
fG! @ 0xOPOSEC OUT 2019

Last month

§ How to:

§ Achieve serial console access.

§ Dump firmware.

§ Extract filesystem.

§ Patch firmware into privilege escalation.

Today’s agenda

§ How to build and how attach a debugger.

§ How to decrypt all passwords.

§ Remote updates security.

Target

§ NOS CVE-30360 cable modem.

§ OpenRG software by Jungo (now Cisco RG).

§ Firmware version 4.11.3.7.62.3.52.

Assumptions

§ Patched firmware with:

§ Serial console.

§ Telnet.

§ Administrator privileges.

How to attach a debugger

§ Remote debugging session.

§ gdbserver and gdb combo.

§ Prebuilt or built from source.

How to attach a debugger

§ We need a Puma5 toolchain.

§ Usually the toolchains are published.

§ GPL had to be useful someday…

§ Some Google-fu and luck required.

How to attach a debugger

§ Someone already published it.

§ For Motorola modems but it works anyway.

§ https://github.com/bmaia/cross-utils

§ https://github.com/bmaia/cross-

utils/tree/master/armeb/puma5_toolchain

How to attach a debugger

§ Kali 1.1.0a.

§ Trust the Internet and use prebuilt toolchain.

§ https://github.com/bmaia/cross-

utils/raw/master/armeb/puma5_toolchain/armeb-

linux.tar.xz

§ GDB 7.11.1 is fine. Everything else, good luck!

§ Static binary crashes, use dynamic.

How to attach a debugger

§ Build your own toolchain.

§ Ubuntu Server 9.04.

§ Need to fix apt sources.

§ SSL/TLS deprecation.

§ Deprecation is all fun until everything blows up!

§ Need to fix toolchain/buildroot scripts.

How to attach a debugger

§ Result should be something like this:

§ Don’t forget to strip binaries to save mem.

§ armeb-linux-strip

How to attach a debugger

§ We still need to compile host gdb.

§ Latest 8.3 works fine.

§ ./configure --host=x86_64-pc-linux-gnu -

-build=x86_64-pc-linux-gnu --target=arm-

linux-gnuabi

§ You can compile with multi-arch support.

How to attach a debugger

§ Result should be something like this:

How to attach a debugger

§ Use SimpleHTTPServer or TFTP to transfer

gdbserver binary.

§ Attach to a process.

§ Doesn’t really work L.

§ Intercepted signals?

How to attach a debugger

§ We can attach to processes.

§ But we have no real control over them.

§ There is an hidden trick in OpenRG

developer manuals J.

How to attach a debugger

§ openrg process is killed.

§ Network interface goes down.

§ No telnet anymore.

§ We need to restore everything via serial

console.

How to attach a debugger

§ Now we have full control of openrg process.

§ Debugger interrupts work.

§ We can insert breakpoints.

§ And other services are active again.

Reverse engineering

§ It’s not a linear process.

§ More like of chaotic and fractal nature.

§ Lots of trial and error.

§ Experience plays an important role.

§ Practice makes perfect.

Reverse engineering

§ I will try to present some kind of ordered

process.

§ Many things I don’t even remember how I

found them J.

§ More art than science.

Reverse engineering

§ Main target is openrg binary.

§ 32 bit ARM, dynamically linked, stripped, big

endian.

§ Decent size, around 7k functions.

§ Linked against 60 libraries.

Reverse engineering

§ You need a goal to kickstart the process.

§ Otherwise very easy to get lost and/or

frustrated.

§ My initial goal was to find the default

passwords.

Reverse engineering

§ Poke around with strings.

§ Lots of Portuguese text. Translation files suck.

§ Load binary into IDA.

§ Maybe Ghidra: Java + NSA = too much for me.

§ main() as starting point.

Reverse engineering

§ Function sub_1B508 is main.

§ Function sub_219E4 appears to initialize a

bunch of stuff.

§ Event driven loop.

§ Not much to (easily) trace from main.

Reverse engineering

§ Originally I had no debugger access.

§ Too boring to browse every call from main.

§ Would need to find events registration

function and event handlers.

§ Better shortcuts required.

Reverse engineering

§ Passwords appear to be MD5.

§ But “too many” calls to MD5_Init.

Reverse engineering

§ String references can be helpful.

Reverse engineering

§ No such luck, there are no cross references

to the text strings we want.

Reverse engineering

§ We talk to a web interface.

§ That uses CGIs.

§ There must be some code reading our form

submission.

§ Check login page source.

Reverse engineering

§ Submit button uses JS to submit form

contents.

§ Search xrefs to “SendPassword()”

Reverse engineering

§ There are two hits:

§ “function SendPassword()”

§ “SendPassword()”

§ First appears to be in a function that just

formats the HTML output.

Reverse engineering

§ Second hit on a reasonably long function

sub_8BF0C.

§ References to “username”, “password”,

“md5_pass” strings.

§ Before starting to reverse it, check its callers

path (backtrace).

Reverse engineering

§ A single caller to this function.

§ Continue to backtrace xrefs.

Reverse engineering

§ sub_12D28C is suspicious.

§ Feels like some kind of callback registration.

§ Contains a string to confirm our hypothesis.

Reverse engineering

§ We found the code that registers the events

(at least for the web interface).

§ Good ”choking” point to rename lots of

functions and understand available events.

§ Tip: “misc wbm_debug_set 1”

§ Web interface debugging output.

Reverse engineering

§ We know where the login page is generated.

§ Don’t know where the form is processed.

§ Didn’t notice at the time that it was the next

argument to sub_12D28C.

§ But from the JS we know which variables are

submitted.

Reverse engineering

§ Only three hits on “md5_pass”.

§ Two to generate the form, one unknown.

Reverse engineering

§ Function sub_8B978 is called from

sub_8BDB0.

§ First pointer is to draw HTML, second to

parse POST.

Reverse engineering

§ We can confirm this using the debugger.

§ Set a breakpoint at sub_8BDB0.

§ Should hit when we press the “Ok” button in

the login form.

Reverse engineering

§ Function sub_8B978 is our prime target.

§ Decent sized function (~980 bytes).

§ Not obvious what it does (I don’t like ARM!).

§ Start by doing basic tracing.

§ First, check the return values.

Reverse engineering

§ A single exit point at address 0x8BD34.

§ LDMFD instruction to restore stack and all

must preserve registers.

§ Breakpoint and compare return values with

good and bad password.

§ Nothing interesting.

Reverse engineering

§ Next attempt is to diff execution flow with

good and bad passwords.

§ Cheap method to find where to focus and

avoid understand everything the function

does.

§ I get sleepy reading IDA output.

Reverse engineering

§ We can find a spot where things go

different.

§ So sub_147B44 is a function we want to

explore next.

§ The str_cpy copies login username.

Reverse engineering

§ Time to explore sub_147B44.

§ We can find a function sub_147A84 that

does MD5 hashing.

§ Good place to diff execution.

§ Breakpoint at return address and compare

return values with good/bad passwords.

Reverse engineering

§ Return values:

§ 1: password ok

§ 0: bad password

§ Just insert bad password and modify R0 to 1

when breakpoint is hit.

Reverse engineering

§ We can log in with any account we want

without knowing its password.

§ That’s nice but still not able to find out the

default passwords.

Reverse engineering

§ Let’s take a look at the MD5 function

arguments.

§ int function(char* MD5, int auth_key, char

*password)

§ auth_key is some sort of session key.

§ Rotated after successful login (and timer?).

Reverse engineering

§ MD5 is the hash generated at the browser.

§ R2 contains the good plaintext password.

§ We just need to breakpoint one instruction

before previous patch and we can recover

the original password for any account.

§ It seems the plaintext password is retrieved

inside set_get_path_unobscured.

§ This is an imported function from libjutil.so.

§ Retrieves the password from configuration

and decrypts it.

Reverse engineering

§ We recovered the encryption key.

§ We can use OpenSSL to decrypt any

passwords.

§ Just pay attention that the values in

configuration files are the content bytes.

Reverse engineering

§ No idea why they (Jungo? NOS?) have done

it this way.

§ It’s just dumb.

§ At least hashes you might need some

computing power to break.

Remote updates

§ NOS has the ability to push remote updates.

§ Are they reasonably secure?

§ Can we MiTM?

§ We can play around locally without DNS

tricks.

Remote updates

§ Updates are delivered in a RMS binary file.

Remote updates

§ Contains the kernel and data that we have

already seen in flash dumps.

§ But also what seems to be some kind of

header.

§ ALWAYS LOAD BINARY DATA INTO AN

HEX EDITOR!

Remote updates

§ Upgrade function at sub_B4410.

§ Found it via log messages.

Remote updates

§ Poking around we are able to define an

header structure.

Remote updates

§ MD5 comes from here.

§ I guess things were quite bad somewhere in

the past J.

Remote updates

§ The descriptor is just a text string that is

parsed for information (commands?).

Remote updates

§ Two RSA-SHA512 signatures.

§ One for the header.

§ Another for header + data.

§ No idea why?

§ Maybe to faster reject updates because of

wrong descriptor.

Remote updates

§ Remote updates can be signed by any* of

the keys available in the configuration file.

§ Signed by “ZON HUB remote update” key.

§ We can extract it and verify ourselves.

Remote updates

§ Remove the “ZON HUB remote update” cert

from configuration files.

§ No remote updates possible J.

§ Backdoors -= 1.

Remote updates

§ Loops all available certificates in

configuration file.

§ Only cares about those with owner == 1.

Remote updates

§ The client certificate has owner == 1.

§ WE HAVE A PRIVATE KEY!

§ WE CAN RESIGN UPDATES!

Remote updates

§ The signature length is fixed at 256 bytes.

§ The RSA key is only 1024 bits.

§ EVP_VerifyFinal() will return failure.

§ L L LLLLLLLLLLLLLLL

Conclusions

§ Now we have further control because we can

RE everything.

§ Easily recovered passwords plaintext.

§ Remote updates seem fine today but not in

the past*.

§ Next step is to find (RCE) vulnerabilities.

Greetings

§ 0xOPOSEC team.

https://reverse.put.as

https://github.com/gdbinit

reverser@put.as

@osxreverser

#osxre @ irc.freenode.net
PGP key

https://reverse.put.as/wp-content/uploads/2008/06/publickey.txt

PGP Fingerprint
7B05 44D1 A1D5 3078 7F4C E745 9BB7 2A44 ED41 BF05

References

§ Images from images.google.com. Credit due to all their authors.

§ http://www.devttys0.com/2012/11/reverse-engineering-serial-

ports/

§ http://jcjc-dev.com/2016/04/08/reversing-huawei-router-1-find-

uart/

§ https://wikidevi.com/wiki/Hitron

§ https://wikidevi.com/wiki/Hitron_BVW-3653

§ http://www.hitrontech.com/product/cve-30360/

References

§ https://www.zerodayinitiative.com/blog/2019/9/2/mindshare-

hardware-reversing-with-the-tp-link-tl-wr841n-router

