
vm_map'ing out XNU
Virtual Memory

@i41nbeer

XNU process

->bsd_info

task

Mach

proc

BSD

->itk_space

->threads

->vm_map

->p_fd

->...

->p_pglist

->p_ucred

port names to rights

...threads

virtual memory!

file descriptor numbers to fileglobs

process group members

credentials

loads more ->... loads more

->task

Message
Passing

fundamental microkernel
paradigm; split up functionality
and send messages between

low-privilege tasks, as
independently as possible

Thought to be major performance
bottleneck for microkernel architectures;

XNU is no microkernel but still retains
Mach's solution to this problem

This talk: how Mach uses virtual memory
tricks to make passing large messages

fast, and how it was broken

body

mach_msg_body_t

msgh_bits msgh_size

msgh_remote_port msgh_local_port

msgh_voucher_port msgh_id

mach_msg_header_t

C

inline message body

address

type pad1 copy dealloc

mach_msg_ool_descriptor64_t

size

msgh_bits msgh_size

msgh_remote_port msgh_local_port

msgh_voucher_port msgh_id

body

address

type pad1 copy dealloc

mach_msg_header_t

mach_msg_body_t

C

mach_msg_descriptor_t

inline message body

This entire structure is copied into kernel memory each time a message is
sent, then copied out to a userspace process when a message is received

Lots of memory copying, and OS written in an era when memory copying
was sloooooow

Wanted to avoid copying large amounts of data
 -> move it to the ool_desc!
 -> use virtual memory magic to move it for free!

A Mach virtual memory trick:

address

type pad1 copy dealloc

mach_msg_ool_descriptor64_t

size

copy = 0;
dealloc = 1;

setting: implies:
MOVE the virtual memory region at
address to address+size from the
current process to the recipient

Idea is to speed up sending and receiving large messages by
replacing memory copies with virtual memory manipulation to move
pages between processes

vm_map_entryvm_map_entryvm_map_entryvm_map_entry

Mach VM zoo:

task

---->vm_map vm_map

------->prev

------->next

vm_map_entry

struct vm_map_entry

vm_map_entry_tvm_map_entry_tvm_map_entry_tvm_map_entry_tvm_map_entry

->prev

vm_map_entry_tvm_map_entry

->next

->start what virtual address does this entry start at?
->end what virtual address does this entry end at?

->vme_offset what offset in to the
object does this entry
start at?

->vmo_object

->vmo_submap
(union)

what object does this entry
get page contents from?

vm_page

currently resident pages

vm_pagevm_page

struct vm_object

->prev

vm_map_entry

->next

->start

->end

->vmo_object

->vmo_submap

->vme_offset

(union)

->memq

vm_object

vm_page

->pager

->paging_offset

->pager_control

get more pages
can point into
another
vm_map_t

optimized entry MOVE:

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

sender receiver

optimized entry MOVE:

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

sender receiver

optimized entry MOVE:

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

sender receiver

optimized entry MOVE:

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_entry_t
vm_map_entry

vm_map_entry

vm_map_copy task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

sender receiver

optimized entry MOVE:

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_entry_t
vm_map_entry

vm_map_entry

vm_map_copy task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

sender receiver

optimized entry MOVE:

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_entry

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

sender receiver

The bug:

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

Finding the vm_map_entry's

The bug:

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_entry_t
vm_map_entry

vm_map_entry

vm_map_copy

Finding the vm_map_entry's, and copying them to
the vm_map_copy structure needs to be an atomic
operation.

The bug:

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_entry_t
vm_map_entry

vm_map_entry

vm_map_copy

Finding the vm_map_entry's, and copying them to
the vm_map_copy structure needs to be an atomic
operation.

--->lock
vm_map_entry's are owned by the
vm_map,
ownership enforced by
vm_map->lock

The bug:

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_entry_t
vm_map_entry

vm_map_entry

vm_map_copy

Finding the vm_map_entry's, and copying them to
the vm_map_copy structure needs to be an atomic
operation.

--->lock
vm_map_entry's are owned by the
vm_map,
ownership enforced by
vm_map->lock

doing ANYTHING with a vm_map_entry
without holding its vm_map lock is almost
certainly wrong in a very bad way

(Reading the code I get the feeling someone at
Apple audited for this anti-pattern, good job!)

An aside on locking in the VM subsystem...
Avoiding deadlocks is a hard problem...

#define vm_map_lock(map) lck_rw_lock_exclusive(&(map)->lock)

#define vm_map_unlock(map) \

 ((map)->timestamp++ , lck_rw_done(&(map)->lock))

uint32_t..

err...

last_timestamp = map->timestamp;

...

vm_map_unlock(map);

...

vm_map_lock(map);

if (last_timestamp+1 != map->timestamp) {
 /*
 * Find the entry again. It could have
 * been clipped after we unlocked the map.
 */
 if (!vm_map_lookup_entry(map, s, &first_entry)){
 ...

In this window, do stuff
which requires map to be
unlocked (eg kalloc
allocation) Did someone else take and

drop the vm_map's lock while
we dropped it?

Yes? let's reset our
expectations about the state of
the world then...

Example use of vm_map.timestamp:

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

want to move this
contiguous virtual
memory region from task
to vm_map_copy

vm_map_copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

next vm_map_entry to copy

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:
 3a) record the timestamp

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:
 3a) record the timestamp
 3b) unlock

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:
 3a) record the timestamp
 3b) unlock
 3c) allocate new vm_map_entry for the copy

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:
 3a) record the timestamp
 3b) unlock
 3c) allocate new vm_map_entry for the copy
 3d) lock

ts = 100;

vm_map_entry
next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:
 3a) record the timestamp
 3b) unlock
 3c) allocate new vm_map_entry for the copy
 3d) lock
4) does ts + 1 == current vm_map timestamp?

ts = 100;

vm_map_entry
next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

1) before starting, with map unlocked, allocate a single
vm_map_entry
2) lock the map, and copy the contents of the first
vm_map_entry in the region to the copy, and move to the
next entry
3) if that wasn't the last vm_map_entry, we need to allocate a
new vm_map_entry:
 3a) record the timestamp
 3b) unlock
 3c) allocate new vm_map_entry for the copy
 3d) lock
4) does ts + 1 == current vm_map timestamp?
 4a) Yes -> we were not raced, continue the loop here

ts = 100;

vm_map_entry
next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

What if the timestamp doesn't match?

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

What if the timestamp doesn't match?

vm_map could have changed; code looks up the next
entry to copy again

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

fresh lookup of next vm_map_entry to copy

What if the timestamp doesn't match?

vm_map could have changed; code looks up the next
entry to copy again

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

fresh lookup of next vm_map_entry to copy

What if the timestamp doesn't match?

vm_map could have changed; code looks up the next
entry to copy again

Then continue the loop, copying that freshly looked up
vm_map_entry into the next vm_map_entry in the
vm_map_copy chain

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

What if the timestamp doesn't match?

vm_map could have changed; code looks up the next
entry to copy again

Then continue the loop, copying that freshly looked up
vm_map_entry into the next vm_map_entry in the
vm_map_copy chain

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

this repeats for all the vm_map_entries
in the region

vm_map_entry
vm_map_entry
vm_map_entry

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

Finally, the vm_map_entry's are removed
from the source vm_map

vm_map_entry
vm_map_entry
vm_map_entry

What's wrong?

task

vm_map

vm_map_entry_t
vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

Code doesn't consider the full semantics of the whole
operation

supposed to be an ATOMIC MOVE relative to the vm_map

observers should only be able to see full region in map, or full
region not in map

What does that mean?

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

What if the timestamp doesn't match?

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

What if the timestamp doesn't match?

It's not enough to just invalidate the pointer to the next
vm_map_entry to copy; need to also invalidate
anything which has already been copied before us in
the chain

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

What if the timestamp doesn't match?

It's not enough to just invalidate the pointer to the next
vm_map_entry to copy; need to also invalidate
anything which has already been copied before us in
the chain

Why?

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

Let's imagine this happening while the map is unlocked:

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

Let's imagine this happening while the map is unlocked:

Another thread also starts a optimized MOVE operation over
the same region; it allocates its first vm_map_entry then
takes the vm_map lock and makes the first copy

vm_map_copy

vm_map_entry

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

Let's imagine this happening while the map is unlocked:

Another thread also starts a optimized MOVE operation over
the same region; it allocates its first vm_map_entry then
takes the vm_map lock and makes the first copy

vm_map_copy

vm_map_entry

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry_t
vm_map_entry_t
vm_map_entry_t
vm_map_entry_t

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

ts = 100;

vm_map_entry

Let's imagine this happening while the map is unlocked:

Another thread also starts a optimized MOVE operation over
the same region; it allocates its first vm_map_entry then
takes the vm_map lock and makes the first copy

The two threads will thrash about with the vm_map lock, but
if you're careful about how to structure the regions you can
get two vm_map_copy with the same vm_map_entry
CONTENTS (not the same actual vm_map_entry) when the
intended semantics imply this shouldn't be possible

vm_map_copy

vm_map_entry

next vm_map_entry to copy

More accurately...

task

vm_map

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

first message
OOL region

second message
OOL region

overlapping
OOL region

duplicate vm_map_entry
contents -> same offset
in anonymous memory
object in both copies ->
shared memory when
mapped in different
tasks!

message receive:

task

vm_map

vm_map_entry

vm_map_copy

vm_map_entry

vm_map_entry

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry

task

vm_map

vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

message receive:

task

vm_map

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry

task

vm_map

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

message receive:

task

vm_map

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry

task

vm_map

vm_map_entry
vm_map_entry

message receive:

task

vm_map

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

task

vm_map

vm_map_entry

vm_map_entry
vm_map_entry

vm_map_copy

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry

message receive:

task

vm_map

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

vm_map_entry

task

vm_map

vm_map_entry

vm_map_entry

same virtual memory object
& offset -> shared memory

when mapped to physical
page, writes in task on the
left seen on the right, and
the other way round

final trick: we can send one message to
ourselves, and one to the real target, this lets us
then modify the contents of the OOL descriptor
received by the target as it's parsing it

Exploiting unexpectedly shared memory
This bug breaks "mach message as an envelope" semantics:

When you're reading a letter you took out of an envelope, you don't expect it
to change while you're reading it. A mach message is meant to be like that.

But: we need to find somewhere where breaking those semantics across a trust
boundary leads to "something with security impact"

Aside: what is "security impact"?
Surprisingly difficult to concisely define.

Memory corruption is the most boring yet widely accepted thing with security impact:

● Decades of public research should help you convince yourself that it's almost
always possible to turn memory corruption in a target context into the ability to
perform arbitrary system interactions with the trust level of the target context

Far more interesting things possible when you dig more deeply in to target-specific
code:

● Time-Of-Check-Time-Of-Use in signature checking?
● TOCTOU in selector validation? (NSXPC?)
● TOCTOU in bytecode verification? (BPF?, hello Luca & PS4 ;))
● Weird allocator that reuses the pages for internal heap rather than returning them?
● Endless possibilities... (compiler bugdoors causing unnecessary double fetches? ;)

I am boring and lazy, lets just cause memory corruption..
Also gives an opportunity to play with pointer auth on A12, see the blog post at
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html for
more details

https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

Shared memory to memory corruption
In 2017 lokihardt found CVE-2017-2456 which lead to a similar style of bug

In that case, the unexpected shared memory was caused by sending OOL
descriptors where the memory was backed by memory from a memory entry
object (via mach_make_memory_entry_64)

His exploit targeted a particular construct in libxpc...

libxpc TOCTOU
Serialized XPC message bodies can be either inline (after any descriptors) or be
in a single OOL descriptor, which must be the first descriptor in the message*

This means any part of the XPC deserialization code is a target for an
"unexpected TOCTOU"

Note that these by themselves aren't bugs; that's why Loki's technique still worked

XPC dictionary key deserialization

enjoy the X64 version while it's still relevant, and then learn ARM64 ;)

XPC dictionary key deserialization:
char* key_len = strlen(key_ptr);

xpc_dict_entry_t* dict_entry =
 xpc_malloc(key_len + 0x29);

dict_entry->flags = 0;

dict_entry->prev = NULL;

dict_entry->next = NULL;

strcpy(dict_entry->key_buf, key_ptr);

points into unexpected
shared memory

task

vm_map

vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry
vm_map_entry

overlapping OOL region
contains XPC dictionary
key with "flippable NULL
byte"

serialized XPC
dictionary sent in
OOL descriptor to
target

OOL descriptor
sent to
ourselves

30 second overview of exploit:
read the blog post for an in-depth look at how this actually
works
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html

heap
groom

target string
fl
ip
pe
r

overflow
contents

xpc_array xpc_array backing buffer

xpc_null
. . .

undersized strcpy
dest buffer

. . .

30 second overview of exploit:

this ends up in shared memory (it's
part of the serialized XPC
dictionary)

deserialization while sender is
flipping the flipper bit hopefully
leads to this memory layout in the
target:

allowing us to corrupt this
objective-c object pointer here

OS_xpc_file_transfer isa0x120200120

fake block pointer0x120200160

<fake block object>0x120200000
(1<<0x18)|(1<<0x19)|20x120200008

0x120200010
fake descriptor pointer0x120200018

<fake descriptor object>0x120200080
0x120200088

0x120200090
pacia(pc, 0x120200098)0x120200098

.

.

.

corrupted pointer now points
here

Path from objective-c object
pointer control to PC control
without B key

Some final thoughts
● XNU Virtual Memory code is:

○ very old
○ very complex
○ very hard to read
○ very hard to reason about
○ very keen on multi-thousand line functions
○ very critical to almost every security boundary

Thanks
Prior XNU VM research and documentation:

Jonathan Levin [http://www.newosxbook.com]

Amit Singh [http://osxbook.com/about/]

http://www.newosxbook.com
http://osxbook.com/about/

