
IOService Becomes a Grandpa
Tielei Wang, Hao Xu

About us

✤ Tielei Wang and Hao Xu

✤ Members of Team Pangu

✤ Rich experience in iOS security and jailbreaking tools
development

✤ Regular speakers at BlackHat, POC, Zer0Con, etc.

✤ Organizers of Mobile Security Conference (MOSEC)

Outline

✤ IOKit 101

✤ Analysis of a bug hidden in removed code

✤ Variant analysis

✤ Conclusion

Layered arch in a modern operating system

App1 App2

User Space

Kernel Space

Kernel Drivers

Hardware

CPUs Memory Devices

iOS/macOS architecture

App1 App2

User Space

Kernel Space
XNU Kernel

IOKit

Hardware/Coprocessors

Hardware, etc

BSD Mach

Significant attack surface

App1 App2

User Space

Kernel Space
XNU Kernel

IOKit

Hardware/Coprocessors

Hardware, etc

BSD Mach

IOKit drivers

✤ XNU’s device driver environment is called the IOKit

✤ An object-oriented framework for writing device drivers
with a lot of nice features

✤ common abstraction of system hardware

✤ pre-defined base classes for many types of hardware,
high degree of code reuse

✤ …

IOKit class hierarchy

IOKit class hierarchy

root class with a
minimum

functionality for
reference counting

IOKit class hierarchy

provides Runtime
type information

(RTTI)

IOKit class hierarchy

Basic container data
types such as

dictionaries, arrays,
sets, and other types

IOKit class hierarchy

IORegistryEntry
objects are roughly
organized as a tree

output of ioreg on Mac

IOKit class hierarchy

IORegistryEntry class
includes functions:
Property-table
functions
Positional functions
Iteration functions

IORegistryGetRootEntry
IORegistryEntryGetChildIterator
IOIteratorNext

IOKit class hierarchy

IOService defines the
basic driver behaviors
such as accessing
device memory and
registering and
controlling interrupt
handlers.

IOKit class hierarchy

Inherits from
IOService, and
implements its specific
functionalities

A more complete class hierarchy

IOKit Interfaces

App
User Space

Kernel Space
XNU Kernel

Hardware/Coprocessors

Hardware, etc

IOUserclient IOService

a lot a few

Interact with IOService

App
User Space

Kernel Space
XNU Kernel

Hardware/Coprocessors

Hardware, etc

IOUserclient IOService

Interact with IOService

✤ IORegistryEntrySetCFProperties

✤ Set CF container based properties in a registry entry

✤ Depends on whether the IOService class overrides ::setProperties

Interact with IOService

✤ IOServiceOpen

✤ create a connection to an
IOService, get a port to
IOUserclient

✤ IOServiceOpen(io_service_t
service, task_port_t
owningTask, uint32_t type,
io_connect_t *connect);

IOServiceOpen in userspace

✤ eventually calls mach_msg and trap into the kernel

IOServiceOpen in the kernel

✤ After mach msg dispatching in ipc_kobject_server, it will reach
__Xio_service_open_extended

IOServiceOpen in the kernel

✤ After mach msg dispatching in ipc_kobject_server, it will reach
__Xio_service_open_extended

convert IOService Port
ID to IOService object

IOServiceOpen in the kernel

✤ After mach msg dispatching in ipc_kobject_server, it will reach
__Xio_service_open_extended

convert task Port ID to
task object

IOServiceOpen in the kernel

✤ After mach msg dispatching in ipc_kobject_server, it will reach
__Xio_service_open_extended

call is_io_service_open_extended

IOServiceOpen in the kernel

✤ After mach msg dispatching in ipc_kobject_server, it will reach
__Xio_service_open_extended

convert IOUserclient object to port

is_io_service_open_extended

✤ source code available in XNU

is_io_service_open_extended

✤ is_io_service_open_extended calls ::newUserClient(task_t,
void *, UInt32, OSDictionary *, IOUserClient **)

is_io_service_open_extended

✤ IOService class has two virtual
functions ::newUserClient

✤ ::newUserClient(task_t, void *, UInt32, OSDictionary
*, IOUserClient **)

✤ If not overridden, this function will first try to
call ::newuserclient(task_t, void*, UInt32, IOUserClient **)

✤ ::newuserclient(task_t, void*, UInt32, IOUserClient **)
by default will return failure, if not overridden

✤ Then it will try to create a user client with
gIOUserClientClass

✤ Key from its property table

✤ ::newUserClient(task_t, void *, UInt32, OSDictionary
*, IOUserClient **)

Known issues - 1

✤ Independently reported by multiple researchers

✤ https://bugs.chromium.org/p/project-zero/issues/detail?id=974

✤ https://github.com/bazad/physmem

✤ Some IOService classes allow to set privileged property
IOUserClientClass

✤ ::setproperties stores all specified properties without checks

✤ Invoking IOSerivceOpen to such IOServices will lead to many security
issues such as type confusion and creations of arbitrary IOUserclient

Known issues - 2

✤ In past, is_io_service_open_extended allowed to
unserialize and store a property dictionary
(OSDictionary)

✤ Super nice for heap fengshui in the kernel

Known issues - 2

✤ In past, is_io_service_open_extended allowed to
unserialize and store a property dictionary
(OSDictionary)

✤ Super nice for heap fengshui in the kernel

What a waste!

Outline

✤ IOKit 101

✤ Analysis of a bug hidden in removed code

✤ Variant analysis

✤ Conclusion

is_io_service_open_extended

property
deserialization is

removed since iOS
10.2

Let’s go back to
iOS < 10.2

is_io_service_open_extended

✤ What if:

✤ create an IOUserclient and set the
IOUserClientClass property via
is_io_service_open_extended

✤ invoke IOServiceOpen to the IOUserclient

IOUserclient produces IOUserclient?

|—IOUserClient

IOUserclient produces IOUserclient?

✤ IOUserclient inherits from IOService, thus having
similar virtual table layout

✤ is_io_service_open_extended only ensures the _service is an
IOService, then it will call ::newuserclient virtual functions

IOUserclient produces IOUserclient?

IOUserclient of
course is a kind of

IOService

POC Version 1

set
IOUserClientClass
in conn’s property

table

let conn generate
conns

POC Version 1

however, IOServiceOpen failed, why?

IOServiceOpen in the kernel

✤ __Xio_service_open_extended -> is_io_service_open_extended

convert IOService Port
ID to IOService object

convert IOUserclient object to port

Two Types

✤ IOUserclient -> IKOT_IOKIT_CONNECT

✤ IOService -> IKOT_IOKIT_OBJECT

Different Maps

How to add IOUserclient into
gIOObjectPorts?
✤ Remember how to make an IORegistryEntry tree traversal?

✤ IORegistryGetRootEntry

✤ IORegistryEntryGetChildIterator

✤ IOIteratorNext

How to add IOUserclient into
gIOObjectPorts?
✤ IOIteratorNext will go to Xio_iterator_next that will

add IOUserclient to gIOObjectPorts

POC Version 2

You will get “someuserclient” here

Outline

✤ IOKit 101

✤ Analysis of a bug hidden in removed code

✤ Variant analysis

✤ Conclusion

Variant analysis

✤ “By variant analysis, I mean taking a known security
bug and looking for code which is vulnerable in a
similar way. “ — Ian Beer

✤ “Find new iOS vulnerabilities by studying fixed
vulnerabilities.” — Team Pangu, TenSec conference
2017

Recall the bug

✤ somehow we can first set IOUserClientClass either in
IOService or IOUserclient instances

✤ then we can call IOServiceOpen to these instances and
lead to other bugs

New ways?

✤ Some IOKit drivers can temporally create new
IOService classes, such as a virtual disk or new HID
devices

✤ To create such IOServices classes, a property
dictionary is usually required

✤ such as HID device types, file path of the virtual
disk, etc

New bugs

✤ Setting IOUserClientClass in the property dictionary
will cause new bugs

Details

✤ General idea is the same

✤ set IOUserClientClass in the creation property dict

✤ not reachable in the Safari or container sandbox

✤ Apple released a timely fix for iOS, but needs more
time for additional platforms

✤ We promise more details after a complete fix

Conclusion

✤ Bugs could hide in the IOKit class hierarchy

✤ Variant analysis helps find similar bugs

✤ Consider the past you shall know the future

Thank you!

