16

/30Playing with Mach-O and DYLD

Parsing a bit

▸ We are interested in the LC_SYMTAB load command

▸ It gives the symbol and string table offsets from the
executable base.

▸ Well, that’s easy. Perhaps too easy.

17

/30Playing with Mach-O and DYLD

Parsing the symtab

▸ However, the values found in memory differ a bit…

18

▸ With jtool, we can see which values we are supposed to find:

/30Playing with Mach-O and DYLD

The shared cache

▸ Back in 2009 (iOS 3.1), the DYLD shared cache was introduced as a new way
to handle system libraries

▸ It combines all system libraries into a big file, mapped system-wide at boot, to
improve overall performance

▸ It lives in /private/var/db/dyld and regroups a lot of libraries (~400 for
Yosemite and ~670 for Sierra)

▸ File format not documented, and subject to changes between versions

▸ The offset found in memory thus are from the shared cache’s base address,
since libsystem_c is, as it name explains, a system library

19

/30Playing with Mach-O and DYLD

So we need to find it’s base

▸ The stupid method (Yosemite):

1.Find the loaded library with the smallest base address

2. Walk back into memory until finding the shared cache
magic string (dyld_v1 x86_64\0)

▸ The easy method (Sierra): the dyld_all_image_infos
structure comes with the sharedCacheBaseAddress field :)

20

/30Playing with Mach-O and DYLD

Subtleties

▸ On Yosemite, the file layout of the shared cache does not
correspond to its memory mapping

21

▸ The DATA mapping is above the cache
header

▸ The magic string thus doesn’t correspond to
the base address we should take into
account to get the symbols

▸ On Sierra, things are back in order

/30Playing with Mach-O and DYLD

cache.base = [R-X].address + [R-X].size - [R--].offset

22

shared cache layout on

 Yosemite (10.10)

/30

Finding
printf

/30Playing with Mach-O and DYLD

Final steps

▸ We finally have everything we need and just have to deduce printf’s address.

▸ symtab entries are struct nlist[_64]. We are interested in the n_un.n_strx
and the n_value fields.

24

from /usr/include/mach-o/nlist.h

/30Playing with Mach-O and DYLD

Final steps

25

/30Playing with Mach-O and DYLD

aaaaaand...

26

/30Playing with Mach-O and DYLD

Gotcha!

27

Everyone else

Me

wasted time

/30Playing with Mach-O and DYLD

Bonus question

28

▸ Let’s think about something: the shared
cache is loaded at boot system-wide. What
does this mean ?

/30Playing with Mach-O and DYLD

References and code

29

▸ http://newosxbook.com/articles/DYLD.html

▸ https://www.gnu.org/software/hurd/gnumach-doc/Task-Information.html

▸ http://timetobleed.com/dynamic-symbol-table-duel-elf-vs-mach-o-round-2/

▸ https://www.objc.io/issues/6-build-tools/mach-o-executables/

▸ http://antid0te.com/POC2010-Adding-ASLR-To-Jailbroken-iPhones.pdf (a bit old but meh.)

▸ /usr/include/mach-o/*

Final code available:
https://gist.github.com/P1kachu/e6b14e92454a87b3f9c66b3163656d09

http://newosxbook.com/articles/DYLD.html
https://www.gnu.org/software/hurd/gnumach-doc/Task-Information.html
http://timetobleed.com/dynamic-symbol-table-duel-elf-vs-mach-o-round-2/
https://www.objc.io/issues/6-build-tools/mach-o-executables/
http://antid0te.com/POC2010-Adding-ASLR-To-Jailbroken-iPhones.pdf
https://gist.github.com/P1kachu/e6b14e92454a87b3f9c66b3163656d09

/30

Thank you
p1kachu@lse.epita.fr

@0xp1kachu

30

mailto:p1kachu@lse.epita.fr?subject=
https://twitter.com/0xP1kachu

