
Quarantine nights
Exploring File Quarantine handling in macOS Apps / @Metnёw 😈

Quarantine Nights
What is macOS File Quarantine? 🤔

Payloadable macOS-recognized files ⚔

Quarantine in messengers 💬

Quarantine in cloud file storages 📂

Summary ☠

Who am I?

AppSec@Grammarly

twitter.com/vladimir_metnew

Hackerone.com/Metnew,
Grammarly(#1), MacPaw(#1),
Brave(#1)...

Focus: code analysis, macOS,
browser environments.

https://twitter.com/vladimir_metnew?lang=en
https://hackerone.com/Metnew

What is File Quarantine?
Why is there so much hype around Gatekeeper?

macOS File Quarantine

Quarantine prevents downloaded content from being launched
without the user’s explicit confirmation.

Gatekeeper enforces code signing and verifies downloaded
applications before allowing them to run.

Gatekeeper relies on the com.apple.quarantine extended file
attribute that Quarantine attaches to downloaded files.

Windows clone: MOTW (Mark-Of-The-Web).

Default for files written by App Sandboxed apps

File Quarantine is explained in-depth in “*OS Internals III” by
Jonathan Levin.

Check @patrickwardle’s research on GateKeeper bypasses.

WWDC2019 “Advances in macOS Security”.

“Grokking Gatekeeper in Catalina” by @howardnoakley.

Gatekeeper bypass is a MITRE ATT&CK technique.

macOS File Quarantine: references

http://newosxbook.com/index.php
https://objective-see.com/blog/blog_0x15.html
https://devstreaming-cdn.apple.com/videos/wwdc/2019/701ngx868rfo8jlj/701/701_advances_in_macos_security.pdf?dl=1
https://eclecticlight.co/2019/06/12/grokking-gatekeeper-in-catalina/
https://attack.mitre.org/techniques/T1144/

Quarantine (file downloading)

1. The app downloads a file from a remote resource.

2. The app can “quarantine” the file directly by adding

com.apple.quarantine extended attribute via xattr util or

<sys/xattr.h>.

3. It can also “quarantine” files indirectly by delegating the quarantine

process to OS, which requires setting the LSFileQuarantineEnabled

property to <false/> in Info.plist.

Quarantine (file launching)

1. OS checks com.apple.quarantine attribute once

the file is launched via LaunchServices.

2. If enabled, Gatekeeper runs codesign check,

notarization check and malware scan.

3. Depending on the user’s Gatekeeper settings,

macOS might prevent the file from launching.

4. [Gatekeeper:3rd-party] If the app is signed

with a 3rd-party developer certificate and the

user allows it to open, the Quarantine dialog

pops up.

Gatekeeper alert

Quarantine dialog

Imagine there was no Quarantine 🤔
Any downloaded file could be launched in a single open(1).

OS wouldn’t enforce codesign requirements for executables.

There would be no OS protection against malware.

Websites would be able to execute arbitrary code via Windshift
APT’s trick with app URI schemes.

https://objective-see.com/blog/blog_0x38.html

Payload all the things!
A short guide to “payloadable” macOS files

Files that can include other files

.zip, .bin, .tar, .tgz, and 17 other
archive file types

File archives can include files.

.dmg, .cdr, .dart, .dc42, and 11
other disk image file types

Disk Images can include files.

.pkg and .mpkg Package installers can include
files and can execute code.

You can find a full list of file extensions in Chromium project:
src/chrome/browser/resources/safe_browsing/download_file_types.asciip
b

https://cs.chromium.org/codesearch/f/chromium/src/chrome/browser/resources/safe_browsing/download_file_types.asciipb
https://cs.chromium.org/codesearch/f/chromium/src/chrome/browser/resources/safe_browsing/download_file_types.asciipb

Harmful macOS files
.app App(bundle) is a directory; it needs +x file permission to

launch.

.webarchive 2000day: This file can cause UXSS in Safari; it can’t be signed.

.action, .caction, .workflow,

.wflow
Automator actions don’t need +x to launch.
Automator UI pops up on launch :(

.tool, .command, .dylib Terminal.app is a default handler;
These files need +x permission to launch :(

.terminal (✅) Terminal.app preferences file; allows running code, XML file
(plist); it can’t be signed.

.internetconnect,

.networkconnect,

.configprofile...

Configuration profiles can modify device settings. The user’s
explicit confirmation is required.

https://speakerdeck.com/bo0om/2000day-in-safari

.terminal file

Terminal.app profile
configuration file.

.terminal can’t be signed, but
signing isn’t a concern, if it has
already bypassed Quarantine.

It’s a plist. It could be delivered in
both binary and XML formats.

.terminal can launch an
invisible Terminal.app window.

Bypasses notarization check. XML .terminal

Binary .terminal

Quarantine in Messengers
Messengers from AppStore = ❤

Unsafe UX: many apps have an “Open” functionality that is
implemented via NSWorkspace.open with no safety checks.

Unsafe UX: apps don’t have file preview for non-image files.
.terminal files in binary format can bypass text previews.

Unsafe UX: apps might download files without the user’s
consent.

Filename-spoofing bugs (e.g., CVE-2019-3571 WhatsApp)

Messengers and UX Security

Slack

21 Dec 2018 — The vulnerability was reported to
Slack on HackerOne.

13 June 2019 — Triaged with “High” severity.

16 Aug 2019 — The vulnerability was fixed.

It took Slack 235 days to fix this vulnerability.

https://docs.google.com/file/d/1DPYZLizmlAOtH8FqPb3YFJeESkwP-YdY/preview

WhatsApp

30 Oct 2018 — The vulnerability was reported to FB.

11 Jan 2019 — The WhatsApp Team confirmed that
the issue had been resolved.

The WhatsApp team doesn’t consider this issue to

be a vulnerability but rather a platform-specific

behavior.

WhatsApp: File extension spoofing

Imagine the potential impact from combining a filename spoofing bug with the lack of Quarantine.

18 Dec 2018 — The issue was reported to
security@telegram.com.

21 Jan 2019 — Telegram (v1.5.8) fixed the issue by
requiring a user’s consent to open .terminal files.

29 Jan 2019 — I provided additional file extensions
that should be filtered.

Later — Telegram enabled macOS File Quarantine.

Telegram

Telegram: imagine if I hadn’t reported this bug

v1.5.8 includes an “auto-downloading”

feature: the app downloads files

without the user’s consent, making

the Quarantine issue a single-click

code execution.

https://docs.google.com/file/d/1zTXxY4H6zamifke4P6ymt6yxVNIVFoz1/preview

23 Dec 2019 — I sent a report to security@ mail, but
MS didn’t have a security@ alias 🤦

22 Jan 2019 — The bug is reported to secure@.

24 Jan 2019 — MS confirms the bug.

Later — The bug is silently fixed; no updates from

MS, no HoF.

Skype

😂 🙃 😆

At least 15 affected apps: Telegram, WhatsApp, Slack, Skype,
Signal, Wickr …

Extremely powerful bug for red teaming!

Security teams treat secure file handling as a user’s
responsibility. Is this the right approach?

It seems that many people are unaware of File Quarantine.

Apps might need to improve their UX security.

I haven’t seen a single non-AppStore app with enabled
Quarantine during Q4 2018/Q1 2019.

Summary

Is it possible to exploit file quarantine in such apps, too?

Quarantine in Cloud File
Storage Apps

Quarantine in cloud file storage apps

Affected cloud file storage apps: Keybase, Dropbox, Google
Drive, OneDrive ...

As of Q4 2018, the only app with enabled Quarantine was
Yandex.Disk 😯

Only Keybase fixed the issue!

Quarantine is not easy to exploit here, but there is a way 😈

“Product-friendly” fix: attach quarantine file attribute to

dangerous files like .terminal and .webarchive.

Attack scenario: Sync’n’Launch

1. To leverage file quarantine, we need to deliver a file to the
user’s device.

2. Let’s leverage the sync functionality of syncing apps!

3. However, we still need to somehow launch the delivered file 🤔

4. In short, we’re looking for a way to execute “$ open
/path/to/synced/file.terminal” on the user’s device.

Attack scenario: Sync stage

✅ - Sync files to the user’s device
without the user’s consent (legitimate
Keybase feature)

❌ - Sync files by sharing a folder
(Dropbox, OneDrive, Google Drive).
Requires too much interaction from the
targeted user.

❄ - Leverage applications’ web APIs and
OAuth access!

Attack scenario:
Sync via “App Folder” ❄

1. Both Dropbox and Google Drive have

“App Folder” integrations.

2. Many apps require this permission: cloud

file converters, file previewers, graphic

and video editors ...

Attackers can trick the user into authorizing a new
“App Folder” integration or leverage existing
vulnerable integrations to deliver a malicious payload
to the user’s device.

https://help.dropbox.com/ru-ru/installs-integrations/third-party/third-party-apps
https://developers.google.com/drive/api/v3/appdata

Attack scenario: Launch stage

If files have +x permission after the sync -> use Windtail trick.

Launch of .url file equals “$ open <URL>”.

A .url file isn’t tracked by Quarantine; it’s a shortcut file.

.url file’s file-opening behavior was fixed in macOS Catalina*.

❌ - Ask the user to run your
payload in Finder 🤦

✅- Find an *OS feature 🚀

Attack scenario: Sync’n’Launch

1. Sync a malicious .terminal file to the user’s device

(“App Folder”, folder sharing, application’s features).

2. Send a shortcut file (.url) that points to the .terminal

file that has been synced to the user’s device.

3. .terminal executes when the victim opens the .url file.

Keybase (sync + .url vector*)

1. Attackers can sync a .terminal file with the

targeted user via KBFS without the user’s

consent.

2. Due to the design of KBFS, the file will have a

predictable absolute path on the user’s device.

3. The user opens a .url file that points to the

synced .terminal file.

4. .terminal launches!

Keybase

Report: https://hackerone.com/reports/430463

Oct 29 2018 — The vulnerability was reported to Keybase.

Oct 30 2018 — Quarantine was enabled in Keybase chat app.

2 Nov 2018 — The vulnerability was patched in KBFS.

6 Feb 2019 — The Keybase Team remediated the issue.

16 Sep 2019 — The report was disclosed on HackerOne.

https://hackerone.com/reports/430463
https://hackerone.com/reports/430463

Microsoft OneDrive 🤦

“We asked for (and received) an exception from
Apple's head of macOS security to set an entitlement
[on OneDrive app distributed through AppStore] that
does not cause the quarantine bit to be set. Apple's
position is generally that sync apps do not need to
have MOTW/quarantine set on synced content.”

(c) MSRC
Dear OneDrive Team, only you are responsible for security issues in your app,
not Apple’s head of macOS security. (c) Author of this slide

Dropbox
Dropbox seem to be aware of the
Quarantine issue. The Dropbox Team has
said that they’re not going to track this as a
vulnerability, unless the exploitation
doesn’t require any user interaction

Dropbox has the capacity to implement a fix
of any granularity, but they haven’t done so.

You can find the exported version of the
report here.

It’s likely that the Dropbox Team didn’t think
about a sync vector via “App Folder”
integration.

https://drive.google.com/open?id=1cfo8oa9HKZxkL9ru-cvWmkpcfAjFnLok
https://docs.google.com/file/d/1tWW48r_SL_ZRN3xh0G1L5GfNDDBGuMsv/preview

.fileloc is the new .url!

Apple fixed .url file handling in Catalina.

.fileloc file still allows to open local
executables!

Opinion: Neither .url nor.fileloc have any
value unless the attacker can plant a
malicious payload that has already
bypassed the Quarantine mechanism.

CVE-2009-2811: .fileloc aka “10years-day”

It has been known that .fileloc is
dangerous for macOS devices without
enabled GateKeeper.

How did OneDrive receive the “exception”
from Apple?

https://docs.google.com/file/d/103he_74WHflyVLv9IxydOwGY9ewyhxJ1/preview

Personal opinion
MOTW bypass on Windows is considered as a severe bug. Why the
same bug on macOS is considered as a violation of best practices and
not as a vulnerability?

It’s absurd, how well-known apps can be affected to such a simple
issue.

🍏 must educate developers on secure file handling and UX security.

Developers must be responsible for secure file handling in their apps
and educate users about security.

Nice UX -> more users -> more revenue. Security > UX.

Outcomes

Popular macOS apps now enforce File Quarantine (15+ apps).
Except of mentioned syncing apps.

The technique has become popular among bug hunters.

The research describes attack vectors that can be effectively
abused by unsophisticated attackers.

The research revealed unknown macOS “features”: .url and
.fileloc files.

And now I have a bunch of screencasts
demonstrating how a single click on a file icon leads
to code execution 🙃😈

Open questions
Who should be responsible for secure file handling?

Is there a way to fix file quarantine issues?

Is it an unique case in the Apple ecosystem?

Is it normal to make “exceptions” for some companies?

Do developers need to educate users?

Postmortem

Postponing the disclosure was a bad idea.

I’m glad to see that bug hunters and researchers report File Quarantine
issues to other products.

I wish the unpatched apps will implement additional security measures
(e.g., direct quarantining).

Try to search for misconfigurations when hunting *OS apps. Nobody
reads Apple’s guides. (SMJobBless is a good example)

Thank you!
twitter.com/vladimir_metnew 😉

