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ABSTRACT
Finding similar procedures in stripped binaries has various
use cases in the domains of cyber security and intellectual
property. Previous works have attended this problem and
came up with approaches that either trade throughput for
accuracy or address a more relaxed problem.

In this paper, we present a cross-compiler-and-architecture
approach for detecting similarity between binary procedures,
which achieves both high accuracy and peerless throughput.
For this purpose, we employ machine learning alongside sim-
ilarity by composition: we decompose the code into smaller
comparable fragments, transform these fragments to vectors,
and build machine learning-based predictors for detecting
similarity between vectors that originate from similar proce-
dures.
We implement our approach in a tool called Zeek and

evaluate it by searching similarities in open source projects
that we crawl from the world-wide-web. Our results show
that we perform 250X faster than state-of-the-art without
harming accuracy.
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1 INTRODUCTION
Similarity detection between binary code samples has vari-
ous use cases in the fields of cyber security and intellectual
property. Open source code vulnerability discovery rate is
on the rise [11] with the number of reported vulnerabilities
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more than doubled during 2017. Whenever a new vulnera-
bility is discovered, it may apply to multiple versions of the
package, which have already been compiled and distributed
to end-users. These end-users, e.g., individuals and compa-
nies which purchased a network router, may only access
the code their router is running in binary form. They are
left exposed, not knowing whether the newly discovered
vulnerability applies to them, waiting for a patch which may
or may not be released.
Furthermore, cloud providers would like to protect their

clients by scanning their virtual machines for vulnerabilities,
however refrain from doing so for privacy reasons. Having
the ability to scan binary code allows for directly searching
memory content for vulnerabilities without infringing on
privacy or requiring any knowledge of the VM operations.
Moreover, such an approach focuses the scope of the results
to software that is assured to be loaded, and allows one to
ignore irrelevant executables in the system, that do not run.
Finding similarity in binary code also has implications in
the software IP domain, allowing the scanning of released
binaries for IP theft.
The main challenge in identifying binary similarities is

that the same source code can be compiled using different
compilers, different optimization levels or targeting different
architectures, thus producing syntactically different binary
code. Though this challenge can be solved with near-perfect
accuracy using SMT solvers [4], such approaches are infea-
sible due to their low throughput, making them irrelevant
in cases with big code corpora. On the other hand, faster
approaches achieve lower accuracy and generate false posi-
tives, which waste human resources, as the results are later
manually reviewed for assurance.
In this paper, we propose an approach for binary sim-

ilarity detection which is highly accurate yet faster than
any previous binary similarity search technique, thus allows
for scanning real-world workloads in practical time. It is
based on the similarity by composition principle [3] along-
side machine learning. We introduce the proc2vec method
for representing procedures (or code sections) as vectors. In
proc2vec we decompose each procedure to smaller segments,
translate each segment to a canonical form and transform its
textual representation to a number, thus finding an embed-
ding in the vector space for each procedure. Next, we design
a neural network classifier that detects similarity between
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vectors that originate from semantically equivalent proce-
dures. In order to train our classifier, we build a database
with dozens of millions of examples, generated by compiling
various open-source renowned projects. We compile each
project using different compilers, with different compiler
versions, optimization levels and for different architectures.

Finally, we evaluate our approach by predicting similar-
ities in open-source projects that are not included in the
training set. We show that our proposed classifier achieves
high accuracy and executes more than 250X faster than cur-
rent state-of-the-art tools.

2 RELATEDWORK
Similarity Search. Previous work in the binary code-search

domain mostly employed syntactic techniques, and were
not geared to handle the challenges of a cross-compiler
search [10, 18]. Others require dynamic analysis in addi-
tion to static analysis [6, 14] or does not scale [4, 14] due to
computationally heavy techniques.
David et al. [4, 5] presented an approach for reasoning

about similarity of binaries based on segmenting code sec-
tions into strands. We build upon this approach, however in
contrast to [4] which uses a heavyweight SMT solver, we
employ machine learning techniques for predicting similar-
ity. Moreover, unlike GitZ [5], we forgo the need for lengthy
translations between IR representations and costly statistical
reasoning; thus we achieve better throughput in about two
orders of magnitude.

ML and Similarity Search. Previous work [2, 7, 8, 12, 17]
proposed using ML for code clone detection and vulnera-
bility search; however, they all operate on the source code
level and not on the binaries. Specifically, Li et al. [8] and
Peng et al. [12] proposed techniques for building program
vector representations, so these can be fed into deep learning
models. In this paper, we wish to do the same for binaries.

3 PROBLEM STATEMENT
Problem definition. Given a query procedure q and a large

collectionT of (target) procedures, in a stripped binary form
(without debugging information), our goal is to quantita-
tively define the similarity of each procedure t ∈ T to the
query q. We require a method that can operate without infor-
mation about the source code and/or tool-chain used in the
creation of the binaries. The main challenge is to devise a pre-
diction method that is precise enough to avoid false positives,
flexible enough to allow finding the code in any compilation
configuration, and fast enough so similarity search can be
performed on huge corpora or memory regions in a timely
manner.

shr   eax, 4
mov   r8, rbx
lea   rcx, [r8+3]
mov   [r8+1], al
mov   [r8+2], r13b
mov   rdi, rcx

mov  r8, rbx
lea  rcx, [r8+3]
mov  rdi, rcx

mov  r8, rbx
mov  [r8+2], r13b

shr   eax, 4
mov   r8, rbx
mov   [r8+1], al
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(2)

(3)
(3)
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Figure 1: Decomposition to strands.

Metrics. For evaluation, we conduct all vs. all classification
experiments. That is, we compile each project P in our test
set using multiple compilation configurations, thus generate
the binary procedures {p1,p2, ...,pn}, where n equals to the
number of procedures in P times the number of compilation
configurations. Next, we perform n2 predictions; each pre-
diction corresponds to the probability that procedure pi is
similar to procedure pj . Overall, for each project we output
n lists; each list corresponds to a procedure and contains n
probabilities. The accuracy of each of these lists is measured
by Concentrated ROC (CROC) [16], a standard metric for
evaluation of classifiers on early retrieval problems.

4 ZEEK OVERVIEW
In this section we provide an overview of our algorithm
and system design. We begin in Section 4.1 by reviewing
the concept of a code strand and giving intuition about our
approach. Next, in Section 4.2, we describe proc2vec, our
algorithm for representing code sections as vectors. Finally,
in Sections 4.3 and 4.4 we cover our data generation and ML
classifier model design, respectively.

4.1 Strands as Features
4.1.1 Strands. We adopt the notion of strands introduced

in [4] as a building block in our algorithm. A strand is the
set of instructions from a code block that are required to
compute the value of a certain variable. Figure 1 shows an
example of a decomposition of a code block into its compos-
ing strands. Note that a single instruction can be associated
with multiple strands within a code section. For example, the
second instruction of the code block in Figure 1 belongs to
all three strands that compose the code section. Note that
two syntactically different strands can be equivalent, and
that a strand is not necessarily syntactically contiguous.

4.1.2 Intuition. The intuition behind our proc2vec algo-
rithm is based on the similarity by composition principle [3],
according to which two signals are similar if it is easy to



bb0:
shr   eax, 1
mov   r8, rbx
lea   rcx, [r8+4]
mov   [r8+2], r13
mov   rdi, rcx
test  rdi, rdi
jz bb2

bb1:
mov rax, 10
add   rbx, rax
shr rcx, al 
jmp addr

bb2:
sub   rax, 8
shl rax, 4

mov rax, 2
add  rbx, rax
shr rcx, al

sub   rax, 8
shl rax, 4

t1 := t2 + 4

t1 := t1 + 2

t1 := (t1 – 8) << 4

113

7

7

Vector representation: [0, 0, …, 0, 2, 0, …, 0, 1, 0, …, 0, 1, 0, …,0 , 1, 0, …, 0]

Index 7 Index 113 Index 550 Index 927

shr  eax, 1
mov r8, rbx
lea  rcx, [r8+4]
mov  [r8+2], eax
mov  rdi, rcx

M[t1+2]:=64to32(t2)>>1

t1 := t1 >> 2 927

550

(a) Assembly code (d) Normalized & canonized (e) Hashes

( f )

shr  eax, 1
mov  r8, rbx
mov  [r8+2], eax

mov  r8, rbx
lea  rcx, [r8+4]
mov  rdi, rcx

mov rax, 2
add  rbx, rax

mov rax, 2
shr rcx, al

(b) Basic blocks (c) Strands

sub   rax, 8
shl rax, 4

Figure 2: Procedure to vector transformation stages.

compose one signal from large contiguous chunks of the
second signal. The similarity by composition principle has
been proven to be valuable for similarity detection in image
processing [3] and program analysis [4].
Therefore, in this work we wish to use the strands that

compose a code section as its feature set. We transform
strands to numbers, and assemble those numbers to form a
vector that represents the corresponding code. In order to
learn the prevalence and co-occurrence of virtually contigu-
ous chunks of code (strands), we train a machine learning
model. Thus, code sections that contain rare strands or rare
combinations of strands, are likely to be more unique and
get a higher similarity score. Likewise, common strand com-
binations are likely to have the opposite effect. For example,
compiler-induced strands (e.g. stack handling operations) are
very prevalent and indeed irrelevant for similarity matters.

Previous work [5, 13] has put effort in detecting compiler-
induced binary code and artifacts. In our work, we achieve
this by employing ML as detailed in this section.

4.2 prov2vec
In this section we describe proc2vec, our algorithm for trans-
forming procedures or code sections to vectors. As described
in Figure 2, given the assembly code of a procedure (Figure
2a), the technique for transforming it to a vector is comprised
of five steps:
(1) First, we split the procedure to basic blocks (Figure

2b). A basic block is determined according to the jmp
instruction placements in the procedure binary code.

(2) As depicted in Figure 2c, we further decompose each
basic block into strands. In the figure, different strands

have different colors, while instructions that belong to
few strands are marked with all the associated colors.

(3) Next, we bring syntactically different strands with
same semantic meaning to the same textual represen-
tation. For that purpose, we use techniques introduced
in previous work [5] and optimize and canonize each
of the strands. As shown in Figure 2d, this step changes
the strands’ representation to a canonical one, so sub-
sequent additions are grouped, multiplications with
power-of-two are replaced by shifts, arithmetic op-
erations are reordered to a consistent representation,
etc.

(4) We apply b-bit MD5 hashing on the textual represen-
tation of the strands; thus translating each strand to
an integer (Figure 2e) in the range {0, 2b − 1}. Note
that if b is small then collisions are likely to happen,
thus different strands can be mapped to the same hash
value.

(5) Finally, as depicted in Figure 2f, we use the resulting
integer set as indexes and build a vector of length 2b
whereby each element equals to the number of times
that the index of the element appears in the set. Hence,
the vector elements can be larger than one, and the sum
of the vector elements is equal to number of strands
that the corresponding procedure contains.

For implementing the above algorithm,we use the PyVEX [15]
open-source library. We employ its binary lifter in order to
lift the assembly code into VEX-IR and slice it to strands
(step 2). We further exploit the VEX optimizer on each of
the strands for bringing them to a normalized representation
(step 3).



Training Set Test Set
Application Name Version Application Name Version
binutils 2.3 tar 1.30
OpenSSL 1.0.1 FFmpeg 2.7.1
bash 4.3 Wireshark 1.10.10
httpd 2.4.33 coreutils 8.29
ntp 4.2.8 bzip2 1.0.6
cURL 7.60.0 wget 1.15
Snort 2.9.11.1
Git 2.9.5
util-linux 2.32
Apache Mesos 1.5.0
QEMU 2.12.0

(a) Open source projects used for data generation.

Compiler Versions Architecture Optimization Levels
gcc 4.{7,8,9} x86_64 -O{s,0,1,2,3}
icc 14, 15 x86_64 -O{s,0,1,2,3}
Clang 3.{5,6,7,8} x86_64 -O{s,0,1,2,3}
gcc 4.8 AArch64 -O{s,0,1,2,3}
Clang 4.0 AArch64 -O{s,0,1,2,3}

(b) Compilers and versions used for data generation.

Figure 3: Data set properties.

4.3 Data Generation
For generating the data, we take various open-source projects
(Table 3a) that we find in the wild and compile them for
different architectures using different compilers types, ver-
sions and optimization levels (Table 3b). Next, we apply our
proc2vec algorithm on each of the resulting binary proce-
dures, thus creating a list of vectors, each of which represents
a procedure in some specific compilation setting. By stacking
all these vectors we build the matrixM .

Using our prior knowledge about the origin of each vector,
we build a match-list. The match-list contains pair tuples
that represent indexes of matching rows inM . That is, if the
pair (i, j) appears in the match list, then the corresponding
vectors Mi (i’th row of M) and Mj are originated from the
source code of the same procedure. Furthermore, in order to
teach our classifier that every procedure is similar to itself,
and that the input order of a pair has no importance we
augment each matching pair (x ,y) to a foursome consisting
of the pairs (x ,y), (x ,x), (y,y), (y,x). We label these pairs by
1 (match) and use them to generate our positively labeled
dataset.
For generating negative examples, we generate random

pairs of vectors that originate from non-equivalent proce-
dures. We make sure that each of these pairs does not appear
in the match-list, label the pairs by 0 (non-match) and use
them as our negatively labeled data-set.
A similarity between code sections is relatively a rare

event and we address that in two ways: (1) we use the CROC
metric, which is designed for evaluating unbalanced classifi-
cation problems, for estimating the classifier’s performance.
(2) We generate a strongly unbalances dataset and examine
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Figure 4: Our neural network skeleton.

different ratios between the number of the negatively and
positively labeled examples. After exploring various ratios,
we set the ratio to 6.

Finally, we build our full database by shuffling the union
of the positively and negatively labeled data-sets. Overall,
we get a database with about twenty million examples.

4.4 Designing an NN Classifier
For estimating the similarity score of a pair of vectors, we
build a deep learning classifier using TensorFlow [1]. Our
model is comprised of an input layer, two fully-connected hid-
den layers, and a softmax output layer, as shown in Figure 4.
The input layer is comprised of 2×2b neurons, corresponding
to the two vectors that represent the two input procedures.
The first and the second hidden layers are of sizes L1 and
L2, respectively. Finally, the output is a 2-neuron softmax
function, representing the probability of similarity between
the code sections that generated the input vectors.
Except for the output layer, all the activation functions

in the network are tanh. We train the model using cross-
entropy cost function, dropout regularization of 0.1, batch
size of 32 and 3 passes over the data (epochs).

5 EVALUATION
We evaluate our approach and compare our results with
GitZ [5], the fastest state-of-the-art binary similarity search
tool [9]. We start in Section 5.1 by exploring various hash
size values and fit for each value a corresponding classifier.
Next, in Sections 5.2 and 5.3 we present the accuracy and
throughput results of our cross platform similarity predictor,
respectively. All experiments were performed on a machine
with two Intel Xeon E5-2699 processors, 368 GB of RAM,
running Ubuntu 16.04.1 LTS.
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5.1 Hash Size
MD5 processes text into a fixed-length output of 128 bit;
however, a 2128-length vector is much longer than we need.
Therefore we fold the hash values (using modulo) thus de-
facto reducing the size of the hash. The hash size determines
a trade-off: high values (longer input vectors) mean longer
representation for each procedure, which may cost in over-
fitting and increased training time. On the other hand, low
values (shorter input vectors) might create collisions in the
procedure representation and omit imperative information
from the classifier (underfit).

For finding the optimal hash size, we explore various val-
ues and fit a classifier that performs best for the each of the
examined values on a toy dataset. The toy dataset consists of
code drawn from four applications (OpenSSL, git, util-linux
and Apache Mesos) which we compile using all our x86_64
compilers (see Figure 3b) with the -O2 optimization level.
The parameters that we fit are L1, L2, and dropout rate.

We test each classifier on three test projects (coreutils,
wget, tar) by conducting an all vs. all experiment and present
the results in Figure 5. Note that the hash size axis is in units
of bits; namely, a value of h implies a vector representation
of length 2h . As can be inferred from the figure, for all of the
projects in our test set, using 10 bits for performing the MD5
hashing yields the best results; namely, 210 is the optimal
length for a vector representation of a procedure under such
a neural network setting.

5.2 Cross Platform Similarity Predictor
Given the results of the previous section, we choose a 10-
bit MD5 hash size, configure our neural network with the
parameters that optimized the performance of 210 procedure
representation (L1 = 512 and L2 = 128), use data gathered
from all of the projects listed in Table 3a, and train a cross-
{compiler, version, optimization} binary similarity predictor.

For evaluation, we conduct an all vs. all experiment for
each of the projects in out test set and present the results

tar

FF
mpe

g

W
ire

Sh
ark

co
reu

til
s

bz
ip2 wg

et

0.7

0.8

0.9

1 0.99 0.99 0.99 1 1 0.99
0.96 0.96 0.94 0.95 0.97

0.93

C
on

ce
tr
a
te
d
R
O
C

Zeek GitZ

Figure 6: CROC score of the all vs. all experiments, for
each of the projects in the test set.

in Figure 6. We repeat these experiments using GitZ and
present the results alongside the corresponding Zeek results.
As can be seen, Zeek achieves higher average CROC score in
all of the tested projects. Note that, compared to the previous
section, the results for wget are improved. We attribute that
to the larger andmore diverse training set used in the current
fully-trained model.

5.3 Throughput and Latency
Our neural network can output approximately 7000 predic-
tions per second on a single core (excluding the training
time, which is performed only once). Furthermore, since the
procedure vectors are independent and the model is small
enough, the prediction generation can scale with the number
of available processors. GitZ, on the other hand, is able to out-
put about 25 predictions per second, hence Zeek introduces
a speedup of more than 250X over the state-of-the-art fast
similarity detection tools. Note that approaches that achieve
near-perfect accuracy like [4] need about 5 seconds for a
single comparison.

In terms of latency, Zeek also has a shorter preprocessing
pipeline than GitZ, as it does not require lengthy translation
from VEX-IR to LLVM-IR, thus cutting the required time to
output the first prediction in about 15%.

6 CONCLUSIONS
We present an approach for detecting binary similarity using
the similarity by composition principle alongside machine
learning. We devise proc2vec, an algorithm for representing
code sections by vectors, without applying human-crafted
feature extraction processes. We show that our approach
achieves high accuracy and throughput, thus it is practical
for use in real world scenarios.
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