5s OYNACKTIV

Il M DIGITAL SECURITY

Heapple Pie

The macOS/IOS default heap

Date 14/09/2018
At Sthack 2018
By Eloi Benoist-Vanderbeken

Whoami

= Eloi Benoist-Vanderbeken
= @elvanderb on twitter

= Working for Synacktiv:

= Offensive security company (pentest, red team, vuln hunting, exploitation,
tool dey, etc.)

= Reverse engineering team coordinator:

= 14 reversers / 36 ninjas

= Focus on low level dev, reverse, vuln research/exploitation
= |f there is software in it, we can own it ;)

= \We are recruiting!

w
M B DIGITAL SECURITY

= Introduction

Why this presentation?

= Growing interest in macOS/iOS

= JailBreak scene — fames3 - money?°

= Lots of pwn competitions — famez - money!

(mobile) Pwn20Own
PWNFEST
GeekPwn

XPwn...

= Vulnerability brokers — fame° - moneys?

= Apple Bug Bounty — fame2 - money?
If you manage to get paid...

= But almost no documentation on the macOS/iOS user
default heap from an exploiter point of view

w
M B DIGITAL SECURITY

Why so little love?

= Safari exploits — WebKit heap

= |ots of good resources
= kudos to saelo

= Kernel exploits — kernel heap

= |ots of good resources
= kudos to Stefan Esser

m Services exploits
= |ots of logic bugs

= But...

= All the Obj-C framework and almost all the other lib / exe are
based on the default heap

w
M B DIGITAL SECURITY

Previous work

= OS X Heap Exploitation Techniques — 2005 - Nemo
= Not a lot of details on heap internals
= Qutdated (64bits kills the exploitation technique)

= Mac OS Xploitation (and others) — 2009 - Dino A. Dai Zovi
= Qutdated (new checksums)

= |In the Zone: OS X Heap Exploitation - 2016 - Tyler Bohan
= Good description of the heap
= LLDB scripts released

= Describes some exploitation techniques as how to transform a heap
overflow into a use-after-free (more on this later...)

M B DIGITAL SECURITY

™ How does malloc
works

malloc zones

= malloc is actually just a wrapper on malloc_zone malloc
= called with the default zone which is a scalable zone
= we will focus on this zone
= Other zones can be registered
= WebKit Malloc
= GFXMallocZone
= QuartzCore
= etc.

= malloc_zone_{malloc/freelrealloc/...} functions are just wrappers that call zone
functions

= zone functions handle the allocation

= malloc_zone_* functions handle the generic stuff
find the zone associated with the passed pointer
log / trace / periodically check the zone / etc.

= malloc will always allocate from the default heap but realloc/free/malloc_size
can be called with pointers belonging to other zones

w
M B DIGITAL SECURITY

]
How does the scalable zone works B

= Each process has two racks

= tiny
< 1008 bytes on a 64bits machine
< 496 bytes on a 32bits machine

= small
< 15 KB on machine with less than 1GB of memory
<127 KB else
= from now on, we will only consider the 64bits and +1GB case

= If an allocation doesn’t fit in the small rack then the large allocator is used

= directly allocates pages

= we won't talk about this allocator
not often encountered and not really interesting from an exploitation point of view

= There is an other allocator, the nano allocator, but it is not activated by default

= used for allocations < 256 B

= activated with a special posix_spawn undocumented flag (POSIX_SPAWN_NANO_ALLOCATOR)
or with the MallocNanoZone environment variable set to 1.

= quite interesting but that's an other story...

w
M B DIGITAL SECURITY

]
How does the scalable zone works B

Process

Tiny rack
size < 1009B

Large allocations
127KB < size

w
M B DIGITAL SECURITY

]
How does the scalable zone works B

= Each rack has one magazine per physical core

= Qoptimize the processor caches accesses
= reduce the risk of concurrent access (less locks)

M B DIGITAL SECURITY

How does the scalable zone works

Process

Large allocations
127KB < size

]
How does the scalable zone works B

= Each rack has one magazine per physical core
= Qoptimize the processor caches accesses
= reduce the risk of concurrent access (less locks)
= Each magazine has multiple regions
= 1MB for tiny allocations
= 8MB for small ones
= metadata (rack specific) is at the end of the region

w
M B DIGITAL SECURITY

How does the scalable zone works B

Tiny rack
size <1009B

metadata

Process

metadata

Large allocations
127KB < size

5eoYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

= Each rack has one magazine per physical core

= Qoptimize the processor caches accesses

= reduce the risk of concurrent access (less locks)
= Each magazine has multiple regions

= 1MB for tiny allocations

= 8MB for small ones

= metadata (rack specific) is at the end of the region
= Each region is divided in quantum

= 16B for tiny allocations (64520 quantums / region)

= 512B for small ones (16319 quantums / region)

|

w
M B DIGITAL SECURITY

How does the scalable zone works B

Tiny rack
size <1009B

Region
size = 1MB

Process

Region
size = 8MB

Quantum

Size = 16B

metadata

Quantum
size =512B

metadata

Large allocations
127KB < size

5eoYN

B B DIGITAL SECU

RITY

]
How does the scalable zone works B

= Each rack has one magazine per physical core
= Qoptimize the processor caches accesses
= reduce the risk of concurrent access (less locks)
= Each magazine has multiple regions
= 1MB for tiny allocations
= 8MB for small ones
= metadata (rack specific) is at the end of the region
= Each region is divided in quantum
= 16B for tiny allocations (64520 quantums / region)
= 512B for small ones (16319 quantums / region)
= An allocation is a block made of n quantums
= 31/63 max for tiny allocations depending on the arch (32bits/64bits)

= 60/508 max for small allocations depending on the machine (less/more than 1GB of
memory)

w
M B DIGITAL SECURITY

How does the scalable zone works B

Tiny rack
size <1009B

Region
size = 1MB

Process

Region
size = 8MB

Quantum

Size = 16B

metadata

Quantum

size = 512B

metadata

Large allocations
127KB < size

5eoYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

= When an alloc is freed, the block is cached in the magazine

= for the tiny track, only if the block is not too big

= pecause the number of quantums has to fit in 4 bits
= Size < 256

= otherwise, we directly go to the next step...

w
M B DIGITAL SECURITY

]
How does the scalable zone works B

5eoYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

5eoYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

= When an alloc is freed, the block is cached in the magazine

= for the tiny track, only if the block is not too big

= because the number of quantums has to fit in 4 bits
= size < 256
= otherwise, we directly go to the next step...

= The old cached one, if any, is freed
= |t is first coalesced with adjacent free blocks if any

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 n

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

= When an alloc is freed, the block is cached in the magazine

= for the tiny track, only if the block is not too big

= because the number of quantums has to fit in 4 bits
= size < 256
= otherwise, we directly go to the next step...

= The old cached one, if any, is freed
= |t is first coalesced with adjacent free blocks if any

= |t is then put int the free list
= Pointers are protected with a 4bit randomized checksum

w
M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

= When an alloc is freed, the block is cached in the magazine

= for the tiny track, only if the block is not too big

= because the number of quantums has to fit in 4 bits
= size < 256
= otherwise, the block is directly free

= The old cached one, if any, is free

= |t is first coalesced with adjacent free blocks if any
= |t is then put int the free list
= Pointers are protected with a 4bit randomized checksum

= For the tiny track, if it is big enough (= 16B), it also contains its size

after the pointers and at the end of the allocation
for the small track, the block size is stored in the metadata

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

]
How does the scalable zone works B

= When a block is allocated, malloc will try to:

= yse the cache If the size matches
= use a block In freelists[size]

= use a larger block In freelists[size+n]
the leftover is put in the freelist

= use the end of the region
which is not already allocated

= allocate a new region

= If everything fails, it returns NULL

w
M B DIGITAL SECURITY

Important things to remember .=

1/2

= One magazine per core

= Important when you massage/spray a multi thread process or
when your exploit takes time...

= To fill all the holes in the heap, just make a lot of tiny
allocations

= Allocations are contiguous

= Allocations are not randomized
= Useful for massaging
= Allocations of different sizes are in the same region

= Even if your UAF/overflow can only be triggered on a fixed size
block you can hit a lot of different objects

w
M B DIGITAL SECURITY

Important things to remember -

2/2

= Last freed chunk is cached
= S0 not instantly coalesced!
= Metadata in freed chunks is protected

= next and previous pointers are aligned on 16 bytes

= malloc uses the 4 less significant bits to store a (randomized)
checksum

= rotate the result to place the checksum in the most
significant bits
unclear why... to protect against a partial overwrite?

= If you want to know more, it’s open-source
= https://opensource.apple.com/source/libmalloc/

w
M B DIGITAL SECURITY

“In the Zone: OS X Heap l=
Exploitation” techniques

= Tries to transform a linear heap overflow in
the tiny heap into a use-after-free alike
primitive
= By overwriting freed blocks size

= Couldn’t work in the small heap as sizes are in the
metadata

= Useful to leak pointers for example

w
M B DIGITAL SECURITY

“In the Zone: OS X Heap

Exploitation” techniques

src: PacSec 2016 — Tyler Bohan — https://pacsec.jp/psj16/PSJ2016 _Bohan_ PacSec 2016.pdf

Strategies — mag_free_list — Coalesce

Busy Chunk 111111111111111 111111111111111
_/-l-!.m 111 118 111
1111111%1111111 71111111111111

111111111\ 11111 111111111111111

If Busy Chunk gets free'd, 2Q+40+40) (10Q) gets

@) ite B ith 2Q) data t tt
verwrite Busy with 20 data to get to added to free list. 20 still in use by program.

Write 4+4 (8Q) into ForwardQ.
Free Chunk
 Previous | Next
Forward 4Q
-
111111111111111 ackward 46
1109 Liii111
1111111111111

Similarly if Busy Chunk gets
realloc’d, The different of 8Q
and the new allocation size
gets added to the free list
where 30Q) chunk is still in use.

11111111111711111

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

B - I

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

“In the Zone: OS X Heap
Exploitation” techniques

= Actually never worked

= You cannot overflow the size of a chunk without overflowing its
pointers

= Pointers are checked during coalescing

when the coalesced block is removed from its previous free list

see tiny_free_list_remove_ptr and free_list_unchecksum_ptr in
tiny_free_no_lock

= Without a leak (or a lot of luck) you are toasted
= Trick applicable only if you have a non-linear OOB write

= S0 you can overwrite size without overwriting the pointers
= For example an indexed write with an attacker chosen index

= Fortunately, another technique is proposed...

w
M B DIGITAL SECURITY

“In the Zone: OS X Heap l=
Exploitation” techniques

= You may think that you can trick the allocator by using backward
coalescing

= the heap will then use the unmodified pointers of another preceding allocation
= checksum bypassed!

w
M B DIGITAL SECURITY

“In the Zone: OS X Heap

Exploitation” techniques

src: PacSec 2016 — Tyler Bohan — https://pacsec.jp/psj16/PSJ2016 Bohan_ PacSec 2016.pdf

Strategies — mag_free_list — Coalesce

Busy Chunk
Overwrite with + bytes data.

11} llllllll:Cllll
1 T - |

111)J411111111111

JAL1111111111111 Freeing Busy chunk will coalesce with
1111111111111111 and use overwritten
o1 12 oining
with 7Q chunk.
l.l;l&ﬁlll:ili\ Due to _ being 12. Freeing
o C 5Q chunk will read BackwardQ and
ﬁﬁﬁiiﬁii adld 7Q+20+ . (1_20)tofree list
whilst still being by program.
111111111111111

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

How does the scalable zone works B

freelist freelist freelist | freelist -
16 96 1008 = 1024 “

5sSYN

M B DIGITAL SECURITY

“In the Zone: OS X Heap l=
Exploitation” techniques

= You may think that you can trick the allocator by using backward
coalescing

= the heap will then use the unmodified pointers of another preceding allocation
= checksum bypassed!
= put...

= |f the size stored at the beginning and the end of the freed block
doesn’t match then no coalescing is done

= actually not a security check

= the allocator first assumes that the preceding block is freed because it cannot
directly check if it's freed

= then it checks if it is effectively freed
= see tiny_previous_preceding_free in tiny _free_no_lock

= This check exists since the first magazine malloc version
= poth techniques never worked

w
M B DIGITAL SECURITY

“In the Zone: OS X Heap l=
Exploitation” techniques

= Use the Web Audio API in WebKit to massage the default
heap

= In WebCore/Modules/webaudio/AudioBufferSourceNode.cpp-

m_sourceChannels = std: :make_unique<const float*[]={numberdofchannels),
m_)

destinationChannels = std: :make_unique<float*[]={number0fChannels);
= std — allocate in the default heap
® numberOfChannels is controlled
= 1to 32 channels
= previous buffers are freed
= (almost) perfect to massage the heap!

= you cannot free a block without allocating another one
= needs some gymnastic to make it works
= put no garbage collection problems!

w
M B DIGITAL SECURITY

“In the Zone: OS X Heap
Exploitation” techniques

= Until commit 1d211elfc1cf4801da64b6881d07bda01f643cf3...
= March 2018

Fix std::make_ unique / new[] using system malloc

https://bugs.webkit.org/show_bug.cgi?id=182875
Reviewed by JF Bastien.
Source/JavaScriptCore:

Use Vector, FAST_ALLOCATED, or UniqueArray 1nstead.

= Removes almost all references to the default heap in WebKit
= technique is dead

w
M B DIGITAL SECURITY

What's left?

= Not much ;)

= You may try to attack metadata at the end of a region
= put that's another story...
= You may try to attack adjacent allocations

= to overflow pointers, lengths, vtables...

= or Objective-C objects

see Modern Objective-C Exploitation Techniques in Phrack #69 by
nemo

= Heap layout makes this relatively easy

= remember: objects of different size are all allocated in the same
region / page

w
M B DIGITAL SECURITY

How to debug the heap?

= Apple gives us powerful tools

= Environment variables (extract of the malloc man)

= MallocGuardEdges

to add 2 guard pages for each large block
MallocStackLogging

to record all stacks.
MallocScribble

to detect writing on free blocks and missing initializers: 0x55 is written upon free and Oxaa is
written on allocation

MallocCheckHeapStart <n>

to start checking the heap after <n> operations
MallocCheckHeapEach <s>

to repeat the checking of the heap after <s> operations
MallocTracing

to emit kdebug trace points on malloc entry points

w
M B DIGITAL SECURITY

How to debug the heap? — cont’d

= heap

= displays all the allocations of a given process

= able to recognize Obj-C and C++ objects

ex: heap --addresses '(WebKit::WebFormClient|
CFString)' Safari

= malloc_history

= displays the information gathered via the
MallocStackLogging environment variable

m leak

= used to discover leaks...
= not really interesting from an exploitation point of view

w
M B DIGITAL SECURITY

Anything more visual?

= malloc_history is great to get information on
specific addresses

= useful for bug triage / debug

= But it doesn’t give you an overview of the heap
= hard to test or validate heap massaging techniques

= Moreover MallocStackLogging is quite slow...

=2 We need to go deeper!

w
M B DIGITAL SECURITY

Remember the zones?

= Zones must expose some functions

= see the definition of malloc_zone_t in malloc/malloc.h
® Including introspection functions

= see struct malloc_introspection_t

= Can be used to list both your own and other
processes allocations

= functions take a pointer to a reader function
= Not all zones implement it correctly...
= put the default zone does!

w
M B DIGITAL SECURITY

Visualizing

= Blocks that start with the same gqword have the same color
= Obj-C and C++ instances of a given object will have the same color
= Do not use PIL and other Python imaging libraries
= try to do smart things like scaling your rectangles
= rounding problems so not pixel perfect...
= very slow
= We developed a minimal python PNG lib
= pased on lodepng (simple PNG C library, 1 file)

= can only draw rectangles
= put do it well and fast!

m Interaction with HTML/JS

= Displays the PNG
= Displays the data on click
= Simple but efficient

w
M B DIGITAL SECURITY

Q

&

magazine 0°0

0x7FB7FB000000

magazine n°1
0x7E B"I'GIEE'JG(}O

NN

I W DIGITAL SECURITY

- ——;‘: s :___-—_— ——

alloc(0x190)

696c7062 30307473
030201d4 16060504
76245817 69737265
24586e6f 656a626
59737463 63726124
65766968 74245472
0012706f a3a08601
5500807 6c756e24
0a09d36¢ 0e0d0COb
2e534e57 7379656h
2e534e5a 656a626f
56737463 616c6324
a0a07373 10420280
5al31211 616c6324
616e7373 2458656d
534e1310 6174754d
44656C62 69746369
72616e6f 1412a375
534e5¢15 74636944
6462453 5f746365
534e0f10 6579654b
63724164 65765568
19184172 6f6f7254
3?03%?70;; 24231a11

625b5048
Sb656463 9995775
c4clafas

Conclusion

= No generic method
= S0rTy)

= But an attacker-friendly heap
= adjacent allocations
= easy to massage

= different sizes in the same region
= no randomization

= And a great introspection API

w
M B DIGITAL SECURITY

Thank you!

= Sthack for the amazing event
= can’t wait for tonight ;)
= Synacktiv for the cool missions :)
= Did | say that we are recruiting?
= SzLam for the presentation title idea

" YOV
= You for your attention!

w
M B DIGITAL SECURITY

Do you have any
guestions?

THANK YOU FOR YOUR ATTENTION

1e0 YNACKTIV

M DIGITAL SECURITY

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

