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Whoami

 Eloi Benoist-Vanderbeken

 @elvanderb on twitter

 Working for Synacktiv:
 Offensive security company (pentest, red team, vuln hunting, exploitation, 

tool dev, etc.)

 Reverse engineering team coordinator:
 14 reversers / 36 ninjas
 Focus on low level dev, reverse, vuln research/exploitation
 If there is software in it, we can own it :)
 We are recruiting!



  

Introduction
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Why this presentation?

 Growing interest in macOS/iOS
 JailBreak scene → fame3 - money0

 Lots of pwn competitions → fame2 - money1

(mobile) Pwn2Own

PWNFEST

GeekPwn

XPwn...

 Vulnerability brokers → fame0 - money3

 Apple Bug Bounty → fame2 - money2

If you manage to get paid…

 But almost no documentation on the macOS/iOS user 
default heap from an exploiter point of view
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Why so little love?

 Safari exploits → WebKit heap
 lots of good resources
 kudos to saelo

 Kernel exploits → kernel heap
 lots of good resources
 kudos to Stefan Esser

 Services exploits
 lots of logic bugs

 But…
 All the Obj-C framework and almost all the other lib / exe are 

based on the default heap
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Previous work

 OS X Heap Exploitation Techniques – 2005 – Nemo
 Not a lot of details on heap internals
 Outdated (64bits kills the exploitation technique)

 Mac OS Xploitation (and others) – 2009 – Dino A. Dai Zovi
 Outdated (new checksums)

 In the Zone: OS X Heap Exploitation – 2016 – Tyler Bohan
 Good description of the heap
 LLDB scripts released
 Describes some exploitation techniques as how to transform a heap 

overflow into a use-after-free (more on this later…)



  

How does malloc 
works
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malloc zones

 malloc is actually just a wrapper on malloc_zone_malloc
 called with the default zone which is a scalable zone 
 we will focus on this zone

 Other zones can be registered
 WebKit Malloc
 GFXMallocZone
 QuartzCore 
 etc.

 malloc_zone_{malloc/free/realloc/…}  functions are just wrappers that call zone 
functions
 zone functions handle the allocation
 malloc_zone_* functions handle the generic stuff

find the zone associated with the passed pointer

log / trace / periodically check the zone / etc.

 malloc will always allocate from the default heap but realloc/free/malloc_size 
can be called with pointers belonging to other zones
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How does the scalable zone works
 Each process has two racks

 tiny

≤ 1008 bytes on a 64bits machine 

≤ 496 bytes on a 32bits machine

 small

≤ 15 KB on machine with less than 1GB of memory

≤ 127 KB else

 from now on, we will only consider the 64bits and +1GB case

 If an allocation doesn’t fit in the small rack then the large allocator is used
 directly allocates pages
 we won’t talk about this allocator

not often encountered and not really interesting from an exploitation point of view

 There is an other allocator, the nano allocator, but it is not activated by default
 used for allocations < 256 B
 activated with a special posix_spawn undocumented flag (_POSIX_SPAWN_NANO_ALLOCATOR) 

or with the MallocNanoZone environment variable set to 1.
 quite interesting but that’s an other story…
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How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size
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How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata are at the end of the region

 Each region is divided in quantum
 16B for tiny allocations
 256B for small ones

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch
 60/508 max for small allocations depending on the machine (less or more than 1GB 

of memory)
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How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine
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How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata (rack specific) is at the end of the region

 Each region is divided in quantum
 16B for tiny allocations
 256B for small ones

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch
 60/508 max for small allocations depending on the machine (less or more than 1GB 

of memory)
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How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

Region
size = 1MB

Region
size = 8MB

metadata metadata
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How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata (rack specific) is at the end of the region

 Each region is divided in quantum
 16B for tiny allocations (64520 quantums / region)
 512B for small ones (16319 quantums / region)

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch
 60/508 max for small allocations depending on the machine (less or more than 1GB 

of memory)
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How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

Region
size = 1MB

Region
size = 8MB

metadata metadata

Quantum
size = 16B

Quantum
size = 512B
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How does the scalable zone works
 Each rack has one magazine per physical core

 optimize the processor caches accesses
 reduce the risk of concurrent access (less locks)

 Each magazine has multiple regions
 1MB for tiny allocations
 8MB for small ones
 metadata (rack specific) is at the end of the region

 Each region is divided in quantum
 16B for tiny allocations (64520 quantums / region)
 512B for small ones (16319 quantums / region)

 An allocation is a block made of n quantums
 31/63 max for tiny allocations depending on the arch (32bits/64bits)
 60/508 max for small allocations depending on the machine (less/more than 1GB of 

memory)
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How does the scalable zone works
Process

Small rack
1008 < size < 127KB

Tiny rack
size < 1009B

Large allocations
127KB < size

Magazine

Magazine

Magazine

Magazine

Region
size = 1MB

Region
size = 8MB

metadata metadata

Quantum
size = 16B

Quantum
size = 512B

alloc alloc 
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How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, we directly go to the next step...

 The old cached one, if any, is free
 It is first coalesced with adjacent free blocks if any
 It then contains pointers to the next and previous freed blocks
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

 Pointers are protected with a 4bit randomized checksum

 There is one “freelist” per block size and per magazine
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How does the scalable zone works
Magazine

block to free (80B)

cache
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How does the scalable zone works
Magazine

block freed (80B)

cache
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How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, we directly go to the next step...

 The old cached one, if any, is freed
 It is first coalesced with adjacent free blocks if any
 It then contains pointers to the next and previous freed blocks
 Pointers are protected with a 4bit randomized checksum
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

for the small track, the block size is stored in the metadata

 There is one “freelist” per block size and per magazine
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(80)

free(96)

free(16)
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(80)

free(96)

free(16)
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(96)

free(96)
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How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, we directly go to the next step...

 The old cached one, if any, is freed
 It is first coalesced with adjacent free blocks if any
 It is then put int the free list
 Pointers are protected with a 4bit randomized checksum
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

for the small track, the block size is stored in the metadata

 There is one “freelist” per block size and per magazine
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prev free(96)

free(96)

prev
NULL

next

prev next
NULL
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How does the scalable zone works
 When an alloc is freed, the block is cached in the magazine

 for the tiny track, only if the block is not too big
 because the number of quantums has to fit in 4 bits

 ⇨ size < 256

 otherwise, the block is directly free

 The old cached one, if any, is free
 It is first coalesced with adjacent free blocks if any
 It is then put int the free list
 Pointers are protected with a 4bit randomized checksum
 For the tiny track, if it is big enough (≥ 16B), it also contains its size

after the pointers and at the end of the allocation

for the small track, the block size is stored in the metadata

 There is one “freelist” per block size and per magazine
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

prev prevprev
NULL

next size
6

size
6

size
6

prev next
NULL

size
6
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How does the scalable zone works

 When a block is allocated, malloc will try to:
 use the cache if the size matches
 use a block in freelists[size]
 use a larger block in freelists[size+n]

the leftover is put in the freelist

 use the end of the region

which is not already allocated

 allocate a new region

 If everything fails, it returns NULL
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Important things to remember
1/2

 One magazine per core
 Important when you massage/spray a multi thread process or 

when your exploit takes time…

 To fill all the holes in the heap, just make a lot of tiny 
allocations

 Allocations are contiguous

 Allocations are not randomized
 Useful for massaging

 Allocations of different sizes are in the same region
 Even if your UAF/overflow can only be triggered on a fixed size 

block you can hit a lot of different objects
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Important things to remember
2/2

 Last freed chunk is cached
 so not instantly coalesced!

 Metadata in freed chunks is protected
 next and previous pointers are aligned on 16 bytes
 malloc uses the 4 less significant bits to store a (randomized) 

checksum
 rotate the result to place the checksum in the most 

significant bits

unclear why… to protect against a partial overwrite?

 If you want to know more, it’s open-source
 https://opensource.apple.com/source/libmalloc/



  

Exploit!
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“In the Zone: OS X Heap 
Exploitation” techniques
 Tries to transform a linear heap overflow in 

the tiny heap into a use-after-free alike 
primitive
 By overwriting freed blocks size
 Couldn’t work in the small heap as sizes are in the 

metadata

 Useful to leak pointers for example
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“In the Zone: OS X Heap 
Exploitation” techniques
src: PacSec 2016 – Tyler Bohan – https://pacsec.jp/psj16/PSJ2016_Bohan_PacSec_2016.pdf
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
6

prev next size
6
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
6

prev next size
8
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
6

prev next size
8

size
6

FREE
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

in the freelist
but still used



  

40 / 60

“In the Zone: OS X Heap 
Exploitation” techniques
 Actually never worked

 You cannot overflow the size of a chunk without overflowing its 
pointers

 Pointers are checked during coalescing

when the coalesced block is removed from its previous free list

see tiny_free_list_remove_ptr and free_list_unchecksum_ptr in 
tiny_free_no_lock

 Without a leak (or a lot of luck) you are toasted

 Trick applicable only if you have a non-linear OOB write
 So you can overwrite size without overwriting the pointers
 For example an indexed write with an attacker chosen index

 Fortunately, another technique is proposed…
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“In the Zone: OS X Heap 
Exploitation” techniques
 You may think that you can trick the allocator by using backward 

coalescing
 the heap will then use the unmodified pointers of another preceding allocation
 checksum bypassed!
 but...

 If the size stored at the beginning and the end of the freed block 
doesn’t match then no coalescing is done
 actually not a security check
 the allocator first assume that the preceding block is freed because it cannot 

directly check if it’s freed
 then it checks if it is effectively freed
 see tiny_previous_preceding_free in tiny_free_no_lock

 This check exists since the first magazine malloc version
 both techniques never worked
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“In the Zone: OS X Heap 
Exploitation” techniques
src: PacSec 2016 – Tyler Bohan – https://pacsec.jp/psj16/PSJ2016_Bohan_PacSec_2016.pdf
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

malloc(32) size
6

prev next size
6

size
2

prev next size
2
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
10

prev next sizesize
2

prev next size
2
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
10

prev next sizesize
2

prev next size
2
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

size
10

prev next sizesize
2

prev next size
2

FREE
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How does the scalable zone works
Magazine

cache
freelist

16
freelist

32 ...
freelist

96 ...
freelist
1008

freelist
≥ 1024

in the freelist
but still used
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“In the Zone: OS X Heap 
Exploitation” techniques
 You may think that you can trick the allocator by using backward 

coalescing
 the heap will then use the unmodified pointers of another preceding allocation
 checksum bypassed!
 but...

 If the size stored at the beginning and the end of the freed block 
doesn’t match then no coalescing is done
 actually not a security check
 the allocator first assumes that the preceding block is freed because it cannot 

directly check if it’s freed
 then it checks if it is effectively freed
 see tiny_previous_preceding_free in tiny_free_no_lock

 This check exists since the first magazine malloc version
 both techniques never worked
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“In the Zone: OS X Heap 
Exploitation” techniques
 Use the Web Audio API in WebKit to massage the default 

heap
 in WebCore/Modules/webaudio/AudioBufferSourceNode.cpp:

 std → allocate in the default heap

 numberOfChannels is controlled
 1 to 32 channels

 previous buffers are freed

 (almost) perfect to massage the heap!
 you cannot free a block without allocating another one
 needs some gymnastic to make it works
 but no garbage collection problems!
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“In the Zone: OS X Heap 
Exploitation” techniques
 Until commit 1d211e1fc1cf4801da64b6881d07bda01f643cf3…

 March 2018

 Removes almost all references to the default heap in WebKit
 technique is dead
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What’s left?

 Not much :)

 You may try to attack metadata at the end of a region
 but that’s another story…

 You may try to attack adjacent allocations
 to overflow pointers, lengths, vtables…
 or Objective-C objects

see Modern Objective-C Exploitation Techniques in Phrack #69 by 
nemo

 Heap layout makes this relatively easy
 remember: objects of different size are all allocated in the same 

region / page
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How to debug the heap?

 Apple gives us powerful tools

 Environment variables (extract of the malloc man)
 MallocGuardEdges

to add 2 guard pages for each large block

 MallocStackLogging

to record all stacks.

 MallocScribble

to detect writing on free blocks and missing initializers: 0x55 is written upon free and 0xaa is 
written on allocation

 MallocCheckHeapStart <n>

to start checking the heap after <n> operations

 MallocCheckHeapEach <s>

to repeat the checking of the heap after <s> operations

 MallocTracing

to emit kdebug trace points on malloc entry points
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How to debug the heap? – cont’d

 heap
 displays all the allocations of a given process
 able to recognize Obj-C and C++ objects

ex: heap --addresses '(WebKit::WebFormClient|
CFString)' Safari

 malloc_history
 displays the information gathered via the 

MallocStackLogging environment variable

 leak
 used to discover leaks…
 not really interesting from an exploitation point of view
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Anything more visual?

 malloc_history is great to get information on 
specific addresses
 useful for bug triage / debug

 But it doesn’t give you an overview of the heap
 hard to test or validate heap massaging techniques

 Moreover MallocStackLogging is quite slow…

➔ We need to go deeper!
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Remember the zones?

 Zones must expose some functions
 see the definition of malloc_zone_t in malloc/malloc.h

 Including introspection functions
 see struct malloc_introspection_t

 Can be used to list both your own and other 
processes allocations
 functions take a pointer to a reader function

 Not all zones implement it correctly…
 but the default zone does!
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Visualizing

 Blocks that start with the same qword have the same color
 Obj-C and C++ instances of a given object will have the same color

 Do not use PIL and other Python imaging libraries
 try to do smart things like scaling your rectangles
 rounding problems so not pixel perfect…
 very slow

 We developed a minimal python PNG lib
 based on lodepng (simple PNG C library, 1 file)
 can only draw rectangles
 but do it well and fast!

 Interaction with HTML/JS
 Displays the PNG
 Displays the data on click
 Simple but efficient



Démo
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Conclusion

 No generic method
 sorry :)

 But an attacker-friendly heap
 adjacent allocations
 easy to massage
 different sizes in the same region
 no randomization

 And a great introspection API
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Thank you!

 Sthack for the amazing event
 can’t wait for tonight ;)

 Synacktiv for the cool missions :)
 Did I say that we are recruiting?

 SzLam for the presentation title idea

 ❤❤❤
 You for your attention!



 

THANK YOU FOR YOUR ATTENTION

Do you have any 
questions?
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