
1

MODERN MALWARE
THREAT:

HANDLING OBFUSCATED CODE

CONFIDENCE CONFERENCE (2019)

CONFIDENCE CONFERENCE (2019)

by Alexandre Borges

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)
2

 Malware and Security Researcher.
 Speaker at DEF CON USA 2018
 Speaker at DEF CON China 2019
 Speaker at HITB 2019 Amsterdam
 Speaker at BSIDES 2018/2017/2016
 Speaker at H2HC 2016/2015
 Speaker at BHACK 2018
 Consultant, Instructor and Speaker

on Malware Analysis, Memory
Analysis, Digital Forensics and
Rookits.

 Reviewer member of the The
Journal of Digital Forensics,
Security and Law.

 Referee on Digital Investigation:
The International Journal of Digital
Forensics & Incident Response

Agenda:

 Introduction
 Anti-reversing
 METASM
 MIASM
 TRITON
 Radare2 + MIASM
 Anti-VM
 Conclusion

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

INTRODUCTION

CONFIDENCE CONFERENCE (2019)
3

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 4

 Every single day we handle malware samples that use several known packers such as
ASPack, Armadillo, Petite, FSG, UPX, MPRESS, NSPack, PECompact, WinUnpack and so on.
For most of them, it is easy to write scripts to unpack them.

 We also know the main API functions, which are used to create and allocate memory such
as:

 VirtualAlloc/Ex()
 HeapCreate() / RtlCreateHeap()
 HeapReAlloc()
 GlobalAlloc()
 RtlAllocateHeap()

 Additionally, we know how to unpack them using debuggers, breakpoints and dumping
unpacked content from memory. Furthermore, pe-sieve from Hasherezade is excellent. 

 When we realize that the malware use some customized packing techniques, it is still
possible to dump it from memory, fix the ImageAddress field using few lines in Python and
its respective IAT using impscan plugin to analyze it in IDA Pro:

 export VOLATILITY_PROFILE=Win7SP1x86
 python vol.py -f memory.vmem procdump -p 2096 -D . --memory (to keep slack space)
 python vol.py -f memory.vmem impscan --output=idc -p 2096

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 5

//###
// FileName : dumpexe.txt (first draft)
// Comment : Dump memory segments containing executables
// Author : Alexandre Borges
// Date : today
//###

entry:

msg "Program to dump modules containing executables."
msg "You must be at EP before continuing"
bc // Clear existing breakpoints
bphwc // Clear existing hardbreakpoints
bp VirtualAlloc // Set up a breakpoint at VirtualAlloc
erun // run and pass all first exceptions to the application

core:

sti // Single-step
sti // Single-step
sti // Single-step
sti // Single-step
sti // Single-step

x64dbg
script
1/3

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 6

find cip,"C2 1000“ // find the return point of VirtualAlloc
bp $result // set a breakpoint
erun // run and pass all first exceptions to the application
cmp eax,0 // test if eax (no allocated memory) is equal to zero
je pcode // jump to pcode label
bpm eax,0,x // set executable memory breakpoint and restore it once hit.
erun // run and pass all first exceptions to the application

//try to find if there is the “This program” string within the module’s memory.
findall $breakpointexceptionaddress,"546869732070726F6772616D”

cmp $result,0 // check if there isn’t any hit
je pcode // jump to pcode label
$dumpaddr = mem.base($breakpointexceptionaddress) //find the memory base.
$size = mem.size($breakpointexceptionaddress) //find the size of memory base.
savedata :memdump:,$dumpaddr,$size //dump the segment.
msgyn "Memory dumped! Do you want continue?“ //show a dialog
cmp $result,1 //check your choice
je scode // jump to scode label
bc // clear existing breakpoints
bphwc // clear existing hardware breakpoints
ret // exit

x64dbg
script 2/3

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 7

pcode:

msgyn "There isn't a PE file! Do you want continue?"
cmp $result,0 // check if we don’t want continue
je final
sti //single step.
erun // run and pass all first exceptions to the application
jmp core // jump to core label

scode:

msg "Let's go to next dump“ // shows a message box
erun // run and pass all first exceptions to the application
jmp core // jump to core label

final:

bc // clear existing breakpoints
bphwc // clear existing hardware breakpoints
ret // exit

x64dbg
script 3/3

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

ANTI-REVERSING

CONFIDENCE CONFERENCE (2019)
8

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)
9

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Obfuscation aims to protect software of being reversed, intellectual
property and, in our case, malicious code too.  Honestly,
obfuscation does not really protect the program, but it can make the
reverser’s life harder than usual.

We see obfuscated code every single day when we analyze commom
userland malware, droppers written in VBA and Powershell, so it
mightn’t seem to be a big deal.

We can use IDA Pro SDK to write plugins to extend the IDA Pro
functionalities, analyze some code and data flow and even
automatizing unpacking of strange malicious files.

Additionally, if you are facing problems to analyze a modified MBR, so
you could even write a loader to load the MBR structure and analyze
it in IDA Pro. 

CONFIDENCE CONFERENCE (2019) 10

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 It is quick to create a simple IDA Pro plugin. Download the IDA SDK from
https://www.hex-rays.com/products/ida/support/download.shtml (likely, you will
need a professional account). Copy it to a folder (idasdk695/) within the IDA Pro
installation directory.

 Create a project in Visual Studio 2017 (File  New  Create Project  Visual C++
Windows Desktop  Dynamic-Link Library (DLL)).

 Change few project properties as shown in this slide and next ones.

CONFIDENCE CONFERENCE (2019) 11

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Include the “__NT__;__IDP__” in Processor Definitions and change Runtime
Library to “Multi-threaded” (MT) (take care: it is NOT /MTd).

CONFIDENCE CONFERENCE (2019) 12

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Add ida.lib (from C:\Program Files (x86)\IDA 6.95\idasdk695\lib\x86_win_vc_32)
to Additional Dependencies and its folder to Additional Library Directories.

 Add “/EXPORT:PLUGIN” to Additional Options.

CONFIDENCE CONFERENCE (2019) 13

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Don’t forget necessary headers. 

Initialization function.

Make the plugin available to this idb and keep the plugin
loaded in memory.

Clean-up tasks.

Function to be called when user activates the plugin.

Simple (and incomplete) URL regex. 

CONFIDENCE CONFERENCE (2019) 14

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Plugin will be activated by
combination ALT-C. 

Plugin structure.

The core logic is only it. It checks
whether the string matches to the
URL regex.

If checks, so ea == strinfo.ea. 

It gets the number of
strings from “Strings view”.

It gets strings.

CONFIDENCE CONFERENCE (2019) 15

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

URLs found within this malicious driver. 

ALT + C

CONFIDENCE CONFERENCE (2019) 16

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Unfortunately, there are packers and protectors such as VMprotect,
Themida, Arxan and Agile .NET that use modern obfuscation
techniques, so making the procedure of reversing a code very
complicated.

Most protectors have used with 64-bit code (and malware).

Original IAT is removed from the original code (as usually applied by
any packer). However, IAT from packers like Themida keeps only one
function (TlsSetValue).

Almost all of them provide string encryption.

 They protect and check the memory integrity. Thus, it is not possible
to dump a clean executable from the memory (using Volatility, for
example) because original instructions are not decoded in the
memory.

CONFIDENCE CONFERENCE (2019) 17

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 .NET protectors rename classes, methods, fields and external
references.

 Instructions (x86/x64 code) are virtualized and transformed into
virtual machine instructions (RISC instructions).

 Instructions are encrypted on memory as additional memory layer.

Obfuscation is stack based, so it is hard to handle virtualized code
statically.

Virtualized code is polymorphic, so there are many representations
referring the same CPU instruction.

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)
18

 There are also fake push instructions.

 There are many dead and useless codes.

 There is some code reordering using unconditional jumps.

All obfuscators use code flattening.

 Packers have few anti-debugger and anti-vm tricks. However, few
months ago, I found a not so common anti-vmware trick based on
temperature (more about it later).

CONFIDENCE CONFERENCE (2019) 19

int defcon(int x)
“Virtualizer”
(bytecodes)

vm_call_1(opcodes, x)

Fetches bytes, decodes
them to instructions and
dispatches them to handlers

 Protectors using virtual machines introduces into the obfuscated code:

 A context switch component, which “transfers” registry and flag information into VM
context (virtual machine). The oposite movement is done later from VM machine and
native (x86/x64) context (suitable to keep within C structures during unpacking
process )

 This “transformation” from native register to virtualized registers can be one to one,
but not always.

 Inside of the virtual machine, the cycle is:

 fetch instruction
 decode it
 find the pointer to instruction and lookup the associate opcode in a handler table
 call the target handler

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)

20

 Few interesting concepts:

 Fetching: the instruction to be executed by Virtual Machine is
fetched.

 Decoding: the target x86 instruction is decoded using rules
from Virtual Machine (remember: usually, the architecture is
usually based on RISC instructions)

 Dispatcher: Once the handler is determined, so jump to the
suitable handler. Dispatchers could be made by a jump table or
switch case structure.

 Handler: In a nutshell, a handler is the implementation of the
Virtual Machine instruction set.

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 21

B C HD

DISPATCHER

A IGFE

2

3

Instruction
decoder

Instruction

A, B, C, ... are handlers such as
handler_add, handler_sub,

handler_push...

Opcodes from a custom
instruction set.

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Initialization

Fetch

Decode

RVA  RVA + process base
address and other tasks.

Instructions are stored in an
encrypted format.

CONFIDENCE CONFERENCE (2019) 22

opcode 1

opcode 2

opcode 3

opcode 4

opcode 7

opcode 5

opcode 6

handler 1

handler 2

handler 3

handler 4

handler 7

handler 5

handler 6

function pointer 1

function pointer 2

function pointer 3

function pointer 4

function pointer 7

function pointer 5

function pointer 6 A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

function pointer table
(likely encrypted)

encr_1 encr_nencr_2 encr_3 encr_5 encr_4 ...

1 2 3 4 5 n-1 n

vm_add vm_nvm_sub vm_xor vm_push vm_pop ...
decrypted
instructions

encrypted
instructions

indexes

recovering and
decrypting funcions

CONFIDENCE CONFERENCE (2019) 23

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Is it easy to reverse virtualized and packed code? Certainly, it is not.
The number of challenges might be huge 

 Remember: obfuscating is transforming a code from A to B by using
any tricks (including virtualization).

 It is not so easy to identify whether the program is virtualized or not.

 Prologues and epilogues from each function could be not virtualized.
Take care. 

 Have you tried to open an advanced packer in IDA Pro? First sight:
only red and grey blocks (non-functions and data). 

CONFIDENCE CONFERENCE (2019) 24

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Sometimes VM handlers come from data blocks...

 Original code section could be “splitted” and “scattered” around the
program (data and instructions are mixed in the binary, without
having just one instruction block)

 Instructions which reference imported functions could have been
either zeroed or replaced by NOP.  Most certainly, they will be
restored (re-inserted) dynamically by the packer later.

 If references are not zeroed, so they are usually translated to short
jumps using RVA, for the same import address (“IAT obfuscation”) 

CONFIDENCE CONFERENCE (2019) 25

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Worse, the API names could be hashed (as used in shellcodes). 

Custom packers usually don’t virtualize all x86 instructions.

 It is common to see a kind of mix between virtualized, native
instructions and data after the packing procedure.

Native APIs could be redirected to stub code, which forwards the
call to (copied) native DLLs (from the respective APIs).

 The “hidden” function code could be copied (memcpy()) to
memory allocated by VirtualAlloc() Of course, there must be a
fixup in the code to get these instructions.

CONFIDENCE CONFERENCE (2019) 26

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

By the way, how many virtualized instructions exist?

Are we able to classify virtualized instructions in groups according to
operands and their purpose (memory access,
conditional/unconditional jumps, arithmetic, general, an so on)?

 Pay attention to instruction’s stem to put similar classes of
instructions together (for example, jump instructions, direct calls,
indirect calls and so on).

 Find similarity between virtualized instructions and x86 instructions.

CONFIDENCE CONFERENCE (2019) 27

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

What are the “key instructions” that are responsible to make the
transition from x86 mode to “virtualized mode” and vice-versa?

 It is interesting to find out the VM instruction’s size, which we might
fit into a structure that represents encryption key, data, RVA
(location), opcode (type) and so on.

 It is recommended to try to find handlers to native x86 instructions
(non-virtualized instruction)

 In this case, x86 instructions are also kept encrypted and compressed
together with the virtualized instructions.

CONFIDENCE CONFERENCE (2019) 28

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Constant unfolding: technique used by obfuscators to replace a
contant by a bunch of code that produces the same resulting
constant’s value.

 Pattern-based obfuscation: exchange of one instruction by a set of
equivalent instructions.

 Abusing inline functions.

 Anti-VM techniques: prevents the malware sample to run inside a
VM.

 Dead (garbage) code: this technique is implemented by inserting
codes whose results will be overwritten in next lines of code or,
worse, they won’t be used anymore.

 Code duplication: different paths coming into the same destination
(used by virtualization obfuscators).

CONFIDENCE CONFERENCE (2019) 29

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Control indirection 1: call instruction  stack pointer update 
return skipping some junk code after the call instruction (RET x).

 Control indirection 2: malware trigger an exception  registered
exception is called  new branch of instructions.

 Opaque predicate: Although apparently there is an evaluation
(conditional jump: jz/jnz), the result is always evaluated to true (or
false), which means an unconditional jump. Thus, there is a dead
branch.

 Anti-debugging: used as irritating techniques to slow the process
analysis.

 Polymorphism: it is produced by self-modification code (like
shellcodes) and by encrypting resources (similar most malware
samples).

CONFIDENCE CONFERENCE (2019) 30

#include <stdio.h>

int main (void)

{
int aborges = 0;
while (aborges < 30)
{

printf(“%d\n”, aborges);
aborges++;

}

return 0;

}

Loading libs

aborges = 0

aborges < 30

printf()
aborges++

return 0

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 31

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Original Program

CONFIDENCE CONFERENCE (2019) 32

cc = 1 cc != 0

switch(cc)

aborges < 30

cc = 0 cc = 3

break

aborges = 0

cc = 2

break

printf

aborges++

break

cc = 2

loading libs

cc = 1

cc = 2

cc = 3

 Disavantages:

 Loss of performance
 Easy to identify the CFG flattening

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 33

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 The obfuscator-llvm is an excellent project to be used for code obsfuscation. To
install it, it is recommended to add a swap file first (because the linkage stage):

 fallocate -l 8GB /swapfile
 chmod 600 /swapfile
 mkswap /swapfile
 swapon /swapfile
 swapon --show
 apt-get install llvm-4.0
 apt-get install gcc-multilib (install gcc lib support to 32 bit)
 git clone -b llvm-4.0 https://github.com/obfuscator-llvm/obfuscator.git
 mkdir build ; cd build/
 cmake -DCMAKE_BUILD_TYPE=Release -DLLVM_INCLUDE_TESTS=OFF

../obfuscator/
 make -j7

 Possible usages:

 ./build/bin/clang alexborges.c -o alexborges -mllvm -fla
 ./build/bin/clang alexborges.c -m32 -o alexborges -mllvm -fla
 ./build/bin/clang alexborges.c -o alexborges -mllvm -fla -mllvm -sub

CONFIDENCE CONFERENCE (2019) 34

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Main dispatcher

Prologue and
initial assignment

CONFIDENCE CONFERENCE (2019) 35

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Main blocks
from the
program

CONFIDENCE CONFERENCE (2019) 36

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

General overview
of the obfuscate code

CONFIDENCE CONFERENCE (2019) 37

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 38

.text:00401000 loc_401000: ; CODE XREF: _main+Fp

.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 xor eax, eax

.text:00401005 jz short near ptr loc_40100D+1

.text:00401007 jnz near ptr loc_40100D+4

.text:0040100D

.text:0040100D loc_40100D: ; CODE XREF: .text:00401005j

.text:0040100D ; .text:00401007j

.text:0040100D jmp near ptr 0D0A8837h

Simple opaque predicate and anti-disassembly technique

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 39

Decrypted
shellcode

Decryption
instructions 

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 40

00401040 call + $5
00401045 pop ecx
00401046 inc ecx
00401047 inc ecx
00401048 add ecx, 4
00401049 add ecx, 4
0040104A push ecx
0040104B ret
0040104C sub ecx, 6
0040104D dec ecx
0040104E dec ecx
0040104F jmp 0x401320

 Call stack manipulation:

 Do you know what’s
happening here? 

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

METASM
(keystone + capstone + unicorn)

CONFIDENCE CONFERENCE (2019)
41

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 42

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

sub eax, B9
add eax,ecx
add eax, B9

sub eax, B9
sub eax, 86
add eax,ecx
add eax, 86
push edx
mov edx, 42
inc edx
dec edx
add edx, 77
add eax, edx
pop edx

push ebx
mov ebx, B9
sub eax, ebx
pop ebx
sub eax, 55
sub eax, 32
add eax, ecx
add eax, 50
add eax, 37
push edx
push ecx
mov ecx, 49
mov edx, ecx
pop ecx
inc edx
add edx, 70
dec edx
add eax, edx
pop edx

add eax, ecx

1
2

3

4

How to reverse the obfuscation and, from stage 4, to return
to the stage 1? 

CONFIDENCE CONFERENCE (2019) 43

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 METASM works as disassembler, assembler, debugger, compiler and linker.

 Key features:

 Written in Ruby
 C compiler and decompiler
 Automatic backtracking
 Live process manipulation
 Supports the following architecture:

 Intel IA32 (16/32/64 bits)
 PPC
 MIPS

 Supports the following file format:

 MZ and PE/COFF
 ELF
 Mach-O
 Raw (shellcode)

 root@kali:~/programs# git clone https://github.com/jjyg/metasm.git
 root@kali:~/programs# cd metasm/
 root@kali:~/programs/metasm# make
 root@kali:~/programs/metasm# make all

Include the following line into .bashrc file to indicate the Metasm directory installation:

export RUBYLIB=$RUBYLIB:~/programs/metasm

CONFIDENCE CONFERENCE (2019) 44

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

This instruction was inserted to make the
eax register evaluation easier. 

 based on metasm.rb file
and Bruce Dang code.

CONFIDENCE CONFERENCE (2019) 45

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

initialize and disassemble
code since beginning (start).

list the assembly code.

determines which is the final
instruction to walk back from there. 

initialize the backtracking engine.

CONFIDENCE CONFERENCE (2019) 46

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Backtracking from the last instruction.

Show only the effective instructions,
which really can alter the final result.

logs the sequence of
backtracked instructions.

CONFIDENCE CONFERENCE (2019) 47

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Remember: this is our obfuscated code. 

CONFIDENCE CONFERENCE (2019) 48

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 49

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Game over. 

CONFIDENCE CONFERENCE (2019) 50

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Output originated from backtracing_log.select
command (in reverse)

CONFIDENCE CONFERENCE (2019) 51

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Emulation is always an excellent method to solve practical reverse engineering problems
and , fortunately, we have the uEmu and also could use the Keystone Engine assembler and
Capstone Engine disassembler. 

 Keystone Engine acts an assembler and:

 Supports x86, Mips, Arm and many other architectures.
 It is implemented in C/C++ and has bindings to Python, Ruby, Powershell and C#

(among other languages).

 Installing Keystone:

 root@kali:~/Desktop# wget https://github.com/keystone-engine/keystone/archive/0.9.1.tar.gz
 root@kali:~/programs# cp /root/Desktop/keystone-0.9.1.tar.gz .
 root@kali:~/programs# tar -zxvf keystone-0.9.1.tar.gz
 root@kali:~/programs/keystone-0.9.1# apt-get install cmake
 root@kali:~/programs/keystone-0.9.1# mkdir build ; cd build
 root@kali:~/programs/keystone-0.9.1/build# apt-get install time
 root@kali:~/programs/keystone-0.9.1/build# ../make-share.sh
 root@kali:~/programs/keystone-0.9.1/build# make install
 root@kali:~/programs/keystone-0.9.1/build# ldconfig
 root@kali:~/programs/keystone-0.9.1/build# tail -3 /root/.bashrc
 export PATH=$PATH:/root/programs/phantomjs-2.1.1-linux-x86_64/bin:/usr/local/bin/kstool
 export RUBYLIB=$RUBYLIB:~/programs/metasm
 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

CONFIDENCE CONFERENCE (2019) 52

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

instructions from the
original obsfuscated code

Creating a keystone engine

Assembling our instructions
using keystone engine.

Freeing memory
and closing engine.

CONFIDENCE CONFERENCE (2019) 53

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 54

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

To install Capstone: apt-get install libcapstone3 libcapstone-dev 

CONFIDENCE CONFERENCE (2019) 55

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Original code disassembled
by Capstone. 

CONFIDENCE CONFERENCE (2019) 56

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

IDA Pro confirms our
disassembly task. 

CONFIDENCE CONFERENCE (2019) 57

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

set up before
running uEmu

This result confirms our previous conclusion.

 Download uEmu from https://github.com/alexhude/uEmu
 Install Unicorn: pip install unicorn.
 Load uEmu in IDA using ALT+F7 hot key.
 Right click the code and choose the uEmu sub-menu.

CONFIDENCE CONFERENCE (2019) 58

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 # git clone https://github.com/unicorn-engine/unicorn.git
 # cd unicorn ; ./make.sh
 # ./make.sh install

CONFIDENCE CONFERENCE (2019) 59

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 60

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 61

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 62

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 63

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 64

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

MIASM

CONFIDENCE CONFERENCE (2019)
65

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 66

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 MIASM is one of most impressive framework for reverse engineering, which is able to
analyze, generate and modify several different types of programs.

 MIASM supports assembling and disassembling programs from different platforms such as
ARM, x86, MIPS and so on, and it also is able to emulate by using JIT.

 Therefore, MIASM is excellent to de-obfuscation.

 Installing MIASM:

 git clone https://github.com/serpilliere/elfesteem.git elfesteem
 cd elfesteem/
 python setup.py build
 python setup.py install
 apt-get install clang texinfo texi2html
 apt-get remove libtcc-dev
 apt-get install llvm
 cd ..
 git clone http://repo.or.cz/tinycc.git
 cd tinycc/
 git checkout release_0_9_26
 ./configure --disable-static
 make
 make install

CONFIDENCE CONFERENCE (2019) 67

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 pip install llvmlite
 apt-get install z3
 apt-get install python-pycparser
 git clone https://github.com/cea-sec/miasm.git
 root@kali:~/programs/miasm# python setup.py build
 root@kali:~/programs/miasm# python setup.py install
 root@kali:~/programs/miasm/test# python test_all.py
 apt-get install graphviz
 apt-get install xdot
 (testing MIASM) root@kali:~/programs# python

/root/programs/miasm/example/disasm/full.py -m x86_32 /root/programs/shellcode

INFO : Load binary
INFO : ok
INFO : import machine...
INFO : ok
INFO : func ok 0000000000001070 (0)
INFO : generate graph file
INFO : generate intervals
[0x1070 0x10A2]
INFO : total lines 0

 (testing MIASM) xdot graph_execflow.dot

CONFIDENCE CONFERENCE (2019) 68

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 69

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Opens our file. The Container provides
the byte source to the disasm engine.

Instantiates the assemble engine using
the x86 32-bits architecture.

Runs the recursive transversal
disassembling since beginning.

Generates a dot graph.

Set “llvm” as Jit engine to
emulation and initialize the stack.

Set the virtual start
address, register values and
memory protection.

Adds a breakpoint at
the last line of code.

Run the emulation.

CONFIDENCE CONFERENCE (2019) 70

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Disassembling our code (again) 

CONFIDENCE CONFERENCE (2019) 71

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 72

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Our proposed code. 

CONFIDENCE CONFERENCE (2019) 73

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Get the IRA converter.

Initialize and run the Symbolic
Execution Engine.

CONFIDENCE CONFERENCE (2019) 74

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 75

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

The same conclusion from
our previous tests. 

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

TRITON

CONFIDENCE CONFERENCE (2019)
76

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)
77

 TRITON

 It can be downloaded from https://triton.quarkslab.com/
 Based on Intel Pin instrumentation tool: https://software.intel.com/en-

us/articles/pin-a-dynamic-binary-instrumentation-tool

 Triton offers a C/C++/Python interface provides:

 dynamic symbolic execution
 run time registry information and memory modification
 taint engine
 Z3 interface to handle contraints
 snapshot engine (it is not necessary to restart the program every time,

but only restores memory and register states)
 access to Pin funtions
 symbolic fuzzing
 gather code coverage

 Supports x86 and x64 architecture.

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)
78

 Triton supports:

 symbolic execution mode:

 emulates instruction effects.
 allows us to emulate only part of the program (excellent for

analyzing branches).

 concolic execution mode:

 allows us to analyze the program only from start.

 Taint analysis is amazing because we are able to using in fuzzing tasks to
know what registers and memory address are “affected” by the user data
input. 

 During Virtual Machine’s decoding, it is interesting to distinguish which
instructions are related to user input and which are not. 

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 79

 Installing Triton without Pin (Ubuntu 19):

 apt-get install libboost-all-dev
 apt-get install libpython-dev
 apt-get install libcapstone-dev
 Take care: DO NOT install libz3-dev. If this package is already installed,

so remove it.
 git clone https://github.com/Z3Prover/z3
 cd z3/
 python scripts/mk_make.py
 cd build/
 make
 make install
 git clone https://github.com/JonathanSalwan/Triton.git
 cd Triton/
 mkdir build
 cd build/
 cmake ..
 make -j install (my recommendation: 8 GB RAM + 8 GB swapfile)

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 80

 Installing Triton with Pin (Ubuntu 19):

 Install the same packages from last slide.
 Install Z3 as shown in the last slide.
 wget

https://software.intel.com/sites/landingpage/pintool/downloads/pin-
2.14-71313-gcc.4.4.7-linux.tar.gz

 tar zxvf pin-2.14-71313-gcc.4.4.7-linux.tar.gz
 cd pin-2.14-71313-gcc.4.4.7-linux/source/tools
 git clone https://github.com/JonathanSalwan/Triton.git
 cd Triton/
 mkdir build
 cd build
 cmake -DPINTOOL=on -DKERNEL4=on ..
 make
 cd ..
 ./build/triton ./src/examples/pin/ir.py /usr/bin/host (only to test the

installation).

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 81

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 82

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 83

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 84

This is an educational way to show how
to find the hexadecimal representation
for each instruction.

However, there are much better ways to
do it by opening the binary on IDA Pro,
Radare2, Ghidra or even using distorm3.

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 85

byte by byte 

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019)
86

0xb9 == 185 

eax

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 87

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 88

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 89

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 90

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 91

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

RADARE2 + MIASM

CONFIDENCE CONFERENCE (2019)
92

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 93

ESIL comments, which came from
MIASM and are converted to R2

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 94

 aer: handle ESIL registers (set and show)

 aes: perform emulated debugger step

 aecu: continue until address

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 95

R2M2 bridges the radare2 and miasm2 communities: radare2 being the graphical interface of
miasm2, and miasm2 simplifying the implementation of new architectures.

How to install it?

 apt-get install docker
 git clone https://github.com/radare/radare2.git
 cd radare2/
 sys/install.sh
 Install MIASM
 pip install cffi
 pip install jinja2
 docker pull guedou/r2m2
 docker run --rm -it -e 'R2M2_ARCH=x86_32' guedou/r2m2 bash

 [r2m2@fd5662d151e4 ~]$ pwd

 (another terminal) docker ps -a
 (another terminal) docker cp /root/confidence2019.bin

fd5662d151e4:/home/r2m2/confidence2019.bin

 [r2m2@fd5662d151e4 ~]$ export R2M2_ARCH=x86_32
 [r2m2@fd5662d151e4 ~]$ r2 -A -b 32 -a r2m2 confidence2019.bin

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 96

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 97

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

ANTI-VM

CONFIDENCE CONFERENCE (2019)
98

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 99

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 It is extremely easy writing malware samples using anti-VM techniques designed
to detect VMWare (checking I/O port communication), VirtualBox, Parallels,
SeaBIOS emulator, QEMU emulator, Bochs emulator, QEMU emulator, Hyper-V,
Innotek VirtualBox, sandboxes (Cuckoo).

 Furthermore, there are dozens of techniques that could be used for detection
Vmware sandboxes:

 Examing the registry (OpenSubKey() function) to try to find entries related to
tools installed in the guest
(HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VirtualMachine\Guest\Param
eters).

 Using WMI to query the Win32_BIOS management class to interact with
attributes from the physical machine.

 We have already know every single anti-VM technique around the world and all of
them are documented.

 Most current techniques use WMI and it is quick to write a C# program using
them.

CONFIDENCE CONFERENCE (2019) 100

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 101

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 The code from last slide does not have any news:

 The ManagementClass class represents a Common Information Model
(CIM) management class.

 Win32_BIOS WMI class represents the attributes of BIOS and members of
this class enable you to access WMI data using a specific WMI class path.

 GetInstances() acquires a collection of all instances of the class.
 GetEnumerator() returns the enumerator (IEnumerator) for the collection.
 IEnumerator.Current() returns the same object.
 IEnumerator.MoveNext() advances the enumerator to the next element of

the collection.

 Physical host:

C:\> Test_VM.exe
Attributes:
Version: DELL - 6222004
SerialNumber: D5965S1
OperatingSystem: 0
Manufacturer: Dell Inc.

 Guest virtual machine:

E:\> Test_VM.exe
Attributes:
Version: LENOVO - 6040000
SerialNumber: VMware-56 4d 8d c3 a7 c7 e5
2b-39 d6 cc 93 bf 90 28 2d
OperatingSystem: 0
Manufacturer: Phoenix Technologies LTD

CONFIDENCE CONFERENCE (2019) 102

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 103

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

Double-click the result....

CONFIDENCE CONFERENCE (2019) 104

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 105

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

CONFIDENCE CONFERENCE (2019) 106

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 There is not support for acquiring temperature
data in virtual machines.

 Therefore, malwares are able to know whether
they are running on virtual machines or not. 

 Physical Host:

C:\> VM_Test2.exe

Status: OK Thus, the program is running
in a physical host!

 Virtual Machine:

C:\> VM_Test2.exe

This program IS RUNNING in a virtual machine!

CONFIDENCE CONFERENCE (2019) 107

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

FEW CONCLUSIONS:

 Before trying to unpack modern protectors, it is really necessary to
understand the common anti-reversing techniques.

MIASM, METASM and TRITON are amazing tools to handle and
deobfuscate complex codes.

 Emulation is an possible alternative to understand small and
complicated piece of codes.

 DTrace has done an excellent job on Solaris and it may be an excellent
tool on Windows operating system. Stay tuned. 

 Although excellent researches have found sophisticated anti-vm
techniques, many other simples and smart ones exist. Take care.

CONFIDENCE CONFERENCE (2019) 108

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
M

A
LW

A
R

E
 A

N
D

 S
E

C
U

R
IT

Y
 R

E
S

E
A

R
C

H
E

R

 Acknowledgments to:

CONFidence staff, which since the beginning has been
very kind and professional.

You, who reserved some time attend my talk.

Remember: the best of this life are people. 

CONFIDENCE CONFERENCE (2019)
109

A
LE

X
A

N
D

R
E

 B
O

R
G

E
S

 –
IT

 I
S

 N
O

T
 A

LL
O

W
E

D
 T

O

C
O

P
Y

 O
R

 R
E

P
R

O
D

U
C

E
 T

H
IS

 S
LI

D
E

.

 Malware and Security Researcher.
 Speaker at DEF CON USA 2018
 Speaker at DEF CON China 2019
 Speaker at HITB2019 Amsterdam
 Speaker at BSIDES 2018/2017/2016
 Speaker at H2HC 2016/2015
 Speaker at BHACK 2018
 Consultant, Instructor and Speaker

on Malware Analysis, Memory
Analysis, Digital Forensics and
Rookits.

 Reviewer member of the The
Journal of Digital Forensics,
Security and Law.

 Referee on Digital Investigation:
The International Journal of Digital
Forensics & Incident Response

THANK YOU FOR
ATTENDING MY TALK. 

 Twitter:

@ale_sp_brazil
@blackstormsecbr

 Website: http://blackstormsecurity.com

 LinkedIn:
http://www.linkedin.com/in/aleborges

 E-mail:
alexandreborges@blackstormsecurity.com

