
Date 14/09/2018

At Sthack 2018

By Eloi Benoist-Vanderbeken

Heapple Pie

The macOS/iOS default heap

2 / 60

Whoami

 Eloi Benoist-Vanderbeken

 @elvanderb on twitter

 Working for Synacktiv:
 Offensive security company (pentest, red team, vuln hunting, exploitation,

tool dev, etc.)

 Reverse engineering team coordinator:
 14 reversers / 36 ninjas
 Focus on low level dev, reverse, vuln research/exploitation
 If there is software in it, we can own it :)
 We are recruiting!

Introduction

4 / 60

Why this presentation?

 Growing interest in macOS/iOS
 JailBreak scene → fame3 - money0

 Lots of pwn competitions → fame2 - money1

(mobile) Pwn2Own

PWNFEST

GeekPwn

XPwn...

 Vulnerability brokers → fame0 - money3

 Apple Bug Bounty → fame2 - money2

If you manage to get paid…

 But almost no documentation on the macOS/iOS user
default heap from an exploiter point of view

5 / 60

Why so little love?

 Safari exploits → WebKit heap
 lots of good resources
 kudos to saelo

 Kernel exploits → kernel heap
 lots of good resources
 kudos to Stefan Esser

 Services exploits
 lots of logic bugs

 But…
 All the Obj-C framework and almost all the other lib / exe are

based on the default heap

6 / 60

Previous work

 OS X Heap Exploitation Techniques – 2005 – Nemo
 Not a lot of details on heap internals
 Outdated (64bits kills the exploitation technique)

 Mac OS Xploitation (and others) – 2009 – Dino A. Dai Zovi
 Outdated (new checksums)

 In the Zone: OS X Heap Exploitation – 2016 – Tyler Bohan
 Good description of the heap
 LLDB scripts released
 Describes some exploitation techniques as how to transform a heap

overflow into a use-after-free (more on this later…)

How does malloc
works

8 / 60

malloc zones

 malloc is actually just a wrapper on malloc_zone_malloc
 called with the default zone which is a scalable zone
 we will focus on this zone

 Other zones can be registered
 WebKit Malloc
 GFXMallocZone
 QuartzCore
 etc.

 malloc_zone_{malloc/free/realloc/…} functions are just wrappers that call zone
functions
 zone functions handle the allocation
 malloc_zone_* functions handle the generic stuff

find the zone associated with the passed pointer

log / trace / periodically check the zone / etc.

 malloc will always allocate from the default heap but realloc/free/malloc_size
can be called with pointers belonging to other zones

9 / 60

How does the scalable zone works
 Each process has two racks

 tiny

≤ 1008 bytes on a 64bits machine

≤ 496 bytes on a 32bits machine

 small

≤ 15 KB on machine with less than 1GB of memory

≤ 127 KB else

 from now on, we will only consider the 64bits and +1GB case

 If an allocation doesn’t fit in the small rack then the large allocator is used
 directly allocates pages
 we won’t talk about this allocator

not often encountered and not really interesting from an exploitation point of view

 There is an other allocator, the nano allocator, but it is not activated by default
 used for allocations < 256 B
 activated with a special posix_spawn undocumented flag (_POSIX_SPAWN_NANO_ALLOCATOR)

or with the MallocNanoZone environment variable set to 1.
 quite interesting but that’s an other story…

10 / 60

How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

11 / 60

How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata are at the end of the region

 Each region is divided in quantum
 16B for tiny allocations
 256B for small ones

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch
 60/508 max for small allocations depending on the machine (less or more than 1GB

of memory)

12 / 60

How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

13 / 60

How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata (rack specific) is at the end of the region

 Each region is divided in quantum
 16B for tiny allocations
 256B for small ones

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch
 60/508 max for small allocations depending on the machine (less or more than 1GB

of memory)

14 / 60

How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

Region
size = 1MB

Region
size = 8MB

metadata metadata

15 / 60

How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata (rack specific) is at the end of the region

 Each region is divided in quantum
 16B for tiny allocations (64520 quantums / region)
 512B for small ones (16319 quantums / region)

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch
 60/508 max for small allocations depending on the machine (less or more than 1GB

of memory)

16 / 60

How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

Region
size = 1MB

Region
size = 8MB

metadata metadata

Quantum
size = 16B

Quantum
size = 512B

17 / 60

How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata (rack specific) is at the end of the region

 Each region is divided in quantum
 16B for tiny allocations (64520 quantums / region)
 512B for small ones (16319 quantums / region)

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch (32bits/64bits)
 60/508 max for small allocations depending on the machine (less/more than 1GB of

memory)

18 / 60

How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

Region
size = 1MB

Region
size = 8MB

metadata metadata

Quantum
size = 16B

Quantum
size = 512B

alloc alloc

19 / 60

How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, we directly go to the next step...

 The old cached one, if any, is free
 It is first coalesced with adjacent free blocks if any
 It then contains pointers to the next and previous freed blocks
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

 Pointers are protected with a 4bit randomized checksum

 There is one “freelist” per block size and per magazine

20 / 60

How does the scalable zone works
Magazine

block to free (80B)

cache

21 / 60

How does the scalable zone works
Magazine

block freed (80B)

cache

22 / 60

How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, we directly go to the next step...

 The old cached one, if any, is freed
 It is first coalesced with adjacent free blocks if any
 It then contains pointers to the next and previous freed blocks
 Pointers are protected with a 4bit randomized checksum
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

for the small track, the block size is stored in the metadata

 There is one “freelist” per block size and per magazine

23 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(80)

free(96)

free(16)

24 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(80)

free(96)

free(16)

25 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(96)

free(96)

26 / 60

How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, we directly go to the next step...

 The old cached one, if any, is freed
 It is first coalesced with adjacent free blocks if any
 It is then put int the free list
 Pointers are protected with a 4bit randomized checksum
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

for the small track, the block size is stored in the metadata

 There is one “freelist” per block size and per magazine

27 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(96)

free(96)

prev
NULL

next

prev next
NULL

28 / 60

How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, the block is directly free

 The old cached one, if any, is free
 It is first coalesced with adjacent free blocks if any
 It is then put int the free list
 Pointers are protected with a 4bit randomized checksum
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

for the small track, the block size is stored in the metadata

 There is one “freelist” per block size and per magazine

29 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prevprev
NULL

next size
6

size
6

size
6

prev next
NULL

size
6

30 / 60

How does the scalable zone works

 When a block is allocated, malloc will try to:
 use the cache if the size matches
 use a block in freelists[size]
 use a larger block in freelists[size+n]

the leftover is put in the freelist

 use the end of the region

which is not already allocated

 allocate a new region

 If everything fails, it returns NULL

31 / 60

Important things to remember
1/2

 One magazine per core
 Important when you massage/spray a multi thread process or

when your exploit takes time…

 To fill all the holes in the heap, just make a lot of tiny
allocations

 Allocations are contiguous

 Allocations are not randomized
 Useful for massaging

 Allocations of different sizes are in the same region
 Even if your UAF/overflow can only be triggered on a fixed size

block you can hit a lot of different objects

32 / 60

Important things to remember
2/2

 Last freed chunk is cached
 so not instantly coalesced!

 Metadata in freed chunks is protected
 next and previous pointers are aligned on 16 bytes
 malloc uses the 4 less significant bits to store a (randomized)

checksum
 rotate the result to place the checksum in the most

significant bits

unclear why… to protect against a partial overwrite?

 If you want to know more, it’s open-source
 https://opensource.apple.com/source/libmalloc/

Exploit!

34 / 60

“In the Zone: OS X Heap
Exploitation” techniques
 Tries to transform a linear heap overflow in

the tiny heap into a use-after-free alike
primitive
 By overwriting freed blocks size
 Couldn’t work in the small heap as sizes are in the

metadata

 Useful to leak pointers for example

35 / 60

“In the Zone: OS X Heap
Exploitation” techniques
src: PacSec 2016 – Tyler Bohan – https://pacsec.jp/psj16/PSJ2016_Bohan_PacSec_2016.pdf

36 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
6

prev next size
6

37 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
6

prev next size
8

38 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
6

prev next size
8

size
6

FREE

39 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

in the freelist
but still used

40 / 60

“In the Zone: OS X Heap
Exploitation” techniques
 Actually never worked

 You cannot overflow the size of a chunk without overflowing its
pointers

 Pointers are checked during coalescing

when the coalesced block is removed from its previous free list

see tiny_free_list_remove_ptr and free_list_unchecksum_ptr in
tiny_free_no_lock

 Without a leak (or a lot of luck) you are toasted

 Trick applicable only if you have a non-linear OOB write
 So you can overwrite size without overwriting the pointers
 For example an indexed write with an attacker chosen index

 Fortunately, another technique is proposed…

41 / 60

“In the Zone: OS X Heap
Exploitation” techniques
 You may think that you can trick the allocator by using backward

coalescing
 the heap will then use the unmodified pointers of another preceding allocation
 checksum bypassed!
 but...

 If the size stored at the beginning and the end of the freed block
doesn’t match then no coalescing is done
 actually not a security check
 the allocator first assume that the preceding block is freed because it cannot

directly check if it’s freed
 then it checks if it is effectively freed
 see tiny_previous_preceding_free in tiny_free_no_lock

 This check exists since the first magazine malloc version
 both techniques never worked

42 / 60

“In the Zone: OS X Heap
Exploitation” techniques
src: PacSec 2016 – Tyler Bohan – https://pacsec.jp/psj16/PSJ2016_Bohan_PacSec_2016.pdf

43 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

malloc(32) size
6

prev next size
6

size
2

prev next size
2

44 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
10

prev next sizesize
2

prev next size
2

45 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
10

prev next sizesize
2

prev next size
2

46 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
10

prev next sizesize
2

prev next size
2

FREE

47 / 60

How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

in the freelist
but still used

48 / 60

“In the Zone: OS X Heap
Exploitation” techniques
 You may think that you can trick the allocator by using backward

coalescing
 the heap will then use the unmodified pointers of another preceding allocation
 checksum bypassed!
 but...

 If the size stored at the beginning and the end of the freed block
doesn’t match then no coalescing is done
 actually not a security check
 the allocator first assumes that the preceding block is freed because it cannot

directly check if it’s freed
 then it checks if it is effectively freed
 see tiny_previous_preceding_free in tiny_free_no_lock

 This check exists since the first magazine malloc version
 both techniques never worked

49 / 60

“In the Zone: OS X Heap
Exploitation” techniques
 Use the Web Audio API in WebKit to massage the default

heap
 in WebCore/Modules/webaudio/AudioBufferSourceNode.cpp:

 std → allocate in the default heap

 numberOfChannels is controlled
 1 to 32 channels

 previous buffers are freed

 (almost) perfect to massage the heap!
 you cannot free a block without allocating another one
 needs some gymnastic to make it works
 but no garbage collection problems!

50 / 60

“In the Zone: OS X Heap
Exploitation” techniques
 Until commit 1d211e1fc1cf4801da64b6881d07bda01f643cf3…

 March 2018

 Removes almost all references to the default heap in WebKit
 technique is dead

51 / 60

What’s left?

 Not much :)

 You may try to attack metadata at the end of a region
 but that’s another story…

 You may try to attack adjacent allocations
 to overflow pointers, lengths, vtables…
 or Objective-C objects

see Modern Objective-C Exploitation Techniques in Phrack #69 by
nemo

 Heap layout makes this relatively easy
 remember: objects of different size are all allocated in the same

region / page

52 / 60

How to debug the heap?

 Apple gives us powerful tools

 Environment variables (extract of the malloc man)
 MallocGuardEdges

to add 2 guard pages for each large block

 MallocStackLogging

to record all stacks.

 MallocScribble

to detect writing on free blocks and missing initializers: 0x55 is written upon free and 0xaa is
written on allocation

 MallocCheckHeapStart <n>

to start checking the heap after <n> operations

 MallocCheckHeapEach <s>

to repeat the checking of the heap after <s> operations

 MallocTracing

to emit kdebug trace points on malloc entry points

53 / 60

How to debug the heap? – cont’d

 heap
 displays all the allocations of a given process
 able to recognize Obj-C and C++ objects

ex: heap --addresses '(WebKit::WebFormClient|
CFString)' Safari

 malloc_history
 displays the information gathered via the

MallocStackLogging environment variable

 leak
 used to discover leaks…
 not really interesting from an exploitation point of view

54 / 60

Anything more visual?

 malloc_history is great to get information on
specific addresses
 useful for bug triage / debug

 But it doesn’t give you an overview of the heap
 hard to test or validate heap massaging techniques

 Moreover MallocStackLogging is quite slow…

➔ We need to go deeper!

55 / 60

Remember the zones?

 Zones must expose some functions
 see the definition of malloc_zone_t in malloc/malloc.h

 Including introspection functions
 see struct malloc_introspection_t

 Can be used to list both your own and other
processes allocations
 functions take a pointer to a reader function

 Not all zones implement it correctly…
 but the default zone does!

56 / 60

Visualizing

 Blocks that start with the same qword have the same color
 Obj-C and C++ instances of a given object will have the same color

 Do not use PIL and other Python imaging libraries
 try to do smart things like scaling your rectangles
 rounding problems so not pixel perfect…
 very slow

 We developed a minimal python PNG lib
 based on lodepng (simple PNG C library, 1 file)
 can only draw rectangles
 but do it well and fast!

 Interaction with HTML/JS
 Displays the PNG
 Displays the data on click
 Simple but efficient

Démo

58 / 60

Conclusion

 No generic method
 sorry :)

 But an attacker-friendly heap
 adjacent allocations
 easy to massage
 different sizes in the same region
 no randomization

 And a great introspection API

59 / 60

Thank you!

 Sthack for the amazing event
 can’t wait for tonight ;)

 Synacktiv for the cool missions :)
 Did I say that we are recruiting?

 SzLam for the presentation title idea

 ❤❤❤
 You for your attention!

THANK YOU FOR YOUR ATTENTION

Do you have any
questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

