Mac-A-Mal:
An Automated Framework for Mac Malware Hunting

Pham Duy Phuc
pham.duy.phuc@sfylabs.com
SfyLabs

Abstract

As Mac systems grow in popularity, so does macOS mal-
ware whilst macOS malware analysis is still lagging be-
hind, even when researchers deal with malicious behav-
iors in the user space. To amend this shortcoming, we
have come up with macOS analyzer for malware Mac-A-
Mal: A system for behavioral monitoring of components
at kernel level which allows analysts to automatically in-
vestigate malware on macOS, broadly extending what
is available today with Cuckoo sandbox. By leveraging
on kernel-level system calls hooking, the framework is
able to detect and mitigate malware anti-analysis tech-
niques. In particular, it combines static and dynamic
analysis to extract useful information and suspicious be-
haviors from malware binaries, their monitored behaviors
such as network traffic, malware evasion techniques, per-
sistence methods, file operations etc., without being de-
tected by common Mac malware evasion techniques. We
have used the framework to evaluate thousands macOS
samples to estimate how widespread Mac malware vari-
ants and families are today (thanks to VirusTotal). Mac
malware in 2017 demonstrates a drastic improvement by
using evasion techniques. Overall, we used our systems
to classify the dataset and found that 85% of collected
samples are adware, 49% of classified variants belong
to backdoor/trojan. By hunting Mac samples on Virus-
Total, we found a so-far-undiscovered organized adware
campaign which leverages several Apple legitimate de-
veloper certificates, a few of other undetected keyloggers,
and trojan samples participating in APT32 OceanLotus
targeting Chinese and Vietnamese organizations, as well
as hundreds of malware samples which have otherwise
low detection rates.

1 Introduction

Contrary to popular belief, Mac is not immune from mal-
ware. According to a cyber-security report from Bit9

Fabio Massacci
fabio.massacci@unitn.it
University of Trento

and Carbon Black Threat Research team, Mac devices
have seen more malware attacks in 2015 than the past five
years combined. Mac malware grew 744% with around
460,000 instances detected, says McAfee report in 2016.
The trend in Mac malware was not slowing down in 2017,
there were nearly 300,000 new instances of macOS mal-
ware in the first 3 quarters of 2017, lifting the year-total
to over 700,000.[6]

The malware problem has become bigger and stronger
over years, while the majority of malware targets at Mi-
crosoft Windows operating system, other operating sys-
tems have become relevant targets as well. By under-
standing how they behave, what these threats are, and
engaging in ways to detect them, we can contribute to
more secure and stable solutions for Mac computing ex-
perience. However, research about macOS malware and
relevant solutions to automated Mac malware analysis are
limited. While many types of state-of-the-art malware
on Windows platform took decades to develop from the
first known malicious software to happen in the wild, now
they start emerging on Apple computers in a shorter time.

Static malware analyses are mostly used to analyze
macOS malware. E. Walkup [10] was able to extract
Mach-O structure, import libraries (DyLib) and functions
feature from a data set consisting of 420 malware samples
and 1000 goodware over 20 machine learning models.
Furthermore, S. Hsieh et al.[4] presented a study of clas-
sifying Mac OS X malware in 2016 with a set of features
extracted from Mach-O metadata using tools such as nm,
otool, or strings on VirusTotal sample collection of
2015-2016. They also included derivative numerical fea-
tures created from meta information, which are introduced
in learning-based malware classification, e.g. function
call distribution, structure complexity, etc. D. Dorsey [3|]
presented a weighted distance metric solution to generate
and compare assembly mnemonics signature of Mach-O
binaries using mpesm. The study successfully discovered
7 over 18,000 samples to be UPX compressed, and 3
groups signature matched at least 85% of malicious sam-

mailto:pham.duy.phuc@sfylabs.com
mailto:fabio.massacci@unitn.it

ples. However, no significant signature could identify the
difference between malicious samples and 17,000 known
benign samples.

Regarding dynamic Mac malware studies, V.
Mieghem[8| 9] presented a novel generic behavioral
detection method based on system calls names and
prevention mechanism for malware on OS X. Sequences
of system call traces are analyzed, from which certain
malicious system call patterns, interactions with shells
and auto-run services appear to be an accurate indication
of malware on a system. Three types of user profiles are
established to evaluate the detection patterns, resulting in
a 100% detection rate and a 0% to 20% false positive rate,
depending on the type of user profile. M. Lindorfer et
al.[S)] have built an OS X honeypot based high-interaction
and used it to evaluate more than 6 thousands blacklisted
URLSs to estimate how widespread malware for Mac OS
X is in 2013. Only five websites were found to drop
binaries through drive-by downloads, but none of them
targeted OS X. Furthermore, they developed a dynamic
analysis environment with DTrace and analyzed 148
malicious samples. The result has shown that while some
OS X malware families are sophisticated, several fail
to perform simple but critical jobs like persistence. A.
Case et al. [1, 2] presented malware detection techniques
with a specific focus on kernel-mode components for OS
X, particularly for rootkit that targets at kernel data and
user land malware written in Objective-C for Mac. They
utilize Volatility to detect rookit in kernel memory. For
Objective-C malicious code, they analyzed important
artifacts in the memory and produced output that could
easily be used by analysts to isolate and investigate
more deeply these behaviors even when the Objective-C
runtime maintained state out of the dynamic loader and
the code section of executables.

We evaluated some of popular dynamic macOS analyz-
ers and we found that Cuckoo sandbox is an open source
project providing most robust solution for malware analy-
sis framework. Although it only supports Windows, Linux
but partially Android and macOS. It adopts DTrace which
is basically a binary instrumentation platform rather than
a malware analysis. Apple does not allow DTrace to mon-
itor official Apple binaries and requires traced software to
run under root permission, its tracing techniques can be
easily defeated by trivial anti-debugging tricks. Besides,
Macsandbox]is a modified version of Cuckoo sandbox
on Mac, using Dtrace and library injection for process
tracing. However, running on user space makes it vul-
nerable to trivial anti-debug and anti-hook techniques.
For analysis on kernel-space region, Fireeye MonitorE]
is a closed source software for manual analysis, which

Ihttps://github.com/sandialabs/mac-sandbox
Zhttps://www.fireeye.com/blog/threat-research/
2017/03/introducing_monitor.html

performs process execution, file and network logging.

In this white paper, we study an automated solution
for Mac malware analysis framework. We show that it
is possible to automatically perform behavioral monitor
of process execution, file activities, network traffic, with
regards of virtualized environment, malware evasion de-
tection and mitigation.

2 Mac-A-Mal:
ware analyzer

Automated macOS mal-

Mac-A-Mal is a combination of both static and dynamic
analysis. Using static analysis to understand in depth sus-
picious areas of code, and dynamic analysis to unpack
packed binary and monitor malware behaviors. It takes
actual behavioral data of malware samples executions
inside virtual sandboxes simultaneously, in which it can
process multiple samples at once. The sandbox is armored
with network sniffer, system calls and behavior logging,
as well as anti-evasion from kernel-mode to send back
report to analysis machine. Researchers thereafter can
review reports to spot any suspect activities such as sus-
picious network activity, invoked anti debug techniques,
persistent activities etc. Researchers can also perform
common malware detection techniques such as YARA
rules and behavioral signature to automatically detect a
whole sample family. The overview design of Mac-A-Mal
framework is illustrated in Fig. [T} The analysis machine
gathers samples and feed them to the monitor machine(s)
running on macOS simultaneously. Data sharing features
and default Apple protection mechanisms such as XPro-
tect, Gatekeeper, etc. are disabled to capture malware
behavior accurately.
The analyzer processes 2 main tasks:

e Static analysis: Parsing Macho executable and dis-
play: Symbol table, segment, sections, load com-
mands, dylib, entropy etc. Analyzing other common
Mac file types such as DMG, PKG etc. as well as
their certificate details.

o Results collection: Output to web front-end as well
as JSON format which can be easily applied with
behavioral signature, machine learning or YARA
rules.

The monitor processes following tasks:

e Dynamic analysis: Processing monitor behavior un-
der kernel-space with Anti anti-vm, anti-debug etc.
logging and mitigation. Additionally, common mal-
ware analysis techniques are implemented such as
network monitor, dropped files collection, etc. We
implement an analysis agent on analysis machine un-
der kernel space, which basically performs: Syscall

https://github.com/sandialabs/mac-sandbox
https://www.fireeye.com/blog/threat-research/2017/03/introducing_monitor.html
https://www.fireeye.com/blog/threat-research/2017/03/introducing_monitor.html

Monitor machine (MacOS)

Analvsis machine

Cuckoo Frontend

- Web panel
- Log syscall
- Storage & reports
- Log process exec ;
- Log file operations - Elastic scarch
- KEXT sockets - YARA/VT query
- Distribute sample
- Behavioral analysis
Samples - Behavioral signature
- Malware Report
- Daemon sockets TCPDump
- Analysis agent Network driver

pd

Internet | Host-only | Net Emulation

Figure 1: Mac-A-Mal framework design

table discovery technique to unslide KASLR to ob-
tain kernel base image address, then walks through
the kernel base image to locate load command seg-
ment, and finally performs system table lookups.
These proposed techniques are compatible to latest
version of macOS High Sierra. Once the sysent ta-
ble is located, we patch its entries to our defined
callback functions. In particular, when a malware
invokes system calls, it queries the address of the
call in the XNU kernel syscall table, which now
is patched to our callback function address. The
callback functions will perform execution logging,
malware evasion detection and mitigation, as well as
post-processing for the calls (forward or drop).

Anti evasion: We develop kernel system calls log-
ging in which existing solutions failed, e.g. by hook-
ing into posix_spawn(), execve() and copying
double pointers between user space and kernel space.
Fig. [2] shows how we detect and mitigate evasion
techniques by hooking into ptrace(), csrctl(),
ioctl() and sysctl().

Execute samples via open default handler: By hook-
ing in kernel space, we can execute samples us-
ing default Mac handler - /usr/bin/open as well

as XPCProxy, in which Dtrace and MacSandbox
failed to trace. It means any types of files can be
opened with capability of process forks tracing (e.g.
.app;.dmg;.doc;.zip etc.) without using other app-
opener.

No human interaction: During the analysis, the sand-
box implements libraries for taking screenshots of
the analysis screen. These screen shots are helpful
for analysts to review automated analysis and recog-
nize some cases that needs human interaction, for
instance mouse click to confirm installation or pass-
word typing for Authorization solver. We use Quartz
library to detect the login window then answer pass-
word using KeyboardEvents. Screenshot images
are analyzed to seek for confirmation buttons. If
detected, it performs mouse clicks by using Quartzs
MouseEvents. If packages are stored within an Ap-
ple disk image, hdiutil will be used to attach the
disk, and execute all application inside its root folder.

Hardening the virtual analysis machine: We modify
virtual machine footprints in machine configuration
as well as manipulate its hardware information in
kernel level. Besides, default Apple security features

- (8)
Original
exit()
Syscall table
syscall
_ exit Hook csrctl() Original
Kernel calling _ _ _ sysctl() 3) csrctl()
conventions . sysctl()
A : | @ -Return value o)
sysctl -Arguments
csret manipulation
MachO binary
: (5)
(1) csrctlf) ©)
sysctif)
Userspace .
exit()

Logger
sysctl(name,namelen,

*oldp, *oldlenp, *newp,
newlen)

csrctl(op, *buffer, size)

Figure 2: Mac-a-Mal anti environment evasion module using kernel hooking and memory patching. (1) A system call
is invoked in the user space, (2) Hook the system call, (3) Return the control to the original system call, (4) Returns
value to the user space and manipulate system call arguments if anti-evasion attempts are detected, (5) The return value
is logged for further analysis using Logger component, (6) Return values from the kernel space to the analyzer in
userspace, (7) the exit () system call is not hooked and forwarded back to the user space.

such as XProtect, GateKeeper, etc. are deactivated
in order to execute any arbitrary malicious samples.

3 Case studies of undetected Mac malware
discovery

These case studies dive deeper into the illustration drawn
in Section 2 by explaining detailed analysis on some major
malware campaigns which are found by Mac-A-Mal.

o OSX/Mughthesecl]

The adware campaign was first founded in the wild in
August 2017. It pretended to install legitimate Adobe
flash and silently install Potential Unwanted Ap-
plications (PUA) such as Booking, Advanced Mac
Cleaner, SafeFinder Safari extension, AdBlock, etc.
Reports show that the campaign dropped some ma-
licious binaries related to AMCleaner adware cam-
paign. It was likely an affiliation advertising cam-
paign, in which adware authors spent some money

for buying legitimate Apple developer certificates.
By using a combination of behavioral rules (antivm),
static rules (suspicious legitimate Apple developer
certificate), and suspect network activities based on
results from Mac-A-Mal, we discovered 71 signed
archives. Attackers had used at least 10 Apple legiti-
mate developer certificates, and only 2 of them were
revoked at the time of discovery. Moreover, some of
dropped MachO executables were not signed, which
means it could transform from adware to backdoor
silently.

o APT32-OceanLotus

APT32 was an APT campaign targeted Chinese and
Vietnamese infrastructure. It was first discovered
by Qihoo 360, and followed up by AlienVault, Fire-
Eye and Palo Alto Networks. By study the first
generation of Mac OceanLotus samples through our
framework, we generated some similar behavioral
signatures amongst the family. In March 2017, we

found second generation of Mac APT32 which has
0 detection rate over more than fifty Anti-virus ven-
dors by hunting those behaviors on VirusTotal Intelli-
gence service. Our finding shows that the campaign
was improved from the first variant by eliminating
all Bash command executions. Unlike common Mac
malware, this variant tried to execute under user
privilege instead of higher privilege that may easily
convey malicious behaviors.

4 Discussion

We have processed more than 2000 malicious samples
and 85% of the collected samples are adware, which are
dominated by OSX/Pirrit and OSX/MacKeeper. That
statistic result is well confirmed according to reports from
other Anti-virus vendors. Once installed, macOS adware
usually persistent deep inside the victim system and starts
hjacking browser. Their purpose is to make advertising
revenue for attackers by installing PUA or redirecting
victims to unwanted websites. They are widespread be-
cause technically they are not viruses but can potentially
perform malicious activities.

After analyzing the samples set, results retrieved from
Mac-A-Mal were later post-processed through a classi-
fier based on numerous rules: code signing authority,
persistence indicators, processes creation and shell exe-
cution, backdoor port listening, network activities, Tor
network indicator, anti-analysis techniques, file creation
and modification, browsers change and super-user per-
mission authentication, etc. We also compared them to
VirusTotal detection results and other Anti-virus labeled
variant name to verify the accuracy. We observed a total
of 86 different Mac malware families until 2017, and 49%
of them belongs to backdoor/trojan variant.

We study the evolution of macOS malware by using
heat map analysis of most Mac malware variants in Ap-
pendix Fig. [3| and Fig. @] We evaluate that macOS
malware in 2017 demonstrates a drastic improvement
by using anti-analysis techniques. The behaviors can be
grouped into following categories: (i) persistence, file
write, browser modification; (ii) root request, bash exe-
cution; (iii) anti analysis; (iv) network, Tor, open port. 5
variants are found applying various evasion techniques
including ptrace(), sysctl(), sleep(). Some vari-
ants tried to discover running security tools on the system
or terminate analysis software (e.g. DTrace, 1ldb, etc.).
Besides, some samples never made any persistence at-
tempt such as XAgent which is an upgraded version of
Komplex in 2016 also known for participating in APT28
targeting individuals in the aerospace industry running
macOS. It can be seen that Mac malware in 2017 car-
ried out more frequent browser modification activities. It
means that macOS malware is becoming more grey, and it

has been boosted by numerous adware to redirect victims
to fraud web traffic or unwanted advertising. In addition,
a large number of increased super-user request behaviors
shows that Mac malware is trying to increment phising
user passwords in order to grant root access of the system
and perform more advanced malicious activities.

5 Future Work

We would like to later apply more robust and advanced
techniques for better features extraction from the analysis,
and machine learning for a larger scale of Mac samples.

References

[1] CASE, A., AND RICHARD, G. G. Advancing mac os x rootkit
detection. Digital Investigation 14 (2015), 25-33.

[2] CASE, A., AND RICHARD, G. G. Detecting objective-c malware
through memory forensics. Digital Investigation 18 (2016), 3—10.

[3] DORSEY, D. Analyzing entrypoint instruction differences
in mach-o files with mpesm. https://www.carbonblack)
com/2016/03/01/analyzing-entrypoint-instruction—
differences-in-mach-o-files-with-mpesm/} 2006.
Accessed: 30-July-2017.

[4] HSIEH, S., WU, P., AND LIU, H. Automatic classifying of mac
os x samples. Virus Bulletin, 2016. Accessed: 20-July-2017.

[S] LINDORFER, M., MILLER, B., NEUGSCHWANDTNER, M., AND
PLATZER, C. Take a bite-finding the worm in the apple. In Infor-
mation, Communications and Signal Processing (ICICS) 2013 9th
International Conference on (2013), IEEE, pp. 1-5.

[6] MINIHANE, N., MORENO, F., PETERSON, E., SAMANI, R.,
SCHMUGAR, C., SOMMER, D., AND SUN, B. Mcafee labs
threats report, December 2017.

[7] PHUC, P. D. What is safefinder/operatormac campaign?, 07/2017
(accessed 30-August-2017).

[8] VAN MIEGHEM, V. Detecting malicious behaviour using system
calls. TU Delft Repositories, 2016.

[91 VAN MIEGHEM, V. Behavioural detection and prevention of
malware on os x. Virus Bulletin, 2016 (accessed 20-July-2017).

[10] WALKUP, E. Mac malware detection via static file structure
analysis. University of Stanford, CS 229: Machine Learning Final
Projects, 2014.

A Publication of this Work

Source code of the framework is all available for down-
load on Github: https://github.com/phdphuc/mac~
a-mal.

The academic paper of this work has been composed
in a paper "MAC-A-MAL: macOS Malware Analysis
Framework Resistant to anti evasion techniques” which
was submitted to the International Symposium on Engi-
neering Secure Software and Systems ESSoS 2018.

B Appendix

https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-instruction-differences-in-mach-o-files-with-mpesm/
https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-instruction-differences-in-mach-o-files-with-mpesm/
https://www.carbonblack.com/2016/03/01/analyzing-entrypoint-instruction-differences-in-mach-o-files-with-mpesm/
https://github.com/phdphuc/mac-a-mal
https://github.com/phdphuc/mac-a-mal

Variants

FakeFileOpener

MacKeeper

Adwin

OceanLotusA

KomPlex

Mokes

Keydnap—Transmission

Eleanor -
Keranger -
Behaviors
FakeFileOpener and MacKeeper are classified as Adware, Keranger is ransomware and the rest of variants is
trojan/backdoor.

Figure 3: Behavior heatmap of macOS malware in 2016

100

80

60

20

Variants

ChromePatch

Mughthesec (Climpli)

Macransom

Snake

OceanlLotusB

Dok

MacSpy

VBA/TrojanDownloader. Agent. CXB

ProtonB (HandBrake)

Xagent (KomPlexB)

VBA/TrojanDropper. Agent. TO

ChromePatch and Mughthesec
trojan/backdoor.

Figure 4: Behavior heatmap of macOS malware in 2017

Behaviors
are classified as Adware, Macransom is ransomware and the rest of variants is

100

80

60

20

	Introduction
	Mac-A-Mal: Automated macOS malware analyzer
	Case studies of undetected Mac malware discovery
	Discussion
	Future Work
	Publication of this Work
	Appendix

