
Building a Machine Learning
Classifier for Malware Detection

Zane Markel and Michael Bilzor
Computer Science Department

U.S. Naval Academy
Annapolis, MD

m154500@usna.edu, bilzor@usna.edu

Abstract—Current signature-based antivirus software is in-
effective against many modern malicious software threats. Ma-
chine learning methods can be used to create more effective
antimalware software, capable of detecting even zero-day attacks.
Some studies have investigated the plausibility of applying ma-
chine learning to malware detection, primarily using features
from n-grams of an executables file’s byte code.

We propose an approach that primarily learns from metadata,
mostly contained in the headers of executable files, specifically
the Windows Portable Executable 32-bit (PE32) file format.
Our experiments indicate that executable file metadata is highly
discriminative between malware and benign software. We also
employ various machine learning methods, finding that Decision
Tree classifiers outperform Logistic Regression and Naive Bayes
in this setting. We analyze various features of the PE32 header
and identify those most suitable for machine learning classifiers.
Finally, we evaluate changes in classifier performance when the
malware prevalence (fraction of malware versus benign software)
is varied.

I. INTRODUCTION

Modern antivirus software is effective at detecting known
threats, but can be evaded by novel malware. A study by the
Australian computer security team AusCERT found that 80
percent of new malware was not detected by the latest antivirus
software [6]. In 2013, the security firm iMPERVA gathered
over 80 new virus samples and ran them through 40 of the
best antivirus products available; only 5 percent of the new
samples were correctly classified as malware [4].

A. Limitations of Traditional Antivirus

Traditional signature-based antivirus products are reactive
by nature. Malware analysts manually generate a signature,
usually a hash, to detect a specific piece of malware and
add the signature to a malware database. Antivirus software
consults the database of signatures during each new scan. This
method was effective when viruses, trojans, and worms were
first written, but malware analysts can no longer keep up with
manual analysis, thanks to automated malware polymorphism
and obfuscation. Signature-based detection may not identify
zero-day attacks — malicious files targeting vulnerabilities that
are previously undisclosed. In order to create a more robust and
reliable antivirus product, we need to develop alternatives that
complement traditional signature-based detection.

B. Machine Learning in Malware
Classification

Supervised machine learning classification can be used to
address some of the limitations of signature-based malware
detection. To use machine learning to classify files as malicious
or benign, one must first build labeled datasets for training.
The features of each file are derived from some specific
characteristics of the file, and each file is labeled as either
benign or malicious. Learning algorithms analyze training
records to generate a model that maps the relationship of file
features and labels. That model — the classifier — is used to
predict the class of each record in the test set, which contain
file records without labels.

C. Related Results

Previous attempts to build a machine learning malware
classifier have had mixed results. Much research to date
has focused on using n-gram features derived from a file’s
binary code. For instance, Kolter and Maloof applied machine
learning to n-grams of malicious and benign software, and
their model detected 98 percent of malware while only incor-
rectly guessing 5 percent of benign software [5]. Santos et
al. correctly identified 74 percent of 1,000 malware samples
as malicious while correctly identifying all of 1,000 benign
software samples [8]. To be useful in an operational system,
though, such a classifier must be even more accurate, while
maintaining a very low rate of false positives.

D. Some Header Data Differ in Malware

32-bit Portable Executable (PE32) is the executable file
format for 32-bit Windows machines. The PE32 header data
contains many fields which describe the structure of the exe-
cutable file. In 2012, Yonts published statistical comparisons
between the header data of clean and malicious PE32 files [12],
showing that malicious and benign programs frequently differ
in certain components of the header. Yonts manually designed
single-feature detection rules that individually detected many
malicious files while falsely alerting on relatively few benign
files [12]. The Yonts analysis did not attempt to combine
multiple features or use machine learning to build a general
classifier, however.

Yan et al. reinforced this finding by comparing how well
various feature types discriminate among different malware
families. They examined n-grams of a file’s binary contents
and disassembled x86 code, its dynamic execution traces, and



the file’s PE32 header data. Of these feature types, PE32 header
data yielded the best classification performance [11]. While the
study did classify between malware families, it did not classify
between malicious and benign files. No single file feature has
been shown to effectively discriminate between malicious and
benign files with high accuracy, but the findings of both Yonts
and Yan, et al. suggest that a well-designed machine learning
algorithm may be able to discriminate between clean and
malicious files by examining a collection of header features
and other metadata.

PE32 header data is attractive for malware detection be-
cause many header features are intrinsic to a program’s struc-
ture and might therefore be difficult for an attacker to manipu-
late without affecting program function. Thus, malware authors
will not be able to easily evade the detection rules for machine
learning based malware detection simply by modifying the
header data alone. Also, some zero-day attacks might have
a structure similar to known malware, so a machine learning
based antivirus program might be able to detect previously
unseen malware via similarities in the PE data. Finally, an
operational malware detector could quickly gather a file’s
PE data without having to run the program or perform any
complicated analysis.

II. GOALS AND HYPOTHESIS

Our goal in this research is to build a machine learning
classifier that can discriminate between malware and benign
software. We hypothesize that machine learning classifiers
can successfully discriminate between malware and benign
software by learning from intrinsic file characteristics and
metadata, such as PE32 file header data. In pursuit of this
general hypothesis, we explore several sub-goals:

• Construct and compare malware classifiers using three
commonly-used machine learning algorithms, Naive
Bayes, Logistic Regression, and Decision Trees.

• Explore the effect of using different proportions of
malware and benign software in training and test data.

• Identify PE file headers that can be easily modified by
an attacker without effecting file execution.

• Determine which PE file header features individually
discriminate best between malware and benign soft-
ware.

III. EXPERIMENTAL SETUP

A. Data

To train the classifiers, we constructed a database of known
clean and malicious PE32 files. The malicious files were
randomly selected from a collection we obtained from Open
Malware, a group dedicated to safely distributing malware for
research purposes [10]. There were 122,799 total malicious
files used in our trials. To obtain a representative sample of
benign files, we scanned all the PE32 files in the ’C:\Windows’
and ’C:\Program Files’ directories from the following clean
installations of Microsoft Windows:

• Windows Vista Enterprise

• Windows 7 Professional

• Windows Server 2008 R2 Standard

• Windows 8.1 Professional

Additionally, we scanned the PE32 files from a diverse set
of 46 new installations of the most popular Windows soft-
ware applications. Some examples included Chrome, Firefox,
QuickTime, Microsoft Office, Python, Java, VLC, etc. After
removing duplicate files (mostly from common Windows ex-
ecutables), there were 42,003 benign files, for a collection of
164,802 files total.

We used a Python module called pefile [1] to extract
44 different features from the PE32 headers, plus 2 boolean
features derived from the section entropies of a PE32 file,
to build a database. Each file in the database had a record
containing the features and the label, benign or malicious, of
that file.

B. Method

Each experiment was broken into a set of trials in which
we sampled the database for training and test data, trained a
classifier, and measured classifier performance on test data.

Our sampling algorithm generates non-intersecting training
and test samples from a given dataset. We specify the desired
number of records as well as the malware prevalence, or
malprev, which is the percent of records in the sample that
correspond to malicious files. We varied malprev to see how
learning algorithm performance varied when it has plenty
of examples of both malware and benign software (50%
prevalence), versus a more realistic malprev (0.1%). We also
provided seeds to randomly generate samples in a reproducible
manner. For each trial, we used ten seeds for ten different sub-
trials.

After generating training and test samples, we trained a
new classifier for each sub-trial using one of several standard,
popular machine learning algorithms. Specifically, we used the
scikit-learn Python module [2] to implement:

• Naive Bayes assuming Gaussian feature distributions

• Logistic Regression using L1 regularization

• Classification and Regression Tree (CART) Decision
Trees with splits computed based on Entropy

After being trained, the classifier was used to predict the
labels of each record in the test sample. For each sub-trial,
the predicted labels were compared with the known labels
associated with each record to compute the overall precision,
recall, and F-score. For every trial, we found the average and
standard deviation F-scores of the sub-trials.

IV. RESULTS

A. Learning Algorithm Comparison

Our first experiment was designed to determine which
learning algorithm would most effectively learn at various
malprev levels. Our trials used 22,500 training samples and
tested on 2,500 test samples. The results are shown in Table
I.



malprev Naive Bayes Decision Tree (CART) Logistic Regression
(0.5, 0.5) 0.5127 0.9792 0.9456
(0.1, 0.1) 0.4640 0.9270 0.7941
(0.5, 0.1) 0.4804 0.9150 0.7905

(0.01, 0.01) 0.4250 0.7581 0.3023
(0.5, 0.01) 0.3342 0.5247 0.2873

(0.001, 0.001) 0.0493 0.4157 0.03124
(0.5, 0.001) 0.0697 0.1193 0.04857

TABLE I. F-SCORES OF TRIALS WITH VARYING malprev AND
LEARNING ALGORITHMS. Malprev IS EXPRESSED AS A TUPLE CONTAINING

THE TRAINING SAMPLE malprev AND TEST SAMPLE malprev,
RESPECTIVELY.

malprev (train, test) F-Score
(0.1, 0.1) 0.9270

(0.01, 0.01) 0.7581
(0.001, 0.01) 0.4157

(0.5, 0.1) 0.9150
(0.5, 0.01) 0.5247
(0.5, 0.001) 0.1193

TABLE II. F-SCORES OF TRIALS PERFORMED WHEN TRAINING
malprev WAS KEPT THE SAME AS THE TEST malprev (FIRST THREE ROWS)

AND WHEN TRAINING malprev WAS KEPT AT 0.5 (HIGH malprev). DATA
SHOWN IS FOR TRIALS WITH CART DECISION TREES.

Similar to the finding of Yan et al. that Decision Trees are
more effective for classifying malware into similar families
[11], our trials indicated that, regardless of malprev, Deci-
sion Trees (using CART) were the best performing learning
algorithm for discriminating between malicious and benign
files. Naive Bayes outperformed Logistic Regression when test
malprev was smaller.

B. Malware Prevalence

Operational machine learning based malware detection
software would need to be able to detect malware on systems
with a very low malprev. We hypothesized that test data with
lower malprev would have both a higher false positive and
false negative rate. We also hypothesized that, by keeping
training malprev at 0.5, performance would be better at lower
test malprev, since the classifier would have a richer training
set to learn from. Table II summarizes the trials we ran to test
these hypotheses. These trials used the same sample sizes as
those performed for our learning algorithm comparisons trials.

The results confirmed our first hypothesis; classification
performance is poorer with lower malprev. However, we found
that the performance decrease was actually more pronounced
when training malprev was kept high, as opposed to decreasing
it in parallel with the test maplrev.

These findings indicate that before machine learning can be
employed effectively in an operational setting, further research
needs to be done on how to address the problem of ”class
imbalance” [3] between malicious and benign files, since the
malicious ones will be few in a real-world system.

C. Easily Modifiable Features

Of the features we recorded for each file, we identified
six that can be easilly modified without effecting file execu-
tion: MajorLinkerVersion, MinorLinkerVersion, MajorImageV-
ersion, MinorImageVersion, Year of creation, and NumberOfR-
vaAndSizes. Because a malware author could easily modify
these PE32 header fields to make malware appear more benign

malprev (train,test) Pruned Database All Features
(0.5, 0.5) 0.9792 0.9848
(0.1, 0.1) 0.9270 0.9452
(0.5, 0.1) 0.9150 0.9379

(0.01, 0.01) 0.7581 0.7845
(0.5, 0.01) 0.5247 0.6011

(0.001, 0.001) 0.4157 0.4550
(0.5, 0.001) 0.1193 0.1529

TABLE III. F-SCORES OF TRIALS WITH AND WITHOUT EASILY
MODIFIABLE FEATURES. DATA SHOWN IS FOR TRIALS WITH CART

DECISION TREES.

Feature F-score
MajorOperatingSystemVersion 0.8846

Local Syms Stripped 0.8597
Line Num Stripped 0.8576

Relocs Stripped 0.8156
MinorOperatingSystemVersion 0.7870

SizeOfStackReserve 0.7752
BaseOfData 0.7471
SizeOfCode 0.7266

SizeOfInitializedData 0.7259
HighEntropy 0.7246

TABLE IV. THE TEN MOST DISCRIMINATORY FEATURES, MEASURED
BY F-SCORE WHEN USED AS A SINGLE-FEATURE CLASSIFIER.

to a classifier, we pruned these features for subsequent trials.
To test the effect on classification performance of pruning these
features, we compared the results of training and testing on
databases with and without these features using CART decision
trees at varying malprev. Table III shows our results.

Classifier performance decreased, but not significantly. A
malware author could modify PE32 fields like these to make
malware appear more benign to a classifier. At the same
time, the classifiers were almost as effective with the easily-
modifiable features removed.

D. Feature Isolation

This experiment tested to see which features, in isolation,
were most discriminative between malware and benign soft-
ware. To do this, we split our original database into a database
for each feature that only contained feature-label pairs for each
record in the original database. For each database, we ran a
trial using using malprev = 0.5 for both the training and test
samples and CART learning. Table IV lists the 10 features
whose classifiers achieved the highest average F-score.

The last feature listed in the table, HighEntropy, is not a
PE32 header field, but a boolean feature we added. HighEn-
tropy is true if any section in the corresponding PE32 file has
an information entropy greater than 7. Features like entropy
could be useful in real-world malware detection because they
are easy to measure and are individually highly discriminative
between malware and benign software. Additionally, they
cannot be easily modified without changing the executable
structure. The other features in the table refer to the PE32
header fields of the same name.

V. CONCLUSIONS

The results generally supported our hypothesis that PE32
header data can successfully be used to detect malware through
machine learning classification. Decision Trees, in particular,
achieved a 0.97 F-score on a balanced sample of malicious and



benign files. Additionally, the results show that many PE32
header fields are indeed individually discriminative between
malware and benign software.

While promising, a useful anti-malware system requires a
lower error rate. Further research will be necessary to optimize
the learning process to achieve an acceptable false positive and
false negative rate. Particular attention needs to be paid to the
class imbalance problem. We are not aware of other research
studies on the effect of varying malware prevalence when using
machine learning based malware detection.

VI. RECOMMENDATIONS FOR
FUTURE WORK

There are many possibilities for future research in this area.
Suggested research includes:

• Class Imbalance. Many studies have proposed meth-
ods to mitigate the class imbalance problem in general.
Because malware is often greatly outnumbered by
benign software in the real world, some of these
methods could improve performance.

• Other Algorithms. Several other learning algorithm
families, such as random forests, could potentially
perform well. Each algorithm family has a variety
of implementations that could be tried. Additionally,
some feature selection and preprocessing techniques
could potentially increase performance.

• Combinations. It should be possible to integrate this
methodology with complementary malware detection
techniques that examine the machine instructions, im-
ported functions, or other data.

• More Data. Classification performance almost always
increases with more data. Thus, it would be useful to
gather more malware and benign software.

• Operational System. Construct a working runtime mal-
ware detection system using machine learning-based
classifiers.

• Obfuscated Malware. Test this methodology against
malware that has been sufficiently obfuscated to avoid
all traditional virus detection.

• Defenses. Explore techniques that an attacker could
use to modify PE32 header data to evade detection by
classifiers that use it.

ACKNOWLEDGMENTS

The authors would like to thank the U.S. Naval Academy
Research Office and Trident Scholar program for their gener-
ous support.

REFERENCES

[1] E. Carrera. pefile python module, 2014.
[2] F. Pedregosa, et al. Scikit-learn: Machine learning in python. J. Mach.

Learn. Res., 12:2825–2830, Nov. 2011.
[3] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou. On the Class

Imbalance Problem. 2008 Fourth International Conference on Natural
Computation, pages 192–201, 2008.

[4] iMPERVA. Assessing the Effectiveness of Antivirus Solutions. iM-
PERVA Hacker Intelligence Initiative, Monthly Trend Report, 2012(14),
2012.

[5] J. Z. Kolter and M. a. Maloof. Learning to Detect and Classify
Malicious Executables in the Wild. Journal of Machine Learning
Research, 7:2721–2744, 2006.

[6] Kotadia. Eighty Percent of New Malware Defeats Antivirus, July 2006.
[7] A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers: A

Comparison of Logistic Regression and Naive Bayes. In Proceedings
of Advances in Neural Information Processing Systems, pages 841–848,
2001.

[8] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas. N-grams-based
file signatures for malware detection. In ICEIS (2)’09, pages 317–320,
2009.

[9] T. Stibor. A Study of Detecting Computer Viruses in Real-infected
Files in the N-gram Representation with Machine Learning Methods.
In Proceedings of the 23rd International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems -
Volume Part I, IEA/AIE’10, pages 509–519, Berlin, Heidelberg, 2010.
Springer-Verlag.

[10] Various. Open malware repository, 2014.
[11] G. Yan, N. Brown, and D. Kong. Exploring discriminatory features

for automated malware classification. In Proceedings of the 10th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA’13, pages 41–61, Berlin, Heidelberg,
2013. Springer-Verlag.

[12] J. Yonts and A. Atlasis. Attributes of Malicious Files, 2012.


