KASPERYKY3

THE
DUQU 2.0

Technical Details

Version: 2.0 (9 June 2015)

www.kaspersky.com

THE DUQU 2.0
Technical Details

CONTENTS

KASPER§KY2

EXECUTIVE SUMMARY 3
INITIAL ATTACK 4
LATERAL MOVEMENT 4
ANALYSIS OF A DUQU 2.0 MSI PACKAGE 7
File properties 7
First Layer: ActionDLL (msi.dll) 10
Second Layer: ActionData0 10
Third Layer: klif.dll 11
Attacking AVP.EXE 12
CTwoPENC.dll zero-day and KMART.dL 14
PAYLOAD CONTAINERS AND MIGRATION 15
Payload type “L" 15
Payload run type “G" 16
Payload run type “I" 16
Payload run type “K" 17
Payload run type “Q" 17
PLATFORM PLUGGINABLE MODULES 17
PERSISTENCE MECHANISM 33
COMMAND AND CONTROL MECHANISMS 33
The “portserv.sys” driver analysis 35
SIMILARITIES BETWEEN DUQU AND DUQU 2.0 37
VICTIMS OF DUQU 2.0 42
ATTRIBUTION 43
CONCLUSIONS 44
REFERENCES 45

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 KASPERIKY2

Technical Details

EXECUTIVE SUMMARY

Earlier this year, during a security sweep, Kaspersky Lab detected a cyber intrusion
affecting several of its internal systems.

Following this finding, we launched a large-scale investigation, which led to the
discovery of a new malware platform from one of the most skilled, mysterious and
powerful groups in the APT world — Duqu. The Duqu threat actor went dark in 2012 and
was believed to have stopped working on this project - until now. Our technical analysis
indicates the new round of attacks include an updated version of the infamous 12011
Duqu malware, sometimes referred to as the step-brother of 2Stuxnet. We named this
new malware and its associated platform “Duqu 2.0".

Victims of Duqu 2.0 have been found in several places, including western countries, the
Middle East and Asia. The actor appears to compromise both final and utilitarian targets,
which allow them to improve their cyber capabilities.

Most notably, some of the new 2014-2015 infections are linked to the P5+1 events and
venues related to the negotiations with Iran about a nuclear deal. The threat actor behind
Duqu appears to have launched attacks at the venues for some of these high level talks.
In addition to the P5+1 events, the Duqu 2.0 group has launched a similar attack in
relation to the 370th anniversary event of the liberation of Auschwitz-Birkenau.

In the case of Kaspersky Lab, the attack took advantage of a zero-day (CVE-2015-2360)
in the WindowsKernel, patched by Microsoft on June 9 2015 and possibly up to two
other, currently patched vulnerabilities, which were zeroday at that time.

1 https://en.wikipedia.org/wiki/Dugqu

2 http://www.kaspersky.com/about/news/virus/2011/Duqu_The_Step_Brother_of_Stuxnet

3 http://70.auschwitz.org/index.php?lang=en

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
https://en.wikipedia.org/wiki/Duqu
http://www.kaspersky.com/about/news/virus/2011/Duqu_The_Step_Brother_of_Stuxnet
http://70.auschwitz.org/index.php?lang=en

THE DUQU 2.0 KASPERYKYS

Technical Details

INITIAL ATTACK

The initial attack against Kaspersky Lab began with the targeting of an employee in

one of our smaller APAC offices. The original infection vector for Duqu 2.0 is currently
unknown, although we suspect spear-phishing e-mails played an important role. This is
because for one of the patients zero we identified had their mailbox and web browser
history wiped to hide traces of the attack. Since the respective machines were fully
patched, we believe a zero-day exploit was used.

In 2011, we were able to identify Duqu attacks that used Word Documents containing an
exploit for a zero-day vulnerability (CVE-2011-3402) that relied on a malicious embedded
TTF (True Type Font File). This exploit allowed the attackers to jump directly into Kernel
mode from a Word Document, a very powerful, extremely rare, technique. A similar
technique and zero-day exploit (*CVE-2014-4148) appeared again in June 2014, as part
of an attack against a prominent international organization. The C&C server used in this
2014 attack as well as other factors have certain similarities with Duqu, however, the
malware is different from both Duqu and Duqu 2.0. It is possible that this is a parallel
project from the Duqu group and the same zero-day (CVE-2014-4148) might have been
used to install Duqu 2.0.

Once the attackers successfully infected one machine, they moved on to the next stage.

LATERAL MOVEMENT

In general, once the attackers gain access into a network, two phases follow:

» Reconnaissance and identification of network topology
e Lateral movement

In the case of Duqu 2.0, the lateral movement technique appears to have taken
advantage of another zero-day, (CVE-2014-6324) which was patched in November 2014
with 5MS14-068 . This exploit allows an unprivileged domain user to elevate credentials
to a domain administrator account. Although we couldn't retrieve a copy of this exploit,
the logged events match the Microsoft detection guidance for this attack. Malicious
modules were also observed performing a “pass the hash” attack inside the local
network, effectively giving the attackers many different ways to do lateral movement.

Once the attackers gained domain administrator privileges, they can use these
permissions to infect other computers in the domain.

To infect other computers in the domain, the attackers use few different strategies. In
most of the attacks we monitored, they prepare Microsoft Windows Installer Packages
(MSI) and then deploy them remotely to other machines. To launch them, the attackers
create a service on the target machine with the following command line:

msiexec.exe /i "C:\\[..]\tmp8585e3d6.tmp" /g PROP=9¢3c7076-d79f-4c

4 https://www.fireeye.com/blog/threat-research/2014/10/two-targeted-attacks-two-new-zero-days.html

5 https://technet. microsoft.com/library/security/MS14-068

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
https://www.fireeye.com/blog/threat-research/2014/10/two-targeted-attacks-two-new-zero-days.html
https://technet.microsoft.com/library/security/MS14-068

THE DUQU 2.0 KASPERIKY2

Technical Details

The PROP value above is set to a random 56-bit encryption key that is required to
decrypt the main payload from the package. Other known names for this parameter
observed in the attacks are "HASHVA" and "CKEY". The folder where the package is
deployed can be different from case to case, depending on what the attackers can
access on the remote machine.

In addition to creating services to infect other computers in the LAN, attackers can also
use the Task Scheduler to start “msiexec.exe” remotely. The usage of Task Scheduler
during Duqu infections for lateral movement was also observed with the 2011 version
and was described by ®Symantec in their technical analysis.

Event 201, TaskScheduler

General | Details

Task Scheduler successfully completed task "\ff263adc-c44c-4243-a354-c582a721fel3", instance
"{35d00646-d81a-4b84-bd21-2374fT2205b0}" , action "msiexec.exe” with return code 1602.

Log Name: Microsoft-Windows-TaskScheduler/Operational

Source: TaskScheduler Logged: _

<

“msiexec.exe” - Task Scheduler trace in the logs

The MSI files used in the attacks contain a malicious stub inside which serves as a loader.
The stub loads the other malware resources right from the MSI file and decrypts them,
before passing execution to the decrypted code in memory.

|w\."+¢'ﬂ. Al 6R
“i3 bW,

Malicious stub with query to load the other resources from the MSI file highlighted.

The encryption algorithms used for these packages differ from case to case. It's
Important to point out that the attackers were careful enough to implement unique
methods, encryption algorithms and names (such as file names) for each attack, as a
method to escape detection from security products and limit the ability of an antivirus
company to find other infections once one of them has been identified.

So far, we've seen the following encryption algorithms used by the attackers:

e Camellia
e AES

6 http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_
the_next_stuxnet.pdf

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
http://blogs.technet.com/b/srd/archive/2014/11/18/additional-information-about-cve-2014-6324.aspx
http://blogs.technet.com/b/srd/archive/2014/11/18/additional-information-about-cve-2014-6324.aspx

THE DUQU 2.0 KASPERIKY2

Technical Details

« XTEA
« RC4
» Different multibyte XOR-based encryption

For compression algorithms, we've seen the following:

e |ZJB

e LZF

e FastLZ
e L|ZO

In essence, each compiled attack platform uses a unique combination of algorithms that
make it very difficult to detect.

The attackers can deploy two types of packages to their victims:

e "Basic’, in-memory remote backdoor (~500K)
e Fully featured, C&C-capable, in-memory espionage platform (18MB)

These have similar structures and look like the following:

=) Root 00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ.......... 79.. |a
I’I(Sbytes) 00000010 B8 00 00 00 00 OO OO OO 40 OO0 OO0 OO0 OOC 0O 00 00 ,..eeees Beeeennn
LB obyter) 00000020 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 oueueueeneeeanns
H = 7 00000030 00 00 00 00 00 00 OO OO OO OD 00 00 EO OO0 00 0D ..ocsvswnmms Hooe
[[] (Bbytes) 00000040 OE 1F BA OE 00 B4 09 €D 21 B8 01 4C CD 21 54 68 ..°..-.f:, .LiiTh
] (20bytes) 00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
=1 (252h)'155,} 00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 €t be run in DOS
] (112bytes) 00000070 6D 6F 64 65 2E 0D OD OA 24 00 00 00 00 00 00 00 MOGE..sefavsnnss
L] (Bbytes) 00000080 9C OB 33 6B D8 6A 5D 38 D8 64 5D 38 D& eA 5D 38 :.gk@j]sﬂj]ﬁﬂj]ﬂ
[(7520 1y1c5) 00000080 D1 12 CE 38 D1 6A 5D 38 D8 6A SC 38 D7 6A 5D 38 H.Iefj]8ej\exj]s
E (476736 byes) 000000R0 D5 38 BED 38 D9 6A 5D 38 C6 38 C8 38 D9 A 5D 38 QSHSUj]SE:SESUj]S
- i 000000B0 D1 12 DE 38 D9 6A SD 38 D5 38 81 38 D9 6A 5D 38 H.paUjleds.sui]s
|)) 000000C0 DS 38 86 38 D9 6A SD 38 D5 38 23 33 D9 6A 5D 38 oOgm.a0jjeda.sni]s
“[7] |Summarylnformation (632 bytes) 000000D0 52 69 63 62 D8 6A 5D 38 00 00 00 00 00 00 00 00 Rich@i]8........

000000ED 50 45 00 00 64 86 05 00 42 DF 24 40 00 0O 00 0O PE..d...Ba*@

000000F0 00 00 00 00 FO 00 22 20 OB 02 OC 00 00 30 00 00 8." 0..
00000100 00 14 00 00 00 QO OO0 OO EA 13 00 00 00 10 00 0D ..ceceen= e
=g 00000110 00 00 00 80 01 00 00 00 G0 10 00 00 00 02 00 00 eueecesesenenans
| 00000120 0% 00 02 00 00 00 OO0 GO OS5 00 02 00 00 00 D0 0D @ .oeovscwssmmnnmes
CLSID 00000130 00 86 00 00 00 04 OOC OO0 OGO OO0 00 00 02 00 60 0 2 ..o ccioooan o
CreationDate 17171601 2:00 AM 00000140 00 0O 10 00 00 00 00 00 OO0 10 00 00 00 00 00 00 wueuesseasesnnes
False 00000150 00 006 10 00 00 0O 00 0O OGO 10 00 OO0 00 00 00 00 2 ..ccccccccccaasa
False 00000160 00 0O 00 00 10 00 00 00 90 46 00 00 46 00 00 00 wusuweens F..F...
Trse 00000170 DE 46 00 00 &4 00 00 OO OO0 70 00 OO0 30 04 00 0O] s I I
00000180 00 60 00 00 78 00 00 00 OO0 00 00 00 00 00 00 00 o suKusesssenass
17171601 2:00 AM 00000190 oo o0 o0 00 00 0O OO0 GO OC OO OO0 OO0 OG 00 00 0D 2 . ..ciccccccasaes
= 000001R0 00 0O 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 eusueesensncnans
17520 000001B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weveveooanannnnn
000001CO 00 00 00 00 00 00 00 00 OO0 40 00 00 90 00 00 00 eueeses.. Bovunns
00000100 o0 00 0000 00 OO OO GO OGO OD OO0 00 00 0D 00 0D ..o eecccmmnnmas
e 000001E0 00 00 00 00 00 00 00 00 2E 74 65 78 74 00 00 00 .oue..... text...
000001F0 Fe ZE 00 00 00 10 0O 00O 0O 30 00 OO 00 04 00 0O |3 e {1
00000200 0g o0 00 00 00 OO 0O OO @O OO0 00 00 20 00 00 60 2 cccccccassnas =a .

00000210 2E 72 64 61 74 61 00 00 50 08 00 OO 00 40 00 0O .rdata..P....08.. LI

Malicious Duqu 2.0 MSI package.

In the screenshot above, one can see the loader (ActionDIl: 17,920 bytes) and the main
payload (ActionData0: 476,736 bytes). Upon execution, ActionDll is loaded and control is
passed to its only export, StartAction.

The "basic” in-memory remote backdoor is pushed to computers inside the domain

by the Domain Controller on a regular basis — almost like a worm infection. This gives
the attackers an entry into most of the machines from the domain and if further access
is needed, they can upload a more sophisticated MSI file that deploys tens of different
plugins to harvest information.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 KASPERIKY2

Technical Details

A thorough description of the malware loading mechanism from the “basic” remove
backdoor MSI can be found below.

ANALYSIS OF ADUQU 2.0 MSI PACKAGE

Filename: random / varies from case to case
MDS5 (example, can vary): 14712103ddf9{6e77fa5c9a3288bd5ee
Size: 503,296 bytes

File properties

The MSI file has the following general properties:

e Composite Document File V2 Document

e Little Endian

o« OS: Windows, Version 6.1

e Code page: 1252

o Title: {7080A304-67F9-4363-BBEB-4CD7DB43E19D} (randomly generated GUIDs)
e Subject: {7080A304-67F9-4363-BBEB-4CD7DB43E19D}

e Author: {7080A304-67F9-4363-BBEB-4CD7DB43E19D}

o Keywords: {7080A304-67F9-4363-BBEB-4CD7DB43E19D}

e Comments: {7080A304-67F9-4363-BBEB-4CD7DB43E19D}
 Template: Intel;1033

e Last Saved By: {7080A304-67F9-4363-BBEB-4CD7DB43E19D}

e Revision Number: {4ADA4205-2E5B-45B8-AAC2-D11CFD1B7266}
 Number of Pages: 100

Number of Words: 8

 Name of Creating Application: Windows Installer XML (3.0.5419.0)
o Security: 4

It should be noted that MSI files used in other attacks can have different other properties.
For example, we observed several other fields:

e Vendor: Microsoft or InstallShield
e Version:1.0.000r1.1.200r2.0.0.0

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0
Technical Details

KASPER§KY2

Some of these are visible via the Windows Explorer file properties dialog box:

Property
Description

Title

Subject

Categories

Tags

Comments
Origin

Authors

Revision number

Content created

Program name
File

Name

tem type

Folder path

Date created
Nt madfiad

»

Value

{7080A304-67F3-4363-BBEB-4CD7DB43
{7080A304-67F3-4363-BBEB-4CD7DB43

{7080A304-67F3-4363-BBEB-4CD7DB43
{7080A304-67F3-4363-BBEB-4CD7DB43

m

{7080A304-67F3-4363-BBEB-4CD7DB43
{4ADA4205-2E5B-45B8-AAC2-D11CFD1E

Windows Installer XML (3.0.5419.0)

Windows Installer Package

<

mn | b

There are two binary blocks inside this MSI package:

Tables

CustomAction

InstallExecuteSequence

Property

Name Data
ActionDIl [Binary Data]
ActionDatal [Binary Data]

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 KASPER§KY2

Technical Details

The first binary, called ActionDl, is in fact a Windows PE DLL file, while the other one

is a Camellia-encrypted and LZJB-compressed data payload (the encryption and
compression algorithm vary from case to case). In fact, there are several layers of
executable code embedded one into another as compressed or encrypted binary blocks.
Here's a look at a Duqu 2.0 MSI package, with all its internal payloads:

Duqu 2.0 MSI structure
Open MSI file
Custom Action DLL (msi.dlLl) from OS
: - I e
executable code StartAction()
Decrypt ActionData0 block with key from commandline =
Jump into
2 shellcode
Custom Action Data (compressed, encrypted)
shell code € —
Find essential system API Get BLOB of embedded Payload)
Decompress Rebuild shellcode
Get BLOB of embedded PE PE Loader Load the DLL
and run second
F 3 export function
Utility DLL (klif.dLl)
< /
executable code ©
Bypass AV products oy
Decompress
KLIF API:

Load or Inject PE
Generate MSI package

Inject and start
payload from
VFS

Archived VFS #2

CPU Architecture | Payload Type | Process Name

shell code € =,

—— Orchestrator DLL

—— Archived VFS #2

0-day CTwoPENC.dLL

GREAT KASPERSKY3S

We describe these components in more detail below.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

10

THE DUQU 2.0 KASPERYKYS

Technical Details

First Layer: ActionDLL (msi.dll)

Original filename: msi.dll

MD5: e8eaeclf021a564b82b824afldbebc4d

Size: 17'920 bytes

Link time: 2004.02.12 02:04:50 (GMT)

Type: 64-bit PE32+ executable DLL for MS Windows

This DLL has only one export name called StartAction, which is called in the context of
msiexec.exe process. When this function is called, it retrieves an MSI property called
PROP and uses it as a decryption key for the bundled ActionDataO package:

Next, the code iterates over 12 possible
payloads that have to be decrypted and
: pcchValueBuf started. The payloads are part of the
1) 7 SZVALUEUT MSI and may have the following names:

; hInstall ActionData0, ActionDatal, ActionData2,
etc.

The package described here contains
only one payload named “ActionData0".

Second Layer: ActionData0

This binary chunk contains the main code, in
compressed and encrypted format. It represents a
composition of executable, position-independent code
blocks mixed with embedded data objects. The code
seems to be based on a framework and heavily uses
helper structures that contain pointers to a set of system
APIs and offsets to internal data blocks. Such structures
are definitely a trademark of the developer. When they
are initialized, one field (usually the first 4 bytes) contains
a magic value that identifies the state and type of the
structure.

7 0x72384263

Another trademark of the coder is the way to import
system API by module and export name hashes. The
hashing algorithm was found all over this and other
layers of executable code. It's easily recognizable by two
DWORD constants: 0x8A20C27 and 0x67F84FC6.

Basically, the code in ActionData0 passes execution

to an embedded executable, which we will refer by its
internal name: “klif.dll". The execution is passed to the
second exported function in table of exports of this DLL
file. This disregards the export name and relies only on
the order of functions in the table of PE export ordinals.
When this export function is called, a next stage helper structure pointer is passed to it,
so that it can use some of the values set on the upper layer.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

11

THE DUQU 2.0 KASPERYKYS

Technical Details

However, before passing execution to klif.dll, the code attempts alternative routes.

First, it attempts to find the name of the following format “api-ms-win-shell-XXXX.
dll’, where “X" can be any decimal number. The name is valid if there is no module with
such filename loaded into current process. The code attempts to iteratively find such
name starting from api-ms-win-shell-0000.dll, api-ms-win-shell-0001.dll, api-ms-win-
shell-0002.dll and so on. This may be a dependency to the Duqu platform component
that is yet to be discovered.

Right after this, if the name was found, the code attempts to map a section kernel object
by name, which is generated using a PRNG-based algorithm. The name of the section
has the following template: “\BaseNamedObjects\{XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXX}Y, where “X" is any hexadecimal digit that is generated based on current
system boot time. So far, the name of the section is “machine/boot time” dependent,
which makes it unique but allows other processes of modules to locate such section if
they use the same name generation algorithm. This section is accessed in different other
parts of the code and modules. Lets refer to this section as OSBoot-section from now.
Once the section name is generated the code tries to open such section and, if it is
found, it takes some values from it and attempts to open a specific device and issue a
number of IOCTL codes to the driver. The name of the driver device as well as IOCTL
codes are located inside a section of the kernel mode driver KMART.AIl that is described
below.

The code developer has a preference for using sections to any other ways to access
data. Another use of sections appears to be in mapping the part of code/data where
klif.dll is embedded and then finding that section using a hardcoded magic QWORD
number: OxA1B5F8FCOC2E1064. Once the section is found in address space of current
process the code attempts to pass execution to it. This alternative execution route is
not applicable to current MSI file package but simply exists in the code probably due

to common code template used for building current MSI package. It may also be an
indicator of another Duqu platform component that wasn't used in the attacks that we
observed.

Third Layer: klif.dll

Original filename: klif.dll

MD5: 3fdelbbf3330e0bd0952077a390cef72

Size: 196’096 bytes

Link time: 2014.07.06 08:36:50 (GMT)

Type: 64-bit PE32+ executable DLL for MS Windows

Apparently, this file attempts to mimic some of legitimate names of Kaspersky Lab
product components: “klif.sys". Although there is neither similarity in code nor in file
information, the module uses Kaspersky Lab acronym in it's export names: KLInit and
KLDone.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

12

THE DUQU 2.0 KASPERIKY2

Technical Details

When this DLL is loaded into a new process, it simply initializes internal structures, such
as those providing pointers to the required system API.

The real payload of this module is located in the KLDone export function, which is
second in the list of the export table. This export function is called from the previous
code layer.

First, it makes sure that global application structure is initialized with essential functions
from ntdll.dll, kernel32.dll and user32.dll. System API functions are imported using hashes
of export names. The hashing algorithm is identical to the one described one layer above
and uses the same magic constants: O0x8A20C27 and 0x67F84FC6.

Next the code iterates through the list of running processes and hashes lowercase name
of each process. The hash is compared to a hardcoded value of 0x3E3021CB, which is a
hash for the “avp.exe” string.

Attacking AVP.EXE

If the "avp.exe” process is running, the module attempts to open the OSBoot-section as
described before and tries to attack the avp.exe process. The attack starts from
identifying the exact path to the installed Kaspersky Lab product by iterating through an
array of hardcoded registry keys and values for the following products:

KES12 AVP15 AVP10 AVP8
KES11 AVP14.0.0 KES9 AVP7
KES10 AVP14 KES8 AVP6
AVP16.0.0 AVP13 AVP80

AVP16 AVP12 AVP90

AVP15.0.0 AVP11 AVP9

The registry values queried by the module contain a filesystem path to the root directory
where the corresponding product is installed. For example: “C:\\Program Files\Kaspersky
Lab\Kaspersky Internet Security 15.0.0\"

Once the registry key and value is found, the module confirms that avp.exe file is located
in that directory. It does some basic file availability checks as well: makes sure that
environment variables are resolved and the file can be opened for reading and it begins
with Ox5A4D (magic “MZ" value of Windows executables).

After that, the module creates a new section and maps avp.exe as a file view to this
section. To allow code execution, the attributes of this memory region are also changed
accordingly. This allows the module to change bytes from the mapped avp.exe in
memory. The module applies two patches to the mapped avp.exe in a quite unusual way
using SSE2 CPU extensions. In fact, it patches just the old DOS PE header (less than 120
bytes). The patches are simple callback mechanisms that call arbitrary function passed as
an argument.

Right after this, the module attempts to start a new thread that begins with one of the

patched locations. So far, it looks like the new thread begins with a call originating from
avp.exe module that does some other calls, i.e. jumping back to klif.dll. Apparently, this

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 KASPERIKY2

Technical Details

attack was introduced to trick the avp.exe process into believing that further calls will
be safe and trusted as the root of the call stack is coming from the legitimate avp.exe
module. This is what we see further down in the code: the new thread instantly jumps
from avp.exe back to klif.dll and tries to communicate with the Kaspersky Lab product
minifilter driver, known as klif.sys.

In fact, just before communicating with klif.sys, it opens OSBoot-section and gets an
IOCTL code as well as the driver device name to send this IOCTL code to. The section
and corresponding driver (KMART.dAL) provide certain support to the current module. The
code hashes current process name and verifies if it falls down into one of three hashes:
0x3E3021CB (avp.exe), OxDE6D4DAO (msiexec.exe), 0xB915B2D8 (rundll32.exe).

If current process name hash is recognized, the module communicates with klif.sys

by opening \KlifComm minifilter communication port and sending series of driver
communication messages. According to analysis of the messages, this technique

makes process or thread operations “invisible” to the klif interceptor. Such registered
entity is considered to be trusted and its activity is removed from AV-scanning, process
monitoring, firewall and other defense engines that are subscribed to intercepted events.
In addition, the module requests support of the self-defense feature of Kaspersky Lab
product, which is normally used to protect the software from aggressive malware which
kills the security software processes using a number of techniques available from the
OS. This of course guarantees that even a user with administrative privileges cannot stop
such process.

Considering that this seemed to be an attack against Kaspersky Lab products, we did
some additional tests of the products and found that current products verify the caller
process by checking its custom digital signature. So far, without additional driver support,
this technique should fail. Verification of the digital signature of the process that opened
\KlifComm minifilter communication port was implemented in all Kaspersky Lab
products since 2010. So far, this could affect only .
older products such as KIS2010, which was 72 About
released by Kaspersky Lab in 2009 »

Kaspersky®
Internet Security 2010

It doesn't look realistic now that the attackers
started implementing tricks against Kaspersky Kaspersky Internet Security 2010
Lab products in 2009 or earlier. So we looked for :;‘;;’:_ﬁ::mmabmo —
another rational explanation and seem to have '
found it e P R A
P ¥
Registered trademarks and service marks are the
Such an attack doesn't normally work against P AR RS
our products because they verify that the caller
process is legitimate by checking its custom digital
signature. To bypass this, the Duqu 2.0 component
named “KMART.AIl" patches “klif.sys” in memory to
bypass this check. The attack works because the
attacker’'s "KMART.AIL" is already running in kernel

mode due to a vulnerability in the Windows kernel.

After sending the codes, the module proceeds to the next stage, which is process
migration, described further below.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 KASPERIKY2

Technical Details

CTwoPENC.dll zero-day and KMART.dll

The third layer klif.dll performs a multitude of functions in order to ensure the survival of
the malware in memory and bypass antivirus detections.

One important step is to get kernel level access. On 64-bit systems, one cannot simply
load and run kernel mode code without a signed driver. While other attackers such

as Equation or Turla chose to piggyback on third-party signed drivers, the Duqu 2.0
platform relies on a much more cunning trick.

One of the payloads bundled together with “klif.dll" is called “CTwoPENC.dI". This is

aWindows kernel mode exploit (CVE-2015-2360) that allows them to run code with the
highest privileges in the system We recovered several versions of “"CTwoPENC.AI", both
for 32-bit and 64-bit versions of Windows, with the following compilation timestamps:

o 2014.08.25 01:20:04 (GMT)
e 2014.08.25 01:19:03 (GMT)
o 2014.07.06 09:17:03 (GMT)

Unlike other Duqu 2.0 modules, these timestamps appear to be legitimate. The reason
for this remains unknown — perhaps the Duqu platform developers got this module from
somebody else and forgot to patch its compilation timestamp.

"CTwoPENC.DLL" exploits a zero-day vulnerability in “win32k.sys” to gain kernel privileges
while being run as an unprivileged user. It creates several windows with classes named
“CPer’, “Zero’, "CTwo’, "Vero” in several threads and manipulates the callback pointers.

0 = GetProcessHeapl):
v29 = HeapAlloc(v0O, 8u, Ox8000u);
if (v29)
{
v1 = GetProcessHeap():
lpMem = HeapAllocivl, B8u, Ox4000u):;
if (1pMem)
{

wndClass.lpfnWndProc = DefwWindowProch;
WndClass.lpszClassName = "CPer";
if (RegisterClassA(&WndClass))

hWndNewParent = CreateWindowExA(O, "CPer", 0, O, 0, 0, 0, O, 0, 0, 0, 0);
if (hwWndNewParent)
{
wWndClass.lpszClassName = &ClassName;
va = 0;
do
1
25 = v9 + 1;
sub_l100037FE(&ClassName, "“%d%s%d)
w10 = RegisterClassA(&WndClass);
*((_WORD *)1pMem + v3) = vl
if [tvl0)
break;
11 = CreateWindowExA(D, &ClassMName, &ClassName, 0, 0, 0, G, O, 0, 0, 9, 0);
v1l2 = (char *)v29 + 4 * y9;
*(DWORD *)v12 = vl1l;
if (!vll || sub_100035AB{v1l, &hWnd, 0))
break;
14 = *(DWORD *)v12;

if (Check&4(v13))
I

Part of the exploit code that registers window classes and creates new windows.

The main purpose of the exploit is to load a driver named "KMART.AI". If the exploit
succeeds, it decompresses "KMART.AIL" from the module’s body and passes control

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

15

THE DUQU 2.0 KASPERIKY2

Technical Details

to it while running in kernel mode. Both 32-bit and 64-bit versions of the "KMART.
DLL" exist. This driver implements a kernel-mode attack against the Kaspersky Lab
products filter “klif.sys". It patches the import table addresses of system API functions
PsGetCurrentProcessld, PsLookupProcessByProcessld and KlGetStringRef export of
Kaspersky Lab’s anti-virus driver kliflt.sys. The intercepted functions are preceded by
malicious code that impersonates the other malicious modules as coming from the
process/file “avp.exe” (using the actual location of the anti-virus component), thus
evading monitoring by the anti-virus software.

During testing, the zero-day exploit worked on all contemporary Windows versions (XP,
Vista, 7, 8, 8.1 both 32-bit and 64-bit). This vulnerability has been patched by Microsoft
on June 9, 2015

PAYLOAD CONTAINERS AND MIGRATION

The module supports a number for different payloads provided in the form of containers
following klif.dll in memory (located in PE overlay).

A payload container contains a short header describing target CPU architecture, payload
type and target process name or hash. When the module uses some embedded code or
file there is normally at least two variants of code bundled inside: 32 and 64-bit.

Each payload run type is identified by a single character. Current module supports

the following 5 payload run types: g, i, k, |, q. Seems like the developer used ordered
alphabet characters, which means that there could be other payload run types which
were removed from the code at some time. Currently the container located in the
overlay of subject executable contains a “l" character as a payload run type, so lets
describe it first.

Payload type “L’

First, the code looks for privileges from other processes. The process handle can be
hardcoded or obtained by looking for currently running processes, hashing their names
and comparing them to one of known hashes. The module includes the following
hardcoded process hashes:

0x31283314 (services.exe), 0x1026D1BA (lsass.exe), 0x3BD2498C (svchost.exe).

If any of the recognized processes are found, the module opens process token and
verifies that the following privileges are available:

e SeDebugPrivilege

o SelcbPrivilege

» SeAssignPrimaryTokenPrivilege
e SelncreaseQuotaPrivilege

» SelmpersonatePrivilege

e SeRestorePrivilege

If they are available the module duplicates process token and saves it into an internal
structure for future use.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

16

THE DUQU 2.0 KASPERIKY2

Technical Details

The module looks for one of the available security suites installed in current system and
some generic processes if nothing was found. It attempts to find executable files of the
following software:

e More than 20 different Kaspersky Lab products
» McAfee VSCore, SystemCore, HIP

» Symantec Internet Security

o Bitdefender

o ESET

e H4+BEDV

e TrendMicro Network Security Component
» Rising AV

e Avast

« AVG 2012/2013/2014/2015
e F-Secure
* Qihoo 360 Security
» Generic Windows Processes:
o %ProgramfFiles(x86)%\Windows Defender\MsMpEng.exe
o %SystemRoot%\syswow64\svchost.exe
o %SystemRoot%\system32\lsass.exe
o %SystemRoot%\system32\svchost.exe

When such an executable is found and eventually it should (at least svchost or sass.
exe should be present), it runs a new process from discovered location and replaces
its executable code with own embedded into current executable in encrypted and
compressed form.

If the code manages to find a security token from one of the processes with required
security privileges, it will try to use this token when creating a new process using
CreateProcessAsUser API. Otherwise it simply spawns new process instance.

The new process is started in suspended and debugged state. Just before starting the
new process it disables DEP for the child processes to simplify code injection and data
manipulation. So far, from the outside, it may look like a security software was started,
while from the inside its code is completely different from legitimate module.

Payload run type “G"

This payload is almost identical to payload L described above, but the loader is simpler
- it skips hijacking of privileged token. Code injection target is selected automatically
depending on the availability of known processes.

Payload run type “I”

This payload is similar to payload G, but makes the loader parse payload header a bit
differently: instead of process name string it takes only 4 bytes, which are supposedly
used as a process hash. This seems to be a way to hide target process name and

use only hash, however this hasn't been implemented completely in the module we
analyzed.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

17

THE DUQU 2.0 KASPERIKY2

Technical Details

Payload run type “K”

This payload is designed to run within the context of the current process. The code
simply copies the code to be executed into separate memory and runs it in a dedicated
thread. It blocks until thread finishes its execution.

Payload run type “Q"

This payload is identical to payload K described above but it doesn't block execution
when a new thread is started. So far, the new code runs asynchronously.

After the payload container is opened and code migrated to another process, which can
be elevated and protected from security software, the real malicious code is activated.

In most cases, it is simple named pipe based backdoor that listens for incoming
communications from the orchestrator. In rare cases, on selected machines, it can be
heavy orchestrator module that communicates with command and control server, works
as a bidirectional proxy and comes with a large bundle of secondary plugins.

PLATFORM PLUGGINABLE MODULES

In addition to the basic remote backdoor, the attackers deploy more sophisticated
packages to domain controllers and to the victims of interest inside the LAN. These MSI
packages can contain tens of different modules designed for various cyberespionage
functions.

The fully featured packages are much larger than the basic remote backdoor — 18MB
vs 500KB. They follow the same structure, with ActionDll and the loader mechanism,
except they contain a lot more plugins to load and run.

During our analysis, we identified more than 100 variants of such plugins.
A description of these plugins follows. To separate them, we used a virtual identifier
based on the first two bytes of their MD5 sum.

03B7 — The main module of Duqu 2.0, orchestrator.

Implements multiple protocol handlers for C&C communication, can start an
intermediate C&C proxy server with a self-signed HTTPS certificate. Starts the plugin
framework, loads and manages all additional plugins.

It works via HTTP, HTTPS, SMB network pipes or direct TCP connection using a custom,
encrypted protocol. Interaction via HTTP is concealed in JPEG or GIF files, similar to the
2011 version of Duqu. Request names, URLs and User-Agent strings may vary between
attacks.

Additional known variants: 3026, 4F11.

0682 — Collects basic system information:

e List of running processes
o Active desktop and terminal sessions

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

18

THE DUQU 2.0 KASPERIKY2

Technical Details

Collected information is then transmitted to a named pipe provided by the caller.
Additional known variants: COB7

073C - Implements a complete Windows socket-based transport, both client and
server side. Provides a class factory for the class that encapsulates various networking
functions.

0872 — MSI CustomAction library that is activated when the malicious installer package
is started by the Windows Installer. Loads the encrypted binary blob that contains actual
malicious payload, decrypts and then executes it in memory.

The names in version information vary: svemsi_32.dll, msi3_32.dll, MSI.dll, msi4_32.dll.
Encryption algorithms also vary: Camellia 256, AES, XXTEA.

The decryption key is extracted from an MSI parameter, possible names: PROP,
HASHVA, CKEY.

The encrypted blob is searched by prefixes (can vary): ActionData, CryptHashs, CAData.

Both 32-bit and 64-bit versions are known. Additional known variants: 8D7C, 16EF, E6GE5,
434C, 44BD, F708.

09A0 - 64-bit, Exfiltrates file contents, particularly searching for files matching these
rules:

e *inuse, *.hml
e filename contains “data.hnmi” or “val.dat”
e files from the /Int/HMI/ or /LG/HM/ folders.

align 10h

Hml: DATA XREF: sub_18001ACS58+750i0
unicode ©, <hml=,0
Data_hmi: DATA XREF: sub_18001BF70:loc_18001C02110
10+ unicode O, =data.hmi=,0
align 10h
‘.fal_-:!at: DATA XREF: sub_18001CSBC+1Ei0
10+ unicode 0@, =val.dat=,0
IntHmi: b 1BF70+1Fi
1FB+1Ei
sub_ 1F8:1loc_1 1C251i
10+ unicode O, =/Int/HMI/=,0
db ‘'L'.27h.9.0
LgHm: DATA XREF: sub_lB8001ACS58+76410
10+ unicode 0, </LG/HM/=,0
qword_18003F988 dq 19DB1DEDS3ES00CH DATA XREF: sub_180023DA0+136ir
dword_18003l=990 dd 1 DATA XREF: _'.||._'_iiﬁ-'j.'_'EE-l-:-—'_i_:i:'
a2l smn @

File and directory names of interest for the 09A0 plugin.
Additional known variants: 8858

0AB8 - Provides 25 functions for manipulating files and directories:

o List files in directories
 Upload and download arbitrary files
« Read/write file contents

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

19

THE DUQU 2.0 KASPERIKY2

Technical Details

In several cases, the modules are looking specifically for directories named “\int”, "\lg", "\
of\md”, “\tl", "\ak” and files with extensions “.part’, “.manual”, “.inuse".

-

Alldirs db *sllDirs’,0

DATA XREF ub 1 3A3A+321
Downloadable db 'Downloadable’,0 DATA XREF b 1 43+1710
align 1Ch
Dlg db 'dLg',0
Explorer_0O db 'Explorer',0
align 10h
asc_10017210 db "\'.,0 1b_1¢
2+881¢
align 1Ch

dd offset Int
dd offset Lg
dd offset Tl
dd offset Ak
dd offset OfMd
dd offset Int
Al -

File and directory names of interest for the 0AB8 plugin.

Additional known variants: A69E.

0B97 — Network transport. Implements API for connecting sockets and pipes provided
by the caller. Additional variant: 56A2.

152B — Network and domain discovery.

e Enumerates all servers in the domain
» Tries to connect to remote registries and enumerate all users in "HKEY_USERS”".
Usernames are then converted to SIDs

e Enumerates all visible network shares

Additional known variants: A987
1C71 - In-memory storage. Receives and stores string data in file mappings.

2125 — Network infection module. Tries to acquire administrative credentials from the
running processes and then connect to a target machine using Windows shares. The
machine is infected with a malicious DLL backdoor, the target directory varies and may
be in UPDROQOTS, ADMINS or CS. Uses custom SMB packets to identify the target OS
version. The target malicious DLL is then started using a new service created with a name
‘svemsi_32@" The module communicates with the target backdoor via Windows pipes.
Additional variant: DB6S. Instead of the malicious DLL, it uploads a new MSI package and
then relies on MSIEXEC.EXE to start the MSI via a newly created service named
"‘msisvc_32@° the target MSI name is generated randomly using a template “tmp%x.
tmp”.

A service was installed in the system,

Service Name: svemsi_32@

Service File Name: msiexec /i %systernroot%%\temp\tmp129deb0.tmp /q PROP=fa5d78ba-f17
Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystem

Example of a Windows event log (System) entry created
at the moment of infection.

Administrative credentials are acquired by stealing a token from any running process that
was started by a logged on user having domain administrator’s rights. For that, it first

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

20

THE DUQU 2.0
Technical Details

KASPER§KY2

queries for the first 100 administrative usernames in the current domain directly from the

domain controller.

unicode @,
align 4

i CHAR netname[]

netname:

unicode 0O,
align 1ch
SAdminSystem32Msiexec_exe:
: unicede 0,
align 1Ch
SAdminSyswow64Msiexec_exe:
. unicode @,

align 1ch
i CHAR Admin[]
Admin:
; unicede 0O,
align 10h
; char sC[]
8C:
unicode 0O,
align 4
i char € 0[]
c_o:
unicode 0,
; char C_1[]
C1l:
unicode O,
align 4

dword_1000EAS8 dd O
; char asc_l000EASC|
asc_1000EASC:

unicede 0O,
; char SIpcll]
SIpc:
. unicode 0O,
: wrhar + Srec

Remote locations used by the network infection module.

<\\%s>,0

<UPDROOTS>, 0
<%s\ADMIN$\system32\msiexec.exe>,0

ATA XREF: CheckAccessToMsiexec+6870

<%s\ADMIN§\syswowbd\msiexec, h exe>,0

T REF SelectC ect e+EFi
=<ADMINS$=.0

T REF: SelectCor e e+1751
<\\%s\%c$>,0

T REF tCon t St + i
<%Cc$>,0

TA XREF: SelectConnect e i
<%ci\=>,0

=\\%s\%s=>.,0

<\\%s\IPC$>,0

A XREF: CheckAccessToMsiexec+S9io

24B7 — Remote desktop administration. Acquires the screenshots of the desktop but
also can send input to the desktop, move the mouse cursor. Both 32-bit and 64-bit

variants exist. Additional known variants: 65BE, 7795, BDCS8, DEE2

26D6 — Detects running network sniffers (wireshark, tcpview, netstat, dumpcap,
perfmon); implements a TCP server and communicates via network pipes. Internal

name: "P.dll”.

2829 — Collects system information

e Monitors USB device attachment

e Collects USB drive history

 Enumerates network shares, windows captions, system routing tables

e Reads/writes encrypted file

2913 - WMI data collection

S

» Enumerate profiles with SIDs
e For each profile, extracts information from lnk files in the profile directory
e Enumerate processes via WMI (CIMV2), including terminated processes

» Extracts user information from available remote registries

Additional known variant: C776

29D4 - Service msisvc_32@; DLL backdoor that is used for network infection by
module 2125. Accepts commands via named pipe “Global\{B54E3268-DE1E-4cle-A667-
2596751403AD}". Both 32-bit and 64-bit variants exists.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

21

THE DUQU 2.0 KASPERIKY2

Technical Details

Additional known variants: 6F92, A505, D242
2B46 — Extensive collection of system and user information

e« Domain controller's name

e List of users in the domain

e Administrators of the domain

 Enumerates domain trusts

e TCP tables

« UDP tables

 SNMP discovery (OS, parse all replies)

o USB drive history, mounted devices

* Installed programs

e« Time zone

e OSinstall date

« ODBC.ini, SQL Server instance info, Oracle ALL_HOMES, SyBase, DB2, MS SQL,
MySQL last connections

« DHCP/routing

» Network profiles

o Zero Config parameters

e Connected printers

e MRU list for WIinRAR, WinZip, Office, IE typed URLs, mapped network drives, Visual
Studio MRU

o Terminal Service Client default username hint

e User Assist history

e PUTTY host keys and sessions

 Logged on users

 Network adapter configuration

 VNC clients passwords

e Scan the network and identify OS using SMB packet

‘Hostname: : DATA XREF: sub 10008AFl+161
unicode @, <HostName=,0
align 4

Logfilename: ; DATA XREF: sub_1000BA
unicode 0, =LogFileName=,0Q

Portnumber: ; DATA XREF: sub_10008A
unicode 0, <PortNumber=,0
align 4

Portforwardings: ; DATA XREF: sub 1000BAFl+4Aio
unicede O, <PortForwardings=,0

SSUSS: ; DATA XREF: sub_l000BAF1+CCio
unicode 0, <%s - %s:%u [%s %s]=>,0
align 4

SoftwareSimontathamPuttySshhostkeys: ; DATA XREF: sub_l000BC2B+59Cio
unicode 0, =Software\SimonTatham\PuTTY\SshHostKeys=,0
align 4

SoftwareSimontathamPuttySessions: ; DATA XREF: sub_l000BC2B+5BAic
unicode 0, <Software\SimonTatham\PuTTY\Sessions>,0

SoftwareMicrosoftWindowsCurrentversionExplorerComdlg32File: : DATA XREF: sub_l0008C2B+45io

unicode O, <Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg=>
unicode 0, <32\ filemru=.0

SoftwareMicrosoftWindowsCurrentversionExplorerComdl g320pen: ; DATA ¥REF: sub_10008C2B+B8AT0
unicode 0, =Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg=
unicode 0, <32\0OpenSavePidlMRU=,0

SoftwareMicrosoftVisualstudio® OFilemrulist: DATA XREF: sub_10008C28+D4fo
unicode O, <Software\Microsoft\VisualStudio\9.0\FileMRUList>,0
SoftwareMicrosoftVisualstudio9 OPrejectmrulist: ; DATA XREF: sub 10008C2B+11Eio

unicode 0, <Software\Microsoft\VvisualStudio\9.0\ProjectMRUList=>.0

Some of the registry locations harvested by the module.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 KASPERYKYS

Technical Details

Additional known variants: A7F8

2BF7 - Utility DLL. Provides basic API for creating new MSI packages, loading and
injecting arbitrary PE modules. Also responsible for loading the first level of the VFS
inside the malicious MSI files. Both 32-bit and 64-bit versions exist.

Known names: “ntdll.dll’, “klif.dll", “apiset.dll".

Additional known variants: 6DA1, 32DB, 8304, 9931, 9E60, A2D4, ABA9, B3BB, DC5F,
DD32, F7BB

3395 — MS SQL discovery module. Module can send ARP packets to network and
discover MS SQL Server ports. Additional functions are responsible for connecting and
reading of remote registry contents.

35E9 - File system discovery.

 Enumerate network shares
 Enumerate local disks
» Traverse files system hierarchy and enumerate files; identify reparse points

3F45 — Pipe backdoor. Opens a new globally visible named Windows pipe, receives and
executes encrypted commands. The "magic” string that identifies the encrypted protocol
is “tttttttt”

 Enumerates running processes
» Loads and executes arbitrary PE files

Both 32-bit and 64-bit versions exist.

Known pipe names:

e \\\pipe\{AAFFC4F0-E04B-4C7C-B40A-B45DE971E81E} \\\pipe\{AB6172ED-8105-
4996-9D2A-597B5F827501}

e \\\pipe\{0710880F-3A55-4A2D-AA67-1123384FD859} \\\pipe\{6 C51A4DB-E3DE-
4FEB-86A4-32F7F8E73B99}

* \\pipe\{7FOBCFCO0-B36B-45EC-B377-D88597BE5D78}, \\\pipe\{57D2DES2-CE17-
4A57-BFD7-CD3C6E965C6OA}

Additional known variants: 6364, 3F8B, 5926, ASOA, DDFO, A717, A36F, 8816, E85E, E927

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

23

THE DUQU 2.0 < Q
Technical Details KAPER KY_U

4160 - Password stealer

» Extracts Google Chrome and Firefox login data
e LSA credentials

align 4
Localappdata: ; DATA XREF: sub_l000401A+2Eio
0+ unicode @, =%localappdata%=,0
align 4
Local: ; DATA XREF: sub_1000481A:1oc_l10004087i0
unicode @, <local=>,0
align 8
SGoogleChromeUserDatalefaultLoginData: ; DATA XREF: sub_l0O00401A+BDio
O+ unicode O, <%s\Google\Chrome\User Data\Default\Login Data=,0
E+SelectUsername_valuePassword_valueOrigin_urlFromLegins db 'SELECT username_value,password_value,origin_url FROM logins',0O
1+ ; DATA XREF: sub_l0004158+5970
i _MEDIA_TYPE Unknown
Unknown : ; DATA XREF: sub_l10004511:loc_l00045ASTo
0+ dw 3Ch
unicode O, <Unknown=
s Dl -

Data used to locate Chrome saved logins.

Additional known variants: B656

41E2 - Password stealer. 64-bit module. Extracts:

e |E IntelliForms history

e POP3/HTTP/IMAP passwords

o TightVNC, RealVNC, WinVNC3/4 passwords
e Outlook settings

e SAM, LSASS cache

 Windows Live, .Net Passport passwords

': CHAR Credenumeratew]

tCredenumeratew db ‘CredEnumerateW',@ : DATA XREF: sub_BDE588+2Eion
align 10h
; CHAR Credfree[]
Credfree db 'CredFree',0 ; DATA XREF: sub_BD6588+3Eilo
align 20h
Microsoft_wininet: ; DATA XREF: sub_BD&588+C31o
k unicode @, <Microsoft_WinInet>,0
align 10h
+Abe2869f9b474cd9A358C22904dba7f7 db 'abe2869f-9b47-4cd9-a358- c22904dba7f7',0
v ; DATA XREF: sub_BD6588+D3io
align 20h
WindowsliveMame: ; DATA XREF: sub_ BDE5B8+F&io
3 unicode 0, <WindowslLive:names,0
E align 10h
_netPassport: ; DATA XREF: sub_BD6588+A6T0
k unicode 0, <. Net Passport=,0
align 10h
+ 82bd0e679fead748867205efeSh779b0 db ' 82BDOEGT- SFEA-4748-8672-DSEFESB779B0' , 0
v ; DATA XREF: sub_BD6588+B6i0
align 20h
A db "A',0 ; DATA XREF: sub_BD68CO+2610 sub_BD69CO+
r align 1oh
dword_BE1430 dd 2000001Ch ; DATA XREF: sub_BDB4CC+1217r sub_BD84cC(
db o
L ~

References to information collected by the module.
Additional known variants: 992E, AF68, D49F

482F — Collects system information.

 Enumerates disk drives
o Gets list of running processes
» Extensive process information including uptime

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

24

THE DUQU 2.0 KASPERIKY2

Technical Details

e Memory information
* SID information

Additional known variants: F3F4

559B - Active Directory survey.

e Connects to the Active Directory Global Catalog (“GC:") using ADSI
 Enumerates all objects in AD
» Presents every entry in a human-readable format

/6 = ADsOpenObject(L"GC:", v5, v3, 1lu, &stru_l00GG30C8, &ppObject);
¥a3 = v6;
if (v6 >= 0)
{
7 = ADsBuildEnumerator((IADsContainer *)ppObject, &ppEnumVariant):
*33 = v7;
if (v7 =0)
1
VariantInit(&pvarg):
else
i
a3 = (¥(int (_ stdcall #*#%*)(LONG, IID *, int *))pvarg.lVal)(pvar:
VariantClear(&pvarg);
if (*a3 < 0)
*vd = -17;
}
;.
else
{
*w4 = -15
;
}
else
{
*v4 = -14
}
if (ppEnumVariant)
ADsFreeEnumerator(ppEnumVariant);

Active Directory enumeration routine.

580C - Collects system and network information.

» Retrieves the domain controller name
 Enumerates all users and groups in the domain

e Collects Task Scheduler logs

o Collects disk information, removable device history
» Retrieves firewall policies

e Enumerates all named system objects
 Enumerates all system services

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

25

THE DUQU 2.0 KASPERIKY2

Technical Details

5B78 - Collects system information and utilities. One of the two exported functions has
a name “GetReport”.

 Enumerate running processes, extract tokens and SIDs, collect timing information
* Logon users using explicit credentials

* Impersonate users of running processes

e Build new 32-bit and 64-bit shellcode stubs using a hardcoded template

Both 32-bit and 64-bit versions exist.
Additional known variants: ESC7, EEGE.
5C66 — Encrypted file 1/O, utilities

e File I/O operations: open/seek/read/write
» Manages compressed and encrypted temporary files

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

26

THE DUQU 2.0 KASPERYKYS

Technical Details

622B - Generate XML report about system using unique schema

e Computer name

e Windows directory

 Enumerates all logical drives

o Lists all files

o OS serial number

e Domain name

» Network adapter configuration: IP addresses, MAC, MTU, adapter list

S info_xml: ; DATA XREF: sub_1000BSDE+6Dio
- unicode O, <%s_info.xml=>,0
GatherMetadataError: ; DATA XREF: sub_l000BSDE:loc_l000B71Cio
- unicode O, <Gather metadata error=,0
ArchiveErrorWriteFailed: ; DATA XREF: sub_1000BSDE+123i0
+ unicode O, <Archive error: write failed=,0
ArchiveErrorEndFileFailed: ; DATA XREF: sub_1000BSDE:loc_1000B746i0
. unicode O, <Archive error: end file failed=>,0

align 4
unk_l000E1DC db OFFh ; DATA XREF: sub_l000B7F1+Sio

db OFEh ;

?xmlVersionl 07:
. dw 3Ch
unicode O, <?xml version="1.0" ?=>
dw 3Eh, 0Ah, ©
db 0
db ¢]
SurveyresultXmlnsXsiHttpWww w3 org2001XmlschemaInstan: ; DATA XREF: sub 1000B7F1+1AfTo
. dw 3Ch
unicode @, <SurveyResult xmlns:xsi="http://www.w3.0rg/2001/XMLSchema->
unicode O, <instance" xmlns:xsd="http://www.w3.0rg/2001/XM.Schema">
dw 3Eh., 0Ah, ©
align 4
UniqueidCompnameSBootosserial 08xUniqueidS: ; DATA XREF: sub 1000B7F1+35io0
- unicode O, = =
dw 3Ch
unicode 0, <UniqueID compname="%s" bootOsSerial="%08X" uniqueld="%s" >
unicode O, =/=
k dw 3Eh, 0Ah, ©
Surveyresult: ; DATA XREF: sub_1000BSDE+EBio
- dw 3Ch
unicode 0, </SurveyResult=
dw 3Eh, 0Ah, O
align 4
True_0: ; DATA XREF: sub_1000B843+2Aio0 sub_l000B843+AFic
unicode O, <true>,0
align 4
; _BoolValue False
False: ; DATA XREF: sub_1000B843+22io sub_1000B843+B4io
unicode 0, =false=,0
align 8
ParametersDirsonlySMaxdepthU: ; DATA XREF: sub_1000B843+33io0
. unicode 0, < >
dw 3Ch
unicode O, <Parameters DirsOnly="%s" MaxDepth="%u"=
dw 3Eh, OAh, O
align 10h
Timefilters: ; DATA XREF: sub_l000B843+50i0
- unicode 0, < >
dw 3Ch
unicode O, <TimeFilter %s />
dw 3Eh. GAh. O

XML tags used to generate the system report.

6302 - Utilities. Has internal name "d3dx9_27.dll". Executes timer-based events.

Additional known variants: FA84

669D — Utilities. Given a list of file names and directories, checks if they exist.

Additional known variants: 880B

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

27

THE DUQU 2.0
Technical Details

KASPER§KY2

6914 - Sniffer-based network attacks. Uses a legitimate WinPcap driver “npf.sys”. Detects

NBNS (NetBIOS protocol) requests of interest and sends its own responses:

e Responds to WPAD requests ("FHFAEBE" in NBNS packets)
e Sends responses to HTTP GET requests

The network filter is based on the BPF library. The payloads for the HTTP and WPAD

responses are provided externally.

Str2 db 'GET '.0 DATA XREF: sub_1000S65E+2010
align 4

DetectedGetRequestFromSToS: DATA ¥REF: sub_1000565E+F710

. unicode 0, <Detected GET request from %s to %s>,0
align 10h

NoMoreAttacksLeftNotResponding_ : DATA ¥REF: sub_1000565E+11Cio

. unicode @, <No more attacks left, not responding..=>,0
align 10h

SentResponsePacketToSForSAttacksLeftU: DATA ¥REF: sub_1000565E+21Ai0

. unicode 0, =Sent response packet to %s for %s (attacks left = %u)=,0
align 10h

; char SubStr[]

-SubStr db 'User-Agent: ',0 DATA XREF: sub_10005890+1io
align 1loh

-Httpl_12000kContentTypeTextHtml ConnectionCloseCon db 'HTTP/1.1 200 OK', 0Dh, OAh

DATA XREF: s |_||'.-_l D00SBE2+F&i0
db 'Content-Type: text/html',ODh, OAh
db 'Connection: Close', ODh,0Ah
db ‘'Content-Length: %d',ODh, 0&h
db 'Accept-Ranges: none',0Dh,0AR

db 'Cache-Contrel: no-cache, no-store, must-revalidate', ODh,GAh

db ‘Pragma: no-cache', ODh, GAh
db 'Expires: Wed, 21 Jan 1995 11:56:08 GMT',GDh, OAh
db ODh, 0Ah,Q

align 4
NotWpadRequest : ; DATA XREF: sub_10005B52:1oc_1000SCEA
- unicode 0, <MNot WPAD request=,0

align 10h
DetectedwWpadRequestFromSToS: DATA XREF: sub_l0005B52+COio
- unicode 0, <Detected WPAD request from %s to .
SentResponsePacket: DATA X¥REF: sub_l10005B52+150i0

upicode 0, <Sent response packet=,0

Fake HTTP response and related status messages.
6FAC - File API

o QGetfile size, attributes
o Securely delete a file
« Open/close/read/write file contents

Additional known variants: A7EE

7BDA - Collects system information

o Current state of AV and firewall protection using wscapi.dll API
o Detect if "sqlservr.exe” is running

e Computer name

Workgroup info

 Domain controller name

» Network adapter configuration

e Time and time zone information

o CPU frequency

Additional known variants: EF2E

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

28

THE DUQU 2.0
Technical Details

KASPER§KY2

7C23 — Extracts metadata from documents and collects system information

e Computer name
e System volume serial
o« Complete file APl as in 6FAC

Searches for documents and archives and implements routines to extract all valuable

information from them:

 E-mail messages: eml, msg

* Image files: jpg, jpe, jpeq, tif, tiff, bmp, png
e Multimedia files: wmy, avi, mpeg, mpg, m4a, mp4, mky, wav, aac, ac3, dy, flac,
flv, h264, mov, 3gp, 392, mj2, mp3, mpegts, 0gg, asf. These are re-encoded with

libffmpeg.
e Contents from PDF documents

» Microsoft Office: doc, docx, xlsx, pptx. Dedicated routines are called accordingly:
"OfficeRipDoc’, “OfficeRipDocx”, “OfficeRipXlsx”, “OfficeRipPptx". PPT slides are
extracted and converted to a HTML digest of the presentation.

» Archives: gz, gzip, gzX3, zip, rar

Creates temporary files with extension

Additional known variants: EB18, C091

*_docx:

unicode 0, <.docx>,0
_pptx:

unicode 0, <.pptx=>,0
_xlsx:

unicode 0, =<.xlsx=,0
_zip:

unicode 0, <.zip>,0

align 4
_rar:

unicode @, =.rar=,0

align 4
; const WCHAR Gdiplus_dl1_0
Gdiplus_dll_0: g
b unicode 0, <GdiPlus.dll>,0
; const WCHAR Imagelpeg
Imagelpeg:
3 unicode 0, <image/jpeg=,0

align 4
asc_lO013978:

"fg4".

DATA XREF: 1
; DATA XREF: 1
DATA XREF:
DATA XREF: 1052CTo
: DATA XREF: 1001053810
DATA XREF: sub_l000AAA
DATA XREF: sub 1000ASC
: DATA XREF: sub 1000AD7

unicode 0, <%s\%s=,0
GatheringRars: - ! sub 1000AD7
3 unicode O, =Gathering Rar: >
Rar: : DA sub_1000AL
unicode 0, <Rar=,0
Rar_error_D: ; DATA XREF: sub_l000AD7
v unicode O, <RAR_ERROR %d=,0
align 4
; const WCHAR Ooxml
Ooxml : DATA XREF: sub_ 1000B2S
unicode 0, <00XML=,0
; const WCHAR String
String: ; DATA XR
; sub_1000 8
; sub_l0o0OB31C
unicode 0, <\>,0
; const WCHAR Image
Image: ; DATA XREF: sub_ 1000B8A
unicode 0, <Image=>,0
; const WCHAR Ffmpeg
Ffmpeqg: : DATA XREF ub_1000B98
3 unicode 0, =ffmpeg=>,0
align 4
RunningLibffmpegs: ; DATA XREF: sub 1000B9BC
b unicode 0, <Running libffmpeg: >

Part of the list of file extensions of interest and corresponding status messages.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

29

THE DUQU 2.0 KASPERYKYS

Technical Details

8172 - Sniffer-based network attacks. Performs NBNS (NetBIOS protocol) name
resolution spoofing for:

« WPAD requests
* Names starting with "SHR"
e Names starting with “3142" (log only)

e e

DetectedShrRequestFromSToS: ; DATA XREF: SHRRequest+9lio

+ unicode 0, <Detected SHR request from %s to %s=,0
align 4

SentShrResponsePacket ; DATA XREF: SHRRequest+122io0

+ unicode 0, <Sent SHR response packet=,0
align 10h

GotUnexpectedErrorwhileRunning: ; DATA ¥REF: SHRRequest:loc_lO0006FASio

* unicode 0O, <Got unexpected error while running=,0
align 4

DetectedlLog3142C: : DATA XREF: Log3l42+40io0

+ unicode O, <Detected Log: 3142C=>,0
align 4

DetectedLogS: ; DATA XREF: sub_10006D77+DSio

+ unicode 0, <Detected Log: %5=,0
align 4

; const WCHAR String

String: DATA XREF: sub_100072CB+Eio sub_1000

10021 3FCi

+ unicode O, <services,exe>,0
align 4

; char str2[]

Str2 db 'GET '.0 A ¥REF: DetectReplyGET+71lio
align 10h

DetectedGetRequestFromSToS: ; DATA XREF: DetectReplyGET+E3io

+ unicode 0, <=Detected GET request from %s to %s=,0
align 4

NoMoreAttacksLeftNotResponding_ : : DATA XREF: DetectReplyGET+108io

+ unicode O, <MNo more attacks left, not responding..=,0
align 4

SentResponsePacketToSForUriSAttackslLeftU: ;| DATA XREF: DetectReplyGET+21300
unicode O, =Sent response packet to =
dw 27h
unicode 0, <%s>
dw 27h
unicode 0, = for URI =
dw 27h
unicode 0, <%S=
dw 27h
unicode 0, < (attacks left = %u)=,0

L R R R

Status messages related to the attack.
Additional feature: the module can build new shellcode blobs from hardcoded templates.
81B7 — Driver management

e Write driver to disk
e Start/stop driver
o Safely remove the driver’s file from disk

Additional known variants: C1B9

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

30

THE DUQU 2.0 KASPERIKY2

Technical Details

8446 - Oracle DB and ADOdb client.

e Uses “oci.dll” API to access Oracle databases
e Extracts all available information from the database
» Also connects to ADOdb providers

Gj 43koDd1: ; DATA XREF: sub_10004D26+1Bio
: unicode O, =GJ43K0-%dDI=,0
Table_04d_bin: ; DATA XREF: sub_l0005060+4Aio0
: unicode 0, <table_%04d.bin=,0
align 4
Table_bin: ; DATA XREF: sub_ 1000519E+8Eio
- unicode 0, <table.bin=,0
Db: ; DATA XREF: sub_10007AF0+BCio
unicode 0, <DB=>,0
align 10h
byte_100100FO db 8 dup(0O) ; DATA XR ub_10006257+F1io
; sub_10007AFC
AlterSessionSetCursor_bind_capture destinationOff: ; DA XREF: sub_100059E7+5910
. unicode O, <alter session set cursor_bind_capture_destination = off=>,0
AlterSessionSetCursor_sharingForce: ; DATA XREF: sub_l0006257+12i0
. unicode O, <alter session set cursor_sharing = force=,0
align 10h

AlterSessionSetNls_date formatDdMmYyyyHh24MiSs: DATA XREF: sub_10006257+3410
. unicode O, <alter session set nls_date format=>

dw 27h

unicode 0, <dd/mm/yyyy hh24:mi:ss>

dw 27h, ©

align 8
BeginDbms_application_info_set_moduleSSEnd: ; DATA XREF: sub_10006257+12Af10
: unicode O, <BEGIN dbms_application_info.set_module(=>

dw 27h

unicode 0, <%s=

dw 27h

unicode 0, <, =

dw 27h

unicode 0, <%s>

dw 27h

unicode O, <): END:;=,0

align 10h
BeginDbms_application_info_set_client_infoSEnd: ; DATA XREF: sub_10006257+15Eio
: unicode O, <BEGIN dbms_application_info.set_client_infol=

dw 27h

unicode 0, <%s>

dw 27h
. unicode O, <); END;=>,0
AlterSessionSetCurrent_schemaS: ; DATA XREF: sub_l0006257+19Eio

S g LA TR ST AR ST S INSER T e R .- -~

SQL queries and related data.

8912 - Encrypted file manipulation and collects system information

e Shared file mapping communication
 Write encrypted data to files
 Enumerate windows

 Enumerate network shares and local disks
e Retrieve USB device history

o Collect network routing table

Known mutex and mapping names:

e Global{DDOFF599-FA1B-4DED-AC70-C0451F4B98F0} Global\{B12F87CA-1EBA-
4365-BO90C-E2A1D8911CA9},

e Global\{BO3A79AD-BA3A-4BF1-9A59-A9A1C57A3034} Global\{6D2104E6-7310-
4A65-9EDD-F06E91747790},

e Global{DDOFF599-FA1B-4DED-AC70-C0451F4B98F0} Global\{B12F87CA-1EBA-
4365-B90C-E2A1D8911CAS}

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

31

THE DUQU 2.0 KASPERIKY2

Technical Details

Additional known variants: D19F, D2EE

9224 — Run console applications. Creates processes using desktop “Default’, attaches to
its console and redirects its I/O to named pipes.

92DB - Modified cmd.exe shell.

; wchar_t Else

Else: ; DATA XREF: sub_410D11+10870
unicode 0, <ELSE>,0
align 4
i wchar_t Date
Date: ; DATA XREF: sub_406D5C:loc_406E0STo 00420ACOj0
unicode O, <DATE=,0
align 4

unicode @, < :=»

asc_42050C;
unicode 0, <*=,0
align 4

; const WCHAR Comspec

Comspec:

3 unicode 0, <COMSPEC=,0

; wchar_t Rem

Rem: ; DATA XREF: sub_410E7C+1Eio sub_4111A7+6Bio 00420DAS)
unicode O, <REM=.0

Chdir_0: : DATA XREF: 0D0420A30j0

unicode 0, <CHDIR>,0
; wehar_t Cd_0
Cd_0: ; DATA XREF: sub_406D5C+44ioc 00420A18)0
unicode @, <CD=,0
align 10h
Cmd_exe:

unicode 0, <\CMD.EXE=,0
align 4
vol: ; DATA XREF: 00420C10j0
unicode 0, <VOL=>,0
; const WCHAR Path

Path: D
su 3+531
unicode 0, <PATH>,0
align 4
; wchar_t Time
Time: : DATA XREF: sub_406DSC:loc_406E347o0 00420AD8j0
unicode 0, <TIME=.0
align 4
Set: : DATA XREF: 00420AS0)o0

unicede 0, <SET=,0

Several CMD commands processed by the shell.

9FOD (64-bit), D1A3(32-bit) — legitimate signed driver NPF.SYS (WinPcap) distributed
inside the VFS along with the plugins. It is used for sniffer-based network attacks.

A4B0 — Network survey

e Uses DHCP Server Management API (DHCPSAPI.DLL) to enumerate all DHCP server's
clients

e Queries all known DHCP sub-networks

e Searches for machines that have ports UDP 1434 or 137 open
Enumerates all network servers

e Enumerates network shares

o Tries to connect to remote registries to enumerate all users in HKEY_USERS, converts
them to SIDs

B6C1 - WNet API. Provides wrappers for the WnetAddConnection2 and WNetOpenEnum
functions.

Additional known variants: BC4A

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

32 THEDUQU20 KASPERYKY3

Technical Details

C25B - Sniffer based network attacks. Implements a fake SMB server to trick other
machines to authenticate with NTLM.

 Implements basic SMB vl commands

dword_10013340 dd 72h ; DATA XREF: sub_l000
off_10013344 dd offset smb_cmd_negotiate : DATA XREF: sub_

dd 73h

dd offset SMB_COM SESSION SETUP_ANDX

dd 2Bh

dd offset SMB_COM_ECHO

dd 75h

dd offset SMB_COM TREE CONNECT ANDX

dd 0AZh

dd offset SMB_COM_NT_CREATE ANDX

dd OAGh

dd offset SMB_COM_NT_TRANSACT

dd 32h

dd offset SMB_COM_TRANSACTION2

dd 2Eh

dd offset SMB_COM_READ_ ANDX

dd oBh

dd offset SMB_COM WRITE

dd 2Fh

dd offset SMB_COM WRITE ANDX

dd 4

dd offset SMB_COM CLOSE

dd 71h

dd offset SMB_COM_TREE DISCONNECT

dd 74h

dd offset SMB_COM_LOGOFF_ANDX

dd ©

SMB commands handled by the module

» Pretends to have IPCS and A: shares
» Accepts user authentication requests
e Also handles HTTP "GET /" requests

; char Device[]

Device db '\Device\',O ; DATA XREF: SelectAdapter+1S3io
align 10h
; char NtLmG_12[1]
NtLmG_12 db 'NT LM 0.12',0 » DATA XREF: smb_cmd_negotiate+9Eio
align 4
#challenge db ech, sBh, 4, 8sh, GDh, 0C2h, GDBh, 0Oeh, GE4h, 65h, 51h, 0Esh, OCDh, OFEh
; DATA XREF: smb_cmd_negotiate+18Fio
db 4 dup(0)
SMBEL db ¢} ; DATA XREF: SMB_COM _SESSION SETUP_ANDX+7Bio
Windows:
1+ unicode 0, <Windows=
db 20h, 5, 0, 2Eh, 1, 3 dup(0Q)
Windows_0:
I+ unicode 0, =Windows>
db 20h, 2, 4 dup(0O)
LanManager:
I+ unicede O, = LAN Manager=>
db e}
; wchar_t Ipc
Ipc: ; DATA XREF: SMB_COM TREE CONNECT ANDX+DSio
unicode 0, <IPC$=,0
align 10h
Ipc_© db 'IPC:',0 : DATA XREF: SMB COM TREE CONMECT ANDX+FOio
align 4
A db 'A:',0 ; DATA XREF: SMB_COM TREE CONNECT ANDX+1lAio
Fat:

unicode 0, <FAT=,0
o 0o

NTLM challenge and SMB server data

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

33

THE DUQU 2.0 KASPERIKY2

Technical Details

ED92 - File system survey

e Enumerates all local drives and connected network shares
e Lists files

EF97 — Filesystem utilities

e Enumerate files

e Create and remove directories

« Copy/move/delete files and directories
e Extract version information from files
e Calculate file hashes

Additional known variants: F71E

PERSISTENCE MECHANISM

The Duqu 2.0 malware platform was designed in a way that survives almost exclusively
in memory of the infected systems, without need for persistence. To achieve this, the
attackers infect servers with high uptime and then re-infect any machines in the domain
that get disinfected by reboots. Surviving exclusively in memory while running kernel
level code through exploits is a testimony to the technical prowess of the group. In
essence, the attackers were confident enough they can survive within an entire network
of compromised computers without relying on any persistence mechanism at all.

The reason why there is no persistence with Duqu 2.0 is probably because the attackers
wanted to stay under the radar as much as possible. Most modern anti-APT technologies
can pinpoint anomalies on the disk, such as rare drivers, unsigned programs or
maliciously-acting programs. Additionally, a system where the malware survives reboot
can be imaged and then analyzed thoroughly at a later time. With Duqu 2.0, forensic
analysis of infected systems is extremely difficult — one needs to grab memory snapshots
of infected machines and then identify the infection in memory.

However, this mechanism has one weakness; in case of a massive power failure, all
computers will reboot and the malware will be eradicated. To get around this problem,
the attackers have another solution — they deploy drivers to a small number of
computers, with direct Internet connectivity. These drivers can tunnel traffic from the
outside into the network, allowing the attackers to access remote desktop sessions or

to connect to servers inside the domain by using previously acquired credentials. Using
these credentials, they can re-deploy the entire platform following a massive power loss.

COMMAND AND CONTROL MECHANISMS

Duqu 2.0 uses a sophisticated and highly flexible command-and-control mechanism that
builds on top of the 2011 variant, with new features that appear to have been inspired

by other top class malware such as Regin. This includes the usage of network pipes and
mailslots, raw filtering of network traffic and masking C&C traffic inside image files.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

34

THE DUQU 2.0 KASPERYKYS

Technical Details

Inside a Windows LAN, newly infected clients may not have a C&C hardcoded in their
installation MSI packages. Without a C&C, they are in “dormant” state and can be
activated by the attackers over SMB network pipes with a special TCP/IP packet that
contains the magic string “tttttttttttttttt”. If a C&C is included in the configuration part of
the MSI file, this can be either a local IP address, which serves as a bouncing point or an
external IP address. As a general strategy for infection, the attackers identify servers with
high uptime and set them as intermediary C&C points. Hence, an infected machine can
jump between several internal servers in the LAN before reaching out to the Internet.

To connect the the C&C servers, both 2011 and 2014/2015 versions of Duqu can hide the
traffic as encrypted data appended to a harmless image file. The 2011 version used a
JPEG file for this; the new version can use either a GIF file or a JPEG file. Here's how
these image files look like:

Dugqu 2011 — JPEG Duqu 2015 - GIF Dugu 2015 - JPEG
D .
11x11 pixel
FERNEE 33x33 pixels
54x54 pixels

Another modification to the 2014/2015 variants is the addition of multiple user agent
strings for the HTTP communication. The 2011 used the following user agent string:

e Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.9) Gecko/20100824
Firefox/3.6.9 (NET CLR 3.5.30729)

The new variants will randomly select an user agent string from a table of 53 different
possible ones.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

35

THE DUQU 2.0 - 0
Technical Details KASPERS KYE

Another unusual C&C mechanism relies on driver files that are used to tunnel the C&C
communications and attacker’'s RDP/SMB activity into the network. The attackers deploy
such translation drivers on servers with direct Internet connectivity. Through a knocking
mechanism, the attackers can activate the translation mechanism for their IPs and tunnel
their traffic directly into the LAN. Outside the LAN, the traffic can be masked over port
443: inside the LAN, it can be either direct SMB/RDP or it can be further translated over
fake TCP/IP packets to IP 8.8.8.8.

During our investigation, we observed several such drivers. A description can be found
below.

The “portserv.sys” driver analysis
MDS5: 2751e4b50a08eb11a84d03f8eb580a4e

IP Knocking by
- Magic string

Internet traffic
(eg. Port 443)

Packet forwarding SYS driver

Internet GW/ISA proxy
SM\Btrafﬁ/ E RDP traffic

Implant runs only in memory Implant runs only in memory

Domain controller Terminal server

m"dM Implant runs in memory Windows pipes

==l

015 Kaspersky Lab GREAT KASPER)KYS

Size: 14336

Compiled: Sat Feb 11 21:55:30 2006 (fake timestamp)
Internal name: termport.sys

Type: Win32 device driver (a 64 bit version is known as well)

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

36

THE DUQU 2.0 KASPERYKYS

Technical Details

This is a malicious NDIS filter driver designed to perform manipulation of TCP/IP packets
to allow the attacker to access internal servers in the victim’s infrastructure.

Upon startup, the filter driver hooks into the NDIS stack and starts processing TCP/IP
packets.

To leverage the driver, the attacker first sends a special TCP/IP packet with the string
‘romanian.antihacker” to any of the hardcoded IPs belonging to infected server. In
general, such servers are computers with direct Internet connectivity, such as a
webserver or a proxy. The driver sees the packet, recognizes the magic string “‘romanian.
antihacker” and saves the attacker’s IP for later use.

Magic string used for knocking inside the driver.

When a packet comes from the attacker’s IP (saved before), the following logic applies:

o Packet to server 1's IP on port 443, is redirected on port 445 (Samba/Windows file
system)

e Packet from server 1's IP from port 445, is redirected to attacker's IP port 443

o Packet to server 2's IP on port 443 is redirected on port 3389 (Remote Desktop)

e Packet from server 2's IP from port 3389 is redirected to attacker’s IP port 443

This effectively allows the attackers to tunnel SMB (remote file system access) and
Remote Desktop into these two servers while making it look like SSL traffic (port 443).

These drivers allow the Duqu attackers to easily access servers inside the LAN from
remote, including tunneling RDP sessions over Port 443 (normally SSL). It also gives them
a persistence mechanism that allows them to return even if all the infected machines
with the malware in memory are rebooted. The attackers can simply use existing
credentials to log back into any of the servers that the driver is serving and can re-
initialize the backdoors from there.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

37 THEDUQU20 KASPERYKY3

Technical Details

SIMILARITIES BETWEEN
DUQU AND DUQU 2.0

The 2014/2015 Duqu 2.0 is a greatly enhanced version of the 2011 Duqu malware
discovered by “CrySyS Lab. It includes many new ideas from modern malware, such as
Regin, but also lateral movement strategies and harvesting capabilities which surpasses
commonly seen malware from other APT attacks.

Side by side:
2011 Duqu 2014/2015 Duqu 2.0
Number of victims: <50 (estimated) <100 (estimated)
Persistence mechanism: Yes No
Loader: SYS driver MSI file
Zero-days used: Yes Yes
Main storage: PNF (custom) files MSI files
C&C mechanism: HTTP/HTTPS, network pipes HTTP/HTTPS, network pipes
Known plugins: 6 >100

There are many similarities in the code that leads us to conclusion that Duqu 2.0 was
built on top of the original source code of Duqu. Those interested can read below for a
technical description of these similarities.

7 https://www.crysys hu/publications/files/bencsathPBF11duqu.pdf

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
https://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf

38

THE DUQU 2.0 KASPERIKY2

Technical Details

One of the “trademark” features unique to the original Duqu was the set of functions that
provide logging facilities. Unlike many other APTs, Duqu logs almost every important step
of its activity but does it in a special way: there are no readable strings written to the log.
Instead, a series of unique numbers identify every state, error, or message in the log.
Comparing the functions that generate every log entry in Duqu and Duqu 2.0, we can
conclude that they are almost identical:

0000: 10015F25 arg_C = dword ptr 14h 1002CDFS arg_O = dword ptr 8

0000 10015F25 1pString2 = dword ptr 18h 1002CDFS arg_4 = dword ptr OCh

0000: 10015F25 arg_14 = byte ptr 1ch 1002CDFS 1pString = dword ptr 10h

0000 10015F25 1002CDFS arg C = byte ptr 14h

0000 : 10015F25 push ebp 1002CDFS push ebp

0000 : 10015F25 mov ebp, esp 1002C0Fs mov ebp, esp

0000 : 10015F28 push edi 1002CDF8 push ecx

0600 : 10015F29 call ds:__imp__GetlLastError@o ror 1002C0DFS push ecx

0000 : 10015F2F push [ebp+lpStringz] : lpString 1002CDFA push edi

0000 : 10015F32 mov edi, eax 1002CDFB mov [ebp+var_8], edx

0000 10015F34 call ds:lstrlenw 1002CDFE mov. [ebp+var_4]1, ecx

0000 10015F3A <np eax, 400h 1602CE01 call cGetlastError

0000 10015F3F ib short loc_1001SF4C 1002cE07 push [ebp+lpString] : lpString

0000 : 10015F41 push edi i dwErrCode 1002CE0A mov edi, eax

0000 : 10015F42 call ds:__imp__SetlLastError@s t ror{x 1002CE0C call clstrlienw

[0000: 10015F48 xor eax, eax 1002CE12 cmp eax, 400h

0000 : 10015F4A imp short loc_10015FAA 1002CE17 jb shart loc_l002CE24

PERETEI ST MRS I - v i e e oo v o S ok 4 5 s S A S8 1.0 o 68 1 S oo 1 o 2 0 W 1002CE1S push edi ; dwErrCode

0000 : 10015FAC 1002CE1A call cSetlLastError

0000: 10015FAC 1oc_10015F4C: ; CODE XREF: classl7 ctor_from_string_and_datl|1002cE20 xor eax, eax

0000 : 10015FAC push esi 1002cE22 imp short loc_l002CE82

0000 : 1001 5F4D call class17_ctor T e (T RUU R PPN - N .3 e e N N PRy SO Sy
(0000 : 10015F52 mov esl, eax 1002CE24 loc_l1002CE24: ; CODE XREF: Log+227j
0000 : 10015F54 test esi, esi 1002CE24 - push esi

0000 : 10015F56 inz short loc_l0015F63 1002CE25 call sub_1002C0DB

0000 : 10015F58 push edi i dwErrCode 1002CE2A mov esi, eax

0000 10015F59 call ds:_ imp_ SetlLastError@d Setl rror{x 1002CE2C test esi, esi

0000 : 10015F5F xor eax, eax 1002CE2E inz shart loc_l002CE3B

0000 : 10015F61 imp short loc_10015FA9 1002CE30 push edi i dwErrCode

(0000 : 10015FE3 ENTE AR mE 1002CES1 call cSetlLastError

0000 : 10015F63 1002CE37 xor eax, eax

0000 : 10015F63 Loc_lO01SFE3: ; CODE XREF: classl7 ctor_from_string and_dayl|i002cE39 imp short loc_1002CESL

0000 : 10015F53 mov eax, [ebp+arg_o] LOO2CESB ; === === === === == mm e eeeoeeooooeaoooo-
0000 ; 10015F55 mov dword ptr ds:{_class_17.intl - _class_17.intl}lesi], eax 1002CE38 loc_1002CE3B: : CODE XREF: Log+391j
0000 : 10015F&8 mov eax, [ebp+arg_4] 1002CE38 mov eax, [ebp+var_4]

0000 10015F68 mov ds:(_class_17.int2 - _class_17.intl)[esi], eax : log entry 1002cE3E e [esil, eax

0000 : 10015FEE mov eax, [ebp+arg_s] 1002CE40 mov eax, [ebp+var_B8]

0000 10015F71 mov ds:(_class_17.int3 - _class_17.intl)[esi], eax ; log entry 1002cE43 mov [esi+4], eax

(0000 : 10015F74 mov eax, [ebp+arg_cl 1002CE48 mov eax, [ebp+arg_0]

0000 10015F77 mov ds:(_class_17.int4 - _class_17.intl)[esi], eax ; log entry 1oo2cEa9 mov [esi+B], eax

0000 : 10015F7A mav al, [ehp-*arng] 1002CE4C mov eax, [ebp+arg_4]

0000 : 10015F7D mov byte ptr ds:(_class_17.byte - _class_17.intl][esi], 1002CE4F mov [esi+0OCh], eax

0000 10015F80 lea eax, (_class_17.FileTime - class_17.intl)lesi] ; 1o 1002CES2 mov al, [ebp+arg Cl

0000 : 10015F86 push eax ; lpSystemTimeAsFileTime 1002CESS mov [esi+14h], al

0000 : 10015F87 call ds:GetSystenTimeAsFileTime 1002CES8 lea eax, [esi+81sh]

(0000 : 10015F8D cmp . @ 1002CESE push eax : lpSystemTimeAsFileTime
0000 : 10015F91 jz short IU(10015FAQ 1002CESF call cGetSystemTimeAsFileTime

0000 10015F93 push [ebp+lpString2] : 1pStringz 1002CESS cmp [ebp+lpStringl. @

0000 : 10015F96 lea eax, (_class_17.string - _class_17.intl)[esi] entry 1002cEE9 jz short loc_l002CE78

0000 10015F99 push eax 5 1pStringl 1002CEER push [ebp+lpStringl : lpString2

0000 : 10015F9A call ds:lstrcpyW 1002CESE lea eax, [esi+lgh]

0000 ; 10015FAQ 1002CE71 push eax : 1pStringl

0000: 10015FAG Loc_lGG15FAG: ; CODE XPEF: classl7_ctor_frem_string_and_dal |1 002cE72 call clstrepyw

[0000: 10015FA0 push edi i dwErrCode 1002CE78 loc_1002CE78: ; CODE XREF: Log+74fj
0000 : 10015FAL call ds:__imp_ SetlastError@d = Errorix 1002CE78 push edi ; dwErrCode

0000 : 10015FA7 mov eax, esi 1002CE79 call cSetlLastError

0000 10015FAS 1002CE7F mov eax, esl

0000: 10015FAS loc_10015FA9: ; CODE XREF: classl7_ctor_from_string_and_dal]|1o02cEBL loc_l002CEBL: ; CODE XREF: LD]+44I]
0000 ; 10015FAS pop esi 1002CEBL pop -
(0000 : 1001SFAA 1002CEB2 1oc_1002CE82:

0000: 10015FAA loc_10015FAA: H|1002cEB2 - pop

0000 : 1001SFAA pop edi 1002CEB3 mov

0000 : 10015FAB pop ebp 1002CEBS pop

(0000 : 10015FAC etn 1002CEBS retn

|0000: 10015FAC classl7_ctor_from_string_and_date end. 1002CE8E Log endp

The first generation of Duqu was also written in a very rare and unique manner. It was
compiled with Visual Studio and while parts of it were definitely written in C++, the
majority of its classes were not natively generated by the C++ compiler. After analyzing
all the possible variants, we conclude that these classes were written in OO-C, the
objective variant of the C language, and then somehow converted into a compilable C/
C++ source. All these classes had a very specific feature: the virtual function table of
every instance was filled “by hand” in its constructor. Interestingly, this is no longer the
case for Duqu 2.0. The authors upgraded their compiler from Visual Studio 2008 (used in
2011) to Visual Studio 2013 and now use classes that look much more like native C++
ones:

0000 10015EF6 L002CODA sub 10020032 =ndp

logoe: 100156F6 classl7_ctor proc near ; CODE XREF: classl 1002CDDE 0

logoe: 10015EFs ; classl7 _ctor_from 1002CDDB log_iten_cter proc near

l0000: 10015EF6 push 2082 ; dwBytes 1002CDDB nov zex, 2084

l0000: 10015EF8 call new 1002CDEO call

l0008: 10015F00 pop ecx 1002CDES test eam

l000a: 10015FaL test eax, eax 1002CDE7 jnz “hart Tec_1002C06~

l0000: 10015F03 inz short loc_10015F06 1002CDES retn

(0000: 10015F05 retn [LOOZEDER ; - === oo e wmm o e o e
0000; LOOLSFO6 i -« === r-x = r o r r o r o oo o e 1002CDEA_Loc 1002CDEA: . CODE JREF: log dten ctor:cCij

(0000: 10015F06 1002cDEH mov dward ptr leax+620n], offset log item vebl

0000: 10015F06 1oc_10015F06: o CODE YREE.] CiacsOis |1002coF4 ki

l0000: 10015F06 wov ds:(_class 17.copy out buffer - class 17.intl)[eax], offset classl7_copy_out_buffe

loooo: 10015F10 mov ds:(class_17.ctor_fron_buffer - _class_17.int1}[eax], offset classl7_ctor_from_buf] T R T
oooo: 10015F1A mov ds:{_class_17.dtor - _class_17.int1])[eax], offset generic_dtor : 1 Tt log item vtbl ~dd offset copy out_buffer A XREF item ct c_1O02CDEAT
eyl = = = = dd affset ctor_from _buffer

l0000: 10015F24 classl7_ctor endp dd offset j Free

loooe: 10015F24

On the left: the "hand-made” or “compiler-assisted” classed of OO-C in Duqu.
On the right: the same class in Duqu 2.0 has a native Vtable similar to native C++ one,
however the offset of the pointer is not zero.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

39

THE DUQU 2.0 KASPERIKY2

Technical Details

The more concrete evidence of similarity can be found if we look for functions that
actually use the logging facilities. The authors kept using the same unique numbers for
identification of internal states, errors and function results. Networking functions are
good candidates for comparison:

0000: 1000FDOS var_4_some_ob]? = dword ptr -4 10018054 var_C dward ptr -och
0000: 1000FDOS arg_listen_address= dword ptr & 10018054 1psTring2 dward ptr -8
0000: 1000FDOS arg_accept_port = word ptr 0OCh 1001B054 var_2 word ptr -2
0000: 1000FDOS 10018054 arg 0 = dword ptr &
0000: 1000FDOS push ebp 10018054 push ebp
0000: 1000FDO& mov ebp, esp 10018055 mov ebp, esp
0000: 1000FDO8 push ecx 1001B0S7 sub esp, 16h
0000: 1000FD09 push ebx 1001B05A push ebx
0000: 1000FDOA push esi 10018058 push esi
0000: 1000FDOB push edi 1001B05C push edi
0000: 1000FDOC mov edi, eax 1001B05D mov [ebpevar_2], dx
0000: 1000FDOE call do_WSAStartup 10018061 mov [ebp+lpstring2], ecx
0000: 1000FD13 test X, eax 10016064 call cWsAStartup
0000: 1600FD1S jz Loc_1000FDCA 1001B089 test eax, eax
0000: LOOOFDLE push ach i dwBytes 10018068 iz loc_lG01B133
0000: 1000FD20 call new 10018071 mov ecx, 0ACh
0000: 1000FD25 mov esi, eax 10018076 call Alloc
0800: 1680FD27 pop ecx 10018078 mov edi, eax
0000: 1000FD28 test esi, esi 10018070 test edi, edi
0000: 1000FD2A jz Loc_1000FDCA 1001B07F jz loc_1001B133
0000: 1660FD30 push edi 5 _DWORD L001B08S moy ebx, [ebprarg_0]
0000: 1000FD31 call ledi+class_12.make_classll] 10018088 push ebx
0000: 1600FD34 pop ecx 10018089 mov ecx, [ebx+d]
0000: 1000FD35 mov [esi+class_18.p_classll], eax 1001B08C call dword ptr [ecx+sch]
0000: 1000FD38 test eax, sax 1001B08F mov [edi+och], eax
0000: 1000FD3A iz Lloc 1000FDCS 10018092 pop ecx
0000: 1000FD40 push 1 S char 10018093 test eax, eax
0000: 1000FDA2 push @ 5 lpString2 10018035 iz Loc_1001B12C
0000: 1600FD44 push @ i int 1001B0%E moy esi, [eax]
0000: 1000FD46 push 9D4D0SElh i int 10018020 mov edx, OSB0/043n
0G00: 1600FD4B push BBB07043h ;int 10018042 push 1
0000: 1000FDS0 push 347DB92Ch S int 10018044 push @
0000: 1000FDSS mov ebx, eax 10018046 push @
0000: 1000FDS7 call classl7_ctor_from_string and date 10018048 push 9D4DOSE1h
0800: 1660FD5C e 1001B0AD mov ecx, 347DBS2Ch
0000: LOOOFDSD push ebx 1001B0B2 call Log
0000: 1600FDSE call dword ptr ds:(_class_11.logger log - _class_11.logger logl[ed|1001B087 I —
0000: 1000FDE0 or lesi+class_18.socket], OFFFFFFFFh 10018088 push dword ptr [edi+och]
@000: 1600FDE7 add esp, 20h 1001B0BE call dword ptr [esi]
6600: 1600FDEA push [ebp+arg_listen_address] ; lpString2 1001B08D or dword ptr [edi+94h], OFFFFFFFFh
0000: 1000FDED lea eax, [esirclass_18.listen_address] 1001B0CA lea eax, [edi+loh]
0000: 1000FDTO0 push eax ; 1psStringl 1001B0C7 add esp, 18h
0000: 1000FD71 call ds:lstrepyw 1001BOCA push [ebp+1pString2]l ; LlpString2
0000: 1000FD77 mav ax, [ebp+arg_accept_port] 1001B0CD push eax 5 1pStringl
0000: 1600FD7E mov word ptr [esi+class_18.listen_port_numberl, ax 1001BOCE call clstrepyW
0000: 1000FDE2 lea eax, [ebp+var_4_some_obj?] 10018004 mov ax, [ebptvar_2]
G000: 1600FD85 push eax 10016008 lea ecx, [ebp+var_cC]
0000: 1000FD push esi 10018008 push ecx
: 1000F] push offset classls listen_on_address 1001B0DC mov [edi+50h], ax
:1000FDBC push edi 1001B0E3 mov [edi+B], ebx
:1000FDED mov [esi+class 18.p_classl2], edi 1001B0ES mov eax, [ebx+d]
:1000FDS0 call [edi+class_12.exec_func] 1061B0ES push edi
+1000FDS3 add esp, 1¢h 1001BOEA push offset sub_lG01B13C
:1000FD9G test eax, eax 1001B0EF push ebx
:1000FDS8 jz short loc_1000FDC3 100180F0 call dword ptr [eax+8]
:1000FD9A moy edi, [esivclass 18.p classll] 1001B0F3 add esp, 1oh
:1000FDID push T T char 1001B0F6 test eax, eax
:1000FDSF xor ebx, ebx 1001B0F8 jz shart loc_1001B12C
: 1000FDAL push i lpString2 1001BOFA noy. cax, ledi+och]
:1000FDA2 push ebx Joint 1001B0FD mov edx, Oob0704sn
:1000FDAS push S63EQBESh i int 1001E102 push 1
: 1000FDAB push ©BBO7043h : int 1001B104 push a
:1000FDAD push 347DB92Ch ;int 1001E106 push @
:1000FDBZ call classl7_ctor_fron_string_and_date 1001B108 mov esi, [eax]
:1000FDE7 Pt 1001104 mov ecx, 3470DB92Ch
:1000FDBS push edi 1001B10F push S63E0BESh
:1000FDES call [edi+class 11.logger_log] 1001E114 call __ Log
: 1000FDBB add esp, 20h 1001E119 Push, Eax
: 1000FDBE cmp [ebp+var_4 some_obj?], ebx 1001B11A push dword ptr [edi+0Ch]
:1000FDCL inz short loc_lGO0FDCE 1001E11D call dward ptr [esi]
:1000FDC3 1001B11F add esp, 18h
:1000FDES loc_1000FDES: ; CODE XREF: classl8_ctors35ij 1o01B122 cmp [ebp+var_cl, ©
+1000FDC3 i classl8 ctor+93ij 10016126 jz short loc_l0O1E12C
:1000FDC3 push esi 1001E128 mov eax, edi
:1000FDC4 call classl@ _dtor 1001E12A imp short loc_1001B135
:1000FDCS pop ecx [LOOIELZC ; - == - - o s mmm e m ol
:1000FDCA 1ee1B12C | CORE_YOEE. c b 10A1R0SA.413i cih 100 BASA.a01
:1000FDCA Loc_1000FDCA: 1001B12C edi
:1000FDCA 1001B12D call sub_l001B394
:1000FDCA xor eax, eax 1001B132 pop ecx u u
:1000FDCC imp shart loc_lo 1001B133 loc_1001B133: :
ODOFDCE ; -- 1001E133 xor eax, eax
O000FLl0S ‘lDUUFDDE: classls :tur‘(svn:hzon).zed with Hex View-1) 1001E135 loc 1001B135: i LUUE XREF: SUb 1UULBUS4+UBI1T

Implementation of the same networking function in Duqu and Duqu 2.0. Note the same unique numbers
(in red rectangles) PUSHed as parameters to the logging function.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

40

THE DUQU 2.0
Technical Details

ﬂﬂﬂﬂ 10010733 push ebx
push edi
push 0 5 flags
push eax 5 len
lea eax, [ebp+buf]
push eax 5 buf
push [esivclass 19.socket] ; s
call ds:re
nov ebx,
test eb.
inz Shm‘t 1n(100107&1

111
push 4 i char
push eax i 1pString2
push eax i int
push OFO4EEBOAR i int
loc_Jool0754: 5 CODE X¥REF: classl9_recv+9Aj
push 0BBO7043h i
push 3470DB92Ch
call classi7_ctor_from strlnq and_date
push eax
push i
call [edi+class 11.logger_log]
-
imp short loc_100107ES
loc_10010772: ; CODE ¥REF: classl9_recv+1Cij
2 nov eax, [esivclass 19.p_classs input]

push eax
call [eaxvclass 8.get_available_size]
pop
test eax, eax
jnz short loc_10010733
inc eax

Tloc_10010781: ; CODE YREF: classlg_recv+3
cmp bx,
inz short loc_1001074F
oy ebx, ds:WEAGetLastError
call ebx :
cmp eax,
z
call e
cmp eax,
iz short 1n: 100107EE
nov edi, [esitclass_19.p_classll]
push 1oh
push]
call :hx WSAGetLastError
push
push 7540005
Jmp short loc 10010754

push 1 ; char

push (<] i lpstring2

push ebx 3

push 7FCEl0Sh 5 int

push 088070430 5 int

push 3470B92Ch ;ant

call classl7_ctor_from_string_and_date
push eax

push i

call [edi+class_11.logger_log]

w T TESTFCTISS T P CTASSE IO
push ebx

lea ecx, lebprbuf]

push eex

push eax

call [eaxvclass 8.write_no_class7]

add esp, 2ci

0000: 160107E5 1oc_100107E5 i CODE YREF: class1S.

KASPER§KY2

001562 push ebx

lLoo1EBES push esi

[1001 8884 push 0 s flags
[L0015EE6 push eax S len
[10018EE7 lea eax, [ebp+buf]
[1001BEED push ea S bu
[Loo1EBEE push dword ptr [edi+3oh] ; s
[L0018BCL call dsirec

[L0015BCT mov ebx, =ax

[10018BCY test ebx, ebx

[10018BCE jnz short loc_1001BEFS
lLoo1EBCD ax, [edit2ch]
[10018EDG push 4

[L001BED2 push ebx

[1001BED3 push ebx

[1001BBD4 mov esi, [eax]

[Lo01EEDS push oFedsEsoah

[1001BBDE Loc_J001BED8: ; CODE XREF: sub_10018B824a14j
[L0015EDE nov edx, 0BB07043h
[1001BBED nov ecx, 347DB92Ch

1001 BBES call Log

[L001BBEA push eax

[1001 BBES push dword ptr [edi+2ch]
(1001 BBEE call _ dword utr [esil
L001BBFO 3dd esp,

001 BEFS np “hort Loc_10018C81
[Lo018EFS.

L001BBFS 1oc_1001BBFS : CODE XREF: sub_l001BB82+497j

[L001BEFS cnp ebx, OFFFFFFFFh
[1001BEFS inz short loc_1001BC25
[1001BBFA moy ebx, ds SWSAGetLastError
1oo1BC00 call ebx ; BleRCastETor
oo1BC02 cnp eax,

[Loo1BC07 iz short luc 1001BCEC
1001809 call ebx ; WSAGetLastError
0016C0R cnp eax, 27a0h

Loo1BC10 iz short loc_1001BC6C
loo1BC12 mov eax, [edi2ch]
lLoo1BCLS push 1ch

lloo1BC17 push @

noo1sc1s moy esi, [eax]

Loo1BC1E call ebx ; WSAGetLastError
l001BC1D push eax

[Loo1BCLE push 8784000sh

lloo1BC23 inp short loc_1001BEDB
noo18cas e

sub_10018B82+7617

h
test eax, eax
inz short loc_100107EE

[1001BC25 1oc_1001BC25! :
L0018C2S m TXTEqTTICNT

lLoo1BC2E nov edx, 08807043h

lLoo18C20 push 1

loo18czF push ©

[10018C31 push ebx

[Lo01BC32 mov esi, [eax]

lLoo1BC34 nov ecx, 347DB92Ch

[L0018C39 push 7FCE109h

loo1BC3E call Log

l10018C43 push eax

Loo1BC44 push dword ptr [edir2ch]
lLoo18C47 call dword ptr [esil

[10018C49

oo18c4C lea edx, [ebp+buf]

lLo01BC52 push ebx

l10018C53 push edx

lLoo1BCs4 push eax

[10018CSS moy ecx, [eax+1Ch]

oo18Cs8 call dword ptr [ecx]

[10018C5A add esp, 24h

[1001BCSD test eax,

lLoo1BCSF inz shart \uc 1001BCEC
[1001BC61 Loc_1001BCS1: ; CODE XREF: sub_1001BB82+71ij
[1001BCE1 mov eax, [edi]

[10018C63 push

Loo18C64 call dword ptr [eax+d]
lLoo1BCs7 pop ecx

[10018C68 xor eax, eax

[L0015C6A np short loc_1001BC6F
loo1BceC ; - -]
[Lo01BC6E 10c_1001BC6E: S CODE XF
lLoo1BCsC xor eax, eax

[1001BC6E inc cax

[LOOLBCEF 1oc_1001BCEF: 5 CODE XF
[Loo1BCeR pop esi

Another networking routine: after calling recv() to receive data from network, Duqu logs the results and
possible network errors (obtained via WSAGetLastError()). Unique numbers in red rectangles are used to
identify the current state of the networking routine.

The code of the orchestrator evolved in many aspects since 2011. One of the notable
differences is a huge list of HTTP User-Agent strings that are now used instead of a single

hard-coded one:

SO0 0055008 SoanE SR TYpEI2] O I CoRERREETHRE DATA XREF
align 4

0008:100380C:
0000: 10¢

; char alnagelpeg ol
aInageJpeq

o
0000:100380D3
©000:10038004 aPost db_'POST ',0 :
0000:100380DA align 4

ghos! Lo et db 'GET *,0 DATA XREF:

XREF !

align
i char asc_100380E4] |

asc_1003B6E¢ db '/'.0 DATA XREF
5 n 2
; char aliserAgent!]
alseragent db_‘User-Agent’,0 i DATA YREF: ceapt_
align &
o000 hac abazillas, cyindll
09001003505 abozi La5_Oiind db 'Hozilla/s.0 (Windows: U: Windows Tvi1.5.2.8) Gecko'
cozgor i DATA XREF: E4ia
db /20100824 Firefox/3.6.5 (. NET CLR
T
; char aCaokiel]
acookie db ‘'Coskie',0 2 . 1000D7EFTa
align 10h
j cher agonnectiont]
aconnection " Connection’, 0 ¥REF data_availabless
17C aContentLength dh B Length',0 ; DATA XREF _data_availables18ia
0000 3
@000 C aContentType dh ‘(un(ent Type', YREF: HTTP_server_on_data_availablesZ
0000 o n 4
o000 ¢ wrandfirencodisdh R ranster-Encoding’ .0
0000 XPEF: HTTP_serv _data_availa
0000 al ign 10h
0000: acook:\a o db *Codkie’.0 :
o ign @
3000} 10038163 ; char sw:ngz[]
000010035188 &t ring db '/7.0 DATA XREF
0000 18A align 4
00001 1005516C ; char aPost_ol]
{100381EC aPost_0 db 'POST',0 \ NPEF!
1c03m1C1 align 4
JLOUSELCH ; char sGet_ol]
E1C4 aGet_Q db 'GET'.0 DATA XREF
LoosaLcs | shar a0k]
100381C5 ack db "ok',0 *REF
031C align 4
Too3B1CC ; char akeepAlivel]
1100381CC aKeepAlive db_'Keep-Alive',0 DATA XREF: HTTP_server_on_data_available+l
o7 ig
003108 aKeepAlive 0 db 'Keep-Alive',0 DATA XREF: er_on_data_available+17270
100381E3 align 4
:100381E4 aConnection_0 db ' Connection’,0 HREF | er_on_data_available+17Ei0
100381EF align 1oh
:100381F0 aClose db *Close, HREF: _availableilo
100381F6 align
00:100381F8 ; char aConnection 1[1
10038175 aConnection 1 db_'Connection’,0 DATA XREF er_on
110038203 align 4
10038204 a0 db ‘0.0 DATA XREF: HTTP_server_on_

10038206 align 4
10038208 ; char aContentlengt O[]

o006

For any inquiries, please contact intelreports@kaspersky.com

align
InageGit db “iwage/qit', DATA XREF

oll
Brpmine on o o DU u20l1l
e
it

754 5 char X[1
4 X

D align 16k
MiltipartFormData db 'multipart/forn-data’.0
SEPT

Foz1l La5_OMindowsNt5_TAppewebkitSs5_GRhtmlLikeGeck: | DATA JHE-
8)

2 an
915 [Hozillas UCumnat)hl:Ms)eS OnindowsNt6_OTrident5_o:

32| align
5[Hozillas, wmduwsNtﬁ Mow6ARY1S_0Gecko2012091014432; © D&
ic

,Duqu 2015

ApplicationOctetstrean db 'application/octet-straan’, 0 : DATA

Chunked " ehunked 0 :

KREF:

db '%x',0Dh,08h,0)
align 4

; CHAR asc_1003775C1 |

asc_1003775C db aDh, 0h, 0

align 16k
5 char ull
0 U db ‘nu',0 : o
3 align 4
; CHAR stringl]
String db_'boundary= ATA
e B
ContentType 0 db 'content-type'.0 DATA

HREF

ub_1.
Sde 0, MozillasS.0 (Windows NT 5.1) AppleMebkit/S3S
unicode 0, <ke Gecko) Chrome/16.0.857.0 Safari/535.6>,0

slig
Hozil1a5_oCompatibleteic_ONindowshts LTridents 0
ode 0, <Mozilla/S.0 (compatible; MSIE 9

un)(ude 0, <t/5.0; chromeframe/11.0.696.57)>,0

TA XREF
nicode O, <Mozilla/S.0 (cempatible; MSIE 9.0;
lm)(ude 0. <t/5.0: chromeframe/11.0.696.571>,0

Hozillas, UCampat)hleMs)eE OindowsNt6_OTridentd_o: ATA
nicode O, <Mozilla/s,0 ’:ompat:\b\e, MSIE 8.0; Wi Triden>
un)(ude 0, <t/4.0; InfoPath.1; SV1; .NET CLR 3.8.36217; WONG4; en-USI>

Munuas UCumpat)hl:Ms)EE OwindowsNt6_OTridentd_0_0: : DATA ¥REF: sub A+d3T0
nicode O <Wozilla/s 0 (compstible; MSIE 8,0: Windows NT 6.0; Triden>
Unicode 0. <t74.0; WONG: Trident/é.0: SLCC3; NET CLR 2.0.50727: NE»
unicode 0, <T CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .>
unicode 0, <NET CLR 1.1.4522)>,0

sub_10026CFA+4Di
ode 0, <Mozilla/5.0 (Windows NT 6.2 Wowes; rv:1870) Gecko/201209>
Unicods 0, <10144328 Fircfoxf1s. 0,250

Mozillad_OCompatibleMsie7 OwindowsNt6_1Slcc2 netC: | DATA XREF: 5
unicode O, <Mozilla/4.0 (cempatible; MSIE 7.0; Windows NT 6.
unicode O, < .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.307>
unicode 0, <29; Media Center PC 6.0; .NET4.0C: .NET4.CE)>,0

align
Mozillas_(CmmdowsNtG 1RvE_0Gecko20110814Firefox€_0: ; DATA XREF: sub 1
code 0. <Mozillass.0 (Windows NT 6.1: rv:6.o0l
<code O, <o0x/6.0>,0
Mozillas DCumpat)hleMs)eE OHindowsNtE 1WowsdTriden £F: s Fiec
e O, <Mozilla/S.0 (compatible; MSIE 9.0: ‘Mr\da»fs NT ;.l; wWowes; >
Unicode 0. < Trident/5.0; NET CLR 3,5.30729; NET CLR 5.0.30728; New
unicode O, <T CLR 2.0.50727; Media Center PC 6. Q
0[Mozillas ocompatibletsies onindowsNes Tridentd 0: : DATA XREF
s 2 ble' weTE B o

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0
Technical Details

KASPER§KY2

The authors also modified the “magic” two-byte value that identifies encrypted network
traffic: “SH” was replaced with a more neutral and harder to trace “WW":

0och

ecx, [ebp+cmd _header]

ecx

eax

[eax+class 6. read and cut datal

eax, 'HS
esp, 16h
word ptr [ebp+cmd_header], ax

(LY VRV puzn
0000: 10019F66 push
0000 : 10019768 lea
0000 : 1001 9FEB push
0000:10018F6C push
0000 : 10019FED call
0000:10015F70 mov
0000 ;: 10019F75 add
0000: 10019F78 cmp
0000: 10018F7C T

0Q000;: 10019F7E mov
0000 : 10019F8L lea
0000:10019F84 mov
0000 : 10019786 xor
0000: 10015F88 cmp
0000:10018F88 push
0000 : 10019F8C push
AnNA -+ 1NA1aFRE caty

trorr—tort
BCX, dword ptr [ebp+cmd header+2]
eax, [esi+class_43.cmd]

[eax], ecx

ecx, ecx

[ebp+cnd_header+6], cl

eax

[esi+class_43. classéE_input]

A

Duqu 2011

Code that verifies the “magic” value in network traffic.

LUULE s UD
10028707
10028709
1002B7DA
10028700
100287DE
1002B7EQ
1002B7E5
1002B7E8
1002B7EC
100257EE
100287F1
1002B7F4
1002B7F5
1002B7F8
100287FA
100287FC

pusn u
push Och
push edx
mov E(x, [eax+20h]
push
call d ard ptr lecxl
mov eax, W'
add esp, 16h
cmp [ebp+var C], ax
ThE SREFT Toc. T002085T
mov

sax, [abpwar -\

Duqu2015

The chars are swapped due to little-endianness of data in x86/64 architectures.

Both Duqu and Duqu 2.0 use special structures to identify the interfaces of their plugins.
The orchestrator also has one for the “core” plugin that is compiled in its code. The
newer version has a slightly bigger table, hence more functions, and a different notation
for describing the plugin features. Special strings (i.e. "AB88A8>@") describe each
function’s signature. The older Duqu had contained similar strings in binary (unreadable)

form.

5001003477 offset aBadAllocation
0000:10034780 offset aBadillocat
0000110034784 ffset aBad

uffse(aEadAllu(a(mn
b

offset sub_LoolsFas
offset sub Lo01GEor
offs

offs=t sun’mmsﬁas
10016FES
bl sub_10017017

offset unk L0035C9C

offset DoFindodulelnpackCallls
offset sub_10010929

offset sub_1002370E
offset byts 10034628

ffset byte 1003452

offset
Gffset byre To0s4E20

rd_10034534

ffset byte_10034638
offset sub_10023834

sffset ¢ oDelaterile

o
offset byte_1003453C

Tabte S S
dd 4
offset byte_ 10034624
b

ad_write_file_1

 c do_read write file

4pr302008_0 Apr 30 2008',0
word_1003A834 G

word_1003A838 dd 1

i 120 2.03 Apr 30 2008

fi%Duou 2011

rd
oFf 10001555

Ciice3

offset sub_1001768D

ff et sub_100

a
offset T7t488bas8b3aBEh7723862883E7 48140

offset T7tA88bassb3asEh7728562883E7 48150

offset T7tASGbaseb3a6h77a88haG8357 48+ 0Ch

176,
e aB 8 anseh 7720585557 46+ 11

offset sub_100176CB
offset sub_100176E3

offset sub 10017675
2

ffset ABBb7?4Ga?a8836E

T7tASSbaBEh38Eb77aBE02EAIETAEE | A

-t
set
-t

t

set c_c ¢ c

+

set

set

set
<et

offset ABSD774Ga’as8angbra . 0

4
offset AS3baseb3aa8b77555ba833B 46r10h

nffset sub_10010FA2
et ABEhassh 3253b7728562 8836748+ OFh

TS ———

do_r

cad_write filel

TOOTTOSE
toosemie
101

3 Joosaare
1B03an>C

sub_10010FE0

ABBb774@a?a563B6h | *ATHE774@A7AS-03-568
sub_10010FF8

¢_DobeleteFile

ABBbaBEh 3a88b77a88baBE3B74@+4 ; * ASSHIASIET<7ABEHAS

sub_lo011019
85255 3a88b 7728803883874+ Lah | " AS-E3-574E

offset sub_10011028
offset ABBhaBoh 3a88b77a88baBE3B74@+0EN | *<TASEBAS=83-6748
i

Duqu 2015

Data structure that describes the “core” plugin of Duqu and two different version of Duqu 2.0.

Note the same constants and similar functions.

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=

THE DUQU 2.0 - 0
Technical Details KASPERS KYE

The Duqu C&C code makes use of small image files to hide its communications over
unencrypted channels, i.e. HTTP. The original Duqu used a JPEG file, and known versions
of Duqu 2.0 use a similar JPEG file as well as a new, larger GIF file. Also, the layout of the
data section did not change much: the image data is preceded by short AES encryption
keys (string “sh123456" in Duqu, two binary DWORDs in Duqu 2.0) followed by the LZO
version string “2.03"

75 dword 10038440 44 0
44 off 16038444 dd offset sub_lO026DEF
offset sub 10029226

off_100364C8 dd offset sub_1002245F
offset sub_1002495F
dd offset sub_10024D29

dword 10034634 dd 1006060Fh
dword 10034638 dd 1005050Fh

dvord 1003463C dd 1005080 dd offset sub 10029580 b 4 dd offset subTl0022475
& dd offset sub l0026EAS hoossaos dd offset sub 10022505
dd offset sub looasess -t subT10022520

offser
scagraLeon

o
db 73h, sh, 3lh, 32h, 33h, 3

dd offset sub 10026ED0 45wty

w7t dvord 100845 dd oATA osheh
dword_10038460 dd D dvurd 10036AE8 dd]440945]\7
205 dbzos 03:

) dword_10034650 dd 0 DATA 1R 556 i
dword_10034654 dd 0

d ommooch
7000000}

0000:10034655 NEENINEN db OFFh, ODeh, OFFh, OEGh, yte_10038478 O, ODSh, O, OSOh, O, 10h, 4sh, ach. 4sh, 46h Gifgga ATA RES
0000: 10 DATA _sH_| o, 3'dup(1], o, 60h, 2 dup(0), OFFh, OElh, O 2R 2 e
db 0, 3 dup(1), O, EON, O, 6 “ooBh, 3h, 2 dupl o) 4 dup(0), OBh, 0, 0Bh
db 43h, ©, 2, 2 dup(1), 2, e s et) 5 d (0 2 dup(
db 6, 2 dup(4), dup! sl 161 2 dup(0)
d 2.2 dmin 1 opo) f

o 3 zdum]\ 2 z'dupuw 5 dup

oFF 2 dup(0), Boh,
Son o ek, ech. o Boh OFF\\
A 0, oAk, Oafh, Ssh
& l!Df-h zduplm,

e A
ot eoeh,
6. 0ch,

=" dup!
8 o duplc[h\ "OFFh, 0COh
11h, "1

24

8, 2 dup(7), OAF

.7, 9, oEh, OFh, 0Dh, oG

L 008, 0. 43, 1 3 dupl2), 5 don(3)
78 En dupiOch)) GFFh oc0h

b wr e T e gw

o nh 1 om Jemn e 3 dminl 13 € a5

ipi
GBh, 2 dap o

oo, 8,

36h, 0. ch

bl
6.

s, B 5
e th b o, 1, 56 dut1)
1,2, 3,4, 8.9,

oDsh, DSh, 0CCh, 0, GDS
B
.0, 2 dup(FFhi,

o amsh. 10k, 6,72, %, 2 dipl3), 2, 4, 3, 2 dup(s)
AdE 1 B ,"4, 11k, 5, 12h

h, 41h, s, 13h, B h, 1dn, 32h db 8 dup(0) ofh, 08h, oFFh s6h,
T T . 52, oDlh db o(Ah o GESh lah a o dup(i\ 2 4, 3, 2 dup(s)f1 26h
53h, §2h, 9, O#h, 16h, 17h, 18h db 2 dup(4), 2 dup(0 70h,'1, 2, 3, O, 4, 33h,

sh, 26h, 29h, 24h, 34, 3sh, 36h db 21h SRR e o Ehe 7 2% Ssh, 2

S, 3h. sah. sh. s, ssh. den. 7. dgh. ssh db & h 043, 8 23, 2, oin, ocin, 1sh, o01h . 33h,

T e o ow e e ob o2n, "oah, *5an, &an ot o s h 80h, 66N
68h, 65h, Gah, d CFeh, 35h

b 15h, 1ah, 2sh, 2eh, " 2o, ZAh bl
i, &an, San, 85h, s, db 37h, 3sh, 3%h, 3ah, 43h, 44h o, 0

h, 98h, Sch. 9ah, 3 55 =
N, oa%h, opin, G5z, Géh
h, 0BSh, OBAh, 0C2h, 0C3h

n . o

am dan, don

! o,
. T N
Gren, San. oosh, Gosh, 2 dupi33h),
33h, ‘oDsh, Ssh, 33h, aDSh, occh, 3sh, aDSh, om, £
a8 SE G Eanim v e oFFh
soh,'33h, GFFh, occh, 33h, 2 dup(QFFh), S6h, 2 dup(0)
33h, €6h, 0, 2 dup(66h), O, Soh, 66h, O, OCCh

@ 5 WEue . 0. o . e o
seh 2, o

7h

Jih, Son, onh, oAsh
 oreh, h, OBzh, OBSh

e

CEh, OCoh, OCAh, OD2h, OD3h
©ODsh, ODh, OELh, OE2h
Esh. OESh, OEAh, OFLh
7h, OFsh, OFSh. OFfh

2, "ok, Oheh . 0A7
 oosh, o, 05
. ocsh, oceh,
Gosh. ooen, coTh,
. OEah, OESh, OEeh,
©OFah, oFsh,

Gesn, oman, oean:
OF2n, OFsh. GFeh,
QFFh, ocah, O, 1Fh,

h,

sah,
" i gsh, 6oh, Omth 2
B S T Y
O%on, 5Omh, "San,. e bish, bich: e, anrh OFFh

.0, 86h, OFFh, 33h, 66h, OFFh, 2 dup(6
., Seh, OFFh, OCCh, Gen, 2 aupl 00Eh), o2 dunto)
S%h, 0, 66h, 9sh, 0, 2 dup(9%h), 0, OCCh

, 0, 96h, 26h, 33h, Soh, 2Bh
28h, 2 dup(9%h), 2Bh, OCCh, 99h, 28h, OFFh
,55h, O Soh, sch. 33h, goh, Ssh, &g, 9%h, SSh
OFFh, 9Sh, 80N, O

280, 3sh, 36h
47h, 48h, 2sh

saf
. 73h,
. 8sh,
ch, sgh,

. oash, oaSh,
och, oBsh,

78h, 7%, 7ah, o Boh, m 55h, 80h, 2 dupl 9%h]
ceh. ocsh, 8ah, o2n, G3h, Seh, o OFFh, Séh, Ohth, 0, 95h, OAth
. oD7h, oDGh, ODSh, 0a3h, OAah, OASh,

sch, onth, 2 dupissh) . om ,occh
OESh, OE4h, OESh, OESh, OF:

Esh, OEdh,
FSh. OFGh, OF7h OFeh GFsh:

S5 me o il

. soh,
ovsh, th Soh, ‘oosh, 2 dup(ssh) . oosh

b 8ah, 28h, 0 0A2h, 8ah, 28h, 0, 0A2h. b 28h, moh 2, 8Ah, 28h, 0AGh, 2, 8ah, 28h, 2 db 2 dup(@CCh), 2Bh. occh, Ssh.
8 b 3-\h, 28h, 0, 0A2h, B8Ah, 28h, 3, OFFh, @Dsh, O b 8Ah, 28h, O0AGh, 2, 5-\\7, 25\\, Ach, 2, 84h, Zﬁh, G»Qh db occh, S5h, 66h, 99h, 0CCh, 55h, 2 dup(Oi(h‘
] D 0 th, Octh, 8oh, 49\7, Otth, Soh, 2 duy(otthl ach, CFFh
8oh off_10038784 d uffset sub_LOO2FBCF ; DATA 1 2 m, occh, (7-«-«\1, 2 dunlﬂ(‘(h\, aww, OFFh, Q((h
1000h duffset suh 1001CD28 5 2 0 M ODSh GFFh O((h QFFh
400h Lo d 3
00033255 (100342507 _xdata: J9EG_daca | (Synehronized with Hex View-1) looos7078 [10038478: - zamca me,mmus\:s,.mmmm with Hex View-1) Gon, 33, GFFh, 8on, Goh, OcFh, 80h, Soh, OFFh. 50

Image data used for hiding C&C communication in them: JPEG in Duqu, similar JPEG in Duqu Bet and
GIF in a different version of Duqu Bet. Note the preceding LZO version string “2.03" and encryption keys.

The large number of similarities between the Duqu 2011 code and the new Duqu 2.0
samples indicates that the new code represents a new iteration of the malware platform.
The new version could not have been built without access to the 2011 Duqu source
code. Hence, we conclude that the authors are the same or working together.

VICTIMS OF DUQU 2.0

Victims of Duqu 2.0 were found in several places, including western countries, the
Middle East and Asia. The actor appears to compromise both final and utilitarian targets,
which allow them to improve their cyber capabilities.

Most of the final targets appear to be similar to their 2011 goals — which is to spy on
Iran’s nuclear program. Some of the new 2014-2015 infections are linked to the P5+1
events and venues related to the negotiations with Iran about a nuclear deal. The threat
actor behind Duqu appears to have launched attacks at the venues for some of these
high level talks. In addition to the P5+1 events, the Duqu 2.0 group has launched a similar
attack in relation to the &70th anniversary event of the liberation of Auschwitz-Birkenau.

8 http://70.auschwitz.org/index.php?lang=en

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
http://70.auschwitz.org/index.php?lang=en

43

THE DUQU 2.0 KASPERYKYS

Technical Details

The other type of targets for the new attacks are what we call “utilitarian” targets. These
are companies that the attackers compromise to improve their cyber capabilities.

For instance, in 2011, the attackers compromised a certificate authority in Hungary;
obviously, this would allow them to generate digital certificates, which can be further
used to sign malware samples. The same pattern can be seen with the Duqu 2.0
infections. Some of the companies infected with Duqu 2.0 operate in the sector of
Industrial Control Systems as well as industrial computers.

ATTRIBUTION

As usual, attribution of cyberattacks over the Internet is a difficult task. In the case of
Duqui, the attackers use multiple proxies and jumping points to mask their connections.
This makes tracking an extremely complex problem.

Additionally, the attackers have tried to include several false flags throughout the code,
designed to send researchers in the wrong direction. For instance, one of the drivers
contains the string “ugly.gorilla”, which obviously refers to ®*Wang Dong, a Chinese
hacker believed to be associated with the APT1/Comment Crew. The usage of the
Camellia cypher in the MSI VFSes, previously seen in APT1-associated Poison lvy samples
is another false flag planted by the attackers to make researchers believe they are dealing
with APT1 related malware. The “romanian.antihacker” string used in the “portserv.sys”
driver is probably designed to mimic "w00twO0O0t.at.blackhats.romanian.anti-sec” requests
that are often seen in server logs or simply point to an alleged Romanian origin of the
attack. The usage of rare compression algorithms can also deceptive. For instance, the
LZJB algorithm used in some of the samples is rarely seen in malware samples; it has
been used by MiniDuke which we reported in early 2013.

Nevertheless, such false flags are relatively easy to spot, especially when the attacker is
extremely careful not to make any other mistakes.

During our 2011 analysis, we noticed that the logs collected from some of the proxies
indicated the attackers appear to work less on Fridays and didn't appear to work at all on
Saturdays, with their regular work week starting on Sunday. They also compiled binaries
on January 1st, indicating it was probably a normal work day for them. The compilation
timestamps in the binaries seemed to suggest a time zone of GMT+2 or GMT43. Finally,
their attacks would normally occur on Wednesdays, which is why we originally called
them the "Wednesday Gang”. While the 2014 attack against Kaspersky Lab also took
place on a Wednesday, the gang made huge OPSEC improvements compared to their
older 2011 operations, including faking all the timestamps in PE files, removing the debug
paths and internal module names for all plugins.

The 2014 Duqu 2.0 binaries contain several strings in almost perfect English but one of
them has a minor mistake indicating the involvement of non-native speakers. The usage
of “"Excceeded” instead of "Exceeded” in the file-harvesting module of Duqu 2.0 is the
only language mistake we observed.

9 http://www.fbi.gov/wanted/cyber/wang-dong/view

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
http://www.fbi.gov/wanted/cyber/wang-dong/view

44

THE DUQU 2.0 KASPERIKY2

Technical Details

pl
A
t
t
e r
1 X
T
A

Misspelling of the word “Exceeded” in Duqu 2.0.

Most interesting, one of the victims appear to have been infected both by the Equation
Group and by the Duqu group at the same time; this suggests the two entities are
different and competing with each other to obtain information from this victim.

CONCLUSIONS

During the 2011 Duqu attacks, we concluded that its main purpose could have been to
spy on Iran’s nuclear program. Some of the victims appear to have been “utilitary”, such
as one certificate authority in Hungary, which was compromised by Duqu and ultimately
that led to its discovery. The group behind Duqu hacks these “utilitary” victims in order to
gain certain technical abilities such as signing their malware with trusted certificates or to
serve as platforms for further attacks.

The 2014/2015 Duqu 2.0 appears to be a massive improvement over the older “Tilded”
platform, although the main orchestrator and C&C core remains largely unchanged. Back
in 2011 we pointed out to the usage of °Object Oriented C as an unusual programming
technique. The 2014 version maintains the same core, although some new objects in
C++ have been added. The compiler used in the 2014 is newer and it results in different
code optimizations. Nevertheless, the core remains the same in functionality and it is

our belief it could not have been created by anyone without access to the original Duqu
source code. Since these have never been made public and considering the main interest
appears to have remained the same, we conclude the attackers behind Duqu and Duqu
2.0 are the same.

The targeting of Kaspersky Lab represents a huge step for the attackers and an indicator
of how quick the cyber-arms race is escalating. Back in 2011 and 2013 respectively, *RSA
and 12Bit9, were hacked by Chinese-language APT groups, however, such incidents

were considered rare. In general, an attacker risks a lot targeting a security company

— because they can get caught and exposed. The exact reason why Kaspersky Lab

was targeted is still not clear — although the attackers did seem to focus on obtaining
information about Kaspersky's future technologies, Secure OS, anti-APT solutions, KSN
and APT research.

10 https://securelist.com/blog/research/32354/the-mystery-of-dugu-framework-solved-7/

11 https://blogs.rsa.com/anatomy-of-an-attack/

12 https://blog.bit9.com/2013/02/08/bit9-and-our-customers-security/

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
https://securelist.com/blog/research/32354/the-mystery-of-duqu-framework-solved-7/
https://blogs.rsa.com/anatomy-of-an-attack/
https://blog.bit9.com/2013/02/08/bit9-and-our-customers-security/

45

THE DUQU 2.0 KASPERIKY2

Technical Details

From a threat actor point of view, the decision to target a world-class security company
must be quite difficult. On one hand, it almost surely means the attack will be exposed -
it's very unlikely that the attack will go unnoticed. So the targeting of security companies
indicates that either they are very confident they won't get caught, or perhaps they don't
care much if they are discovered and exposed. By targeting Kaspersky Lab, the Duqu
attackers have probably taken a huge bet hoping they'd remain undiscovered; and lost.

For a security company, one of the most difficult things is to admit falling victim to a
malware attack. At Kaspersky Lab, we strongly believe in transparency, which is why
we are publishing the information herein. For us, the security of our users remains the
most important thing — and we will continue to work hard to maintain your trust and
confidence.

REFERENCES

1. Duqu: A Stuxnet-like malware found in the wild https://www.crysys.hu/publications/
files/bencsathPBF11duqu.pdf

2. Duqu: The Precursor to the next Stuxnet http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_
next_stuxnet.pdf

3. The Mystery of Duqu: Part One https://securelist.com/blog/incidents/31177/the-
mystery-of-duqu-part-one-5/

4. The Mystery of Duqu: Part Two https://securelist.com/blog/incidents/31445/the-
mystery-of-duqu-part-two-23/

5. The Mystery of Duqu: Part Three https://securelist.com/blog/incidents/31486/the-
mystery-of-duqu-part-three-9/

6. The Mystery of Duqu: Part Five https://securelist.com/blog/incidents/31208/the-
mystery-of-duqu-part-five-6/

7. The Mystery of Duqu: Part Six (The Command and Control Servers) https://securelist.
com/blog/incidents/31863/the-mystery-of-duqu-part-six-the-command-and-
control-servers-36/

8. The Mystery of Duqu: Part Ten https://securelist.com/blog/incidents/32668/the-
mystery-of-duqu-part-ten-18/

9. The Mystery of Duqu Framework Solved https://securelist.com/blog/research/32354/
the-mystery-of-duqu-framework-solved-7/

10. The Duqu Saga Continues https://securelist.com/blog/incidents/31442/the-duqu-
saga-continues-enter-mr-b-jason-and-tvs-dexter-22/

For any inquiries, please contact intelreports@kaspersky.com

mailto:intelreports%40kaspersky.com?subject=
https://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf
https://www.crysys.hu/publications/files/bencsathPBF11duqu.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet.pdf
https://securelist.com/blog/incidents/31177/the-mystery-of-duqu-part-one-5/
https://securelist.com/blog/incidents/31177/the-mystery-of-duqu-part-one-5/
https://securelist.com/blog/incidents/31445/the-mystery-of-duqu-part-two-23/
https://securelist.com/blog/incidents/31445/the-mystery-of-duqu-part-two-23/
https://securelist.com/blog/incidents/31486/the-mystery-of-duqu-part-three-9/
https://securelist.com/blog/incidents/31486/the-mystery-of-duqu-part-three-9/
https://securelist.com/blog/incidents/31208/the-mystery-of-duqu-part-five-6/
https://securelist.com/blog/incidents/31208/the-mystery-of-duqu-part-five-6/
https://securelist.com/blog/incidents/31863/the-mystery-of-duqu-part-six-the-command-and-control-servers-36/
https://securelist.com/blog/incidents/31863/the-mystery-of-duqu-part-six-the-command-and-control-servers-36/
https://securelist.com/blog/incidents/31863/the-mystery-of-duqu-part-six-the-command-and-control-servers-36/
https://securelist.com/blog/incidents/32668/the-mystery-of-duqu-part-ten-18/
https://securelist.com/blog/incidents/32668/the-mystery-of-duqu-part-ten-18/
https://securelist.com/blog/research/32354/the-mystery-of-duqu-framework-solved-7/
https://securelist.com/blog/research/32354/the-mystery-of-duqu-framework-solved-7/
https://securelist.com/blog/incidents/31442/the-duqu-saga-continues-enter-mr-b-jason-and-tvs-dexter-22/
https://securelist.com/blog/incidents/31442/the-duqu-saga-continues-enter-mr-b-jason-and-tvs-dexter-22/

Securelist, the ressource
for Kaspersky Lab experts’

technical research, analysis

and thoughts

Eugene Kaspersky Blog

N

Fugene.

Kaspersky Lab, Moscow, Russia
www.kaspersky.com

Kaspersky Lab HQ
39A/3 Leningradskoe Shosse
Moscow, 125212

Russian Federation

More contact details

Tel: +7-495-797-8700
Fax: +7-495-7978709

© 2015 Kaspersky Lab. All rights reserved. Registered trademarks and service marks are the property of their respective owners.
Lotus and Domino are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide.
Linuxis the registered trademark of Linus Torvalds in the U.S. and other countries. Google is a registered trademark of Google, Inc.

Kaspersky Lab B2C Blo

Kaspersky Lab
B2B Blog

All about Internet security:
www.securelist.com

Kaspersky Lab security news
W :
ThreatPost S e er C e

74 Kaspersky Lab Academy

Academy

Find a partner near you:
www.kaspersky.com/buyoffline

Follow us

Twitter.com/Kaspersky

Facebook.com/Kaspersky

Youtube.com/Kaspersky

KASPERIKY2

www.kaspersky.com
www.securelist.com
facebook.com/Kaspersky
twitter.com/Kaspersky
youtube.com/Kaspersky
www.kaspersky.com/buyoffline
http://www.eugene.kaspersky.com
http://business.kaspersky.com
http://business.kaspersky.com
http://academy.kaspersky.com
http://www.kaspersky.com/about/contactinfo/contacts_global_hq
http://securelist.com

	Executive summary
	initial attack
	Lateral movement
	Analysis of a Duqu 2.0 MSI package
	File properties
	First Layer: ActionDLL (msi.dll)
	Second Layer: ActionData0
	Third Layer: klif.dll
	Attacking AVP.EXE
	CTwoPENC.dll zero-day and KMART.dll
	Payload Containers and Migration
	Payload type “L”
	Payload run type “G”
	Payload run type “I”
	Payload run type “K”
	Payload run type “Q”
	Platform plugginable modules
	Persistence mechanism
	Command and control mechanisms
	The “portserv.sys” driver analysis
	Similarities between
Duqu and Duqu 2.0
	Victims of Duqu 2.0
	Attribution
	Conclusions
	References

