
fG! @ 0xOPOSEC SET 2019



Who am I?

§ Old school reverse engineer.

§ Lately converted into a glorified engineer and 

developer.

§ Working for Apple for last two years.

§ Super badass secret stuff!





Today’s agenda

§ How to:

§ Achieve serial console access.

§ Dump firmware.

§ Extract filesystem.

§ Patch firmware into privilege escalation.



Motivation

§ Are there any backdoors?

§ Want to remove unconditional ISP remote 

access. 

§ Physical attacks (bias from EFI research).

§ Curiosity.





Target(s)

§ NOS/ZON cable modems:

§ BVW-3653 (ZON)

§ CVE-30360 (NOS)

§ Same software, some hardware differences.

§ Hardware made by Hitron Technologies.

§ OpenRG software by Jungo (now Cisco RG).



BVW-3653

§ A single 128MBit SPI flash chip.

§ Serial headers easily available. JTAG?

§ One USB port.

§ Intel ARM CPU (Puma?).

§ 64MB RAM.



CVE-30360

§ Two 128MBit SPI flash chips.

§ Serial headers easily available. JTAG?

§ Two USB ports.

§ Intel ARM Puma 5 CPU.

§ 128MB RAM.









Serial console

§ Most equipment has a serial console.

§ Sometimes hidden or “protected”.

§ Minimum pins required: TX, RX, GND.

§ Multimeter or logic analyzer/oscilloscope.

§ Don’t forget that TX and RX cross.





How to map the pins

§ GND: easy to find with continuity test.

§ VCC: solid 3,3V or 5V all the time. 

§ RX: Floats near 0V until connected.

§ TX: Pulled high by default. Drops when 

transmitting data. Boot a few times and 

measure fluctuation.

















Serial console

§ No bootloader access.

§ No boot output.

§ No system/login/shell prompt.

L





Attack plan

§ Serial console is useless right now.

§ No idea where to retrieve firmware images.

§ Many times they are encrypted.

§ Usually not strong encryption: XOR & friends.

§ The SPI flash is our best target.



Attack plan

§ The SPI flash should contain:

§ Bootloader

§ Filesystem(s)

§ Other data

§ Secure Boot is non-existent in IoT!



Dump the SPI flash

§ SOIC packaging so easier to connect to.

§ 16 pin versus more common 8 pin.

§ Spansion FL128SA1F00.

§ Spansion S25FL128P.



Dump the SPI flash

§ Use a Teensy with custom software.

§ Flashrom with Raspberry Pi or alternative.

§ Specialized flash dumpers (Aliexpress).

§ Whatever else you might have.

§ https://papers.put.as/papers/macosx/2015/

CodeBlue_2015_-_Efi_Monsters.pdf



Dump the SPI flash

§ Potential problems:

§ Bad cable/probe/clip connections == data noise.

§ Can power on some board elements and corrupt the 

flash reads.

§ Dump two copies and compare checksums.

§ Solution:

§ Desolder the flash chip if dumps are corrupted.



Dump the SPI flash

§ Safely store the dump since it can be your 

last resort if something goes wrong.





Dump the SPI flash

§ Load the flash dumps into an hex-editor and 

browse its contents.

§ Execute strings and check what’s in there.

§ Then you can try to extract contents with 

binwalk.







Dump the SPI flash

“silent: If the configuration option 

CONFIG_SILENT_CONSOLE has been enabled 

for your board, setting this variable to any 

value will suppress all console messages. 

Please see doc/README.silent for details.”





Taking back control

§ Hex edit the flash dump.

§ Set silent variable value to 0.

§ Reflash our modified copy.

§ Hopefully there are no integrity checks.









Taking back control

§ We have full access to the boot loader.

§ Can’t interact with the login prompt on regular 

boot.

§ Tried with different TTL adapters and terminal 

software.

§ Need telnet/ssh access (disabled by default).





Taking back control

§ Can try changing init to shell trick.

§ Spawns a shell instead of init and a full 

system.

§ setenv bootargs "console=ttyS0,115200n8 

root=/dev/ram0 rw init=/sbin/sh”

§ Crashes if pointing to busybox binary. WTF?







Taking back control

§ Limited environment L.

§ Missing /proc.

§ Can’t insert missing kernel modules.

§ No network interface.

§ We want binaries to reverse engineer!





Firmware dump

§ It’s time to poke around firmware dump 

contents.

§ Binwalk

§ https://github.com/ReFirmLabs/binwalk

§ Firmware-mod-kit

§ https://code.google.com/archive/p/firmware-mod-

kit/







Firmware dump

§ Binwalk identified:

§ U-Boot loader.

§ Two kernel images.

§ Filesystems and compressed data.



Firmware dump

§ Try to extract data with binwalk –Me.

§ We get the filesystem layout but no 

contents.

§ The other flash contains more data as 

expected.





Firmware dump

§ Failure to extract cramfs.

§ That means no filesystem contents L.



Firmware dump

§ Common embedded filesystems are cramfs

and squashfs.

§ Jungo modified cramfs to support LZMA

compression.

§ uncramfs utility is able to deal with this.



Firmware dump

§ uncramfs available in firmware-mod-kit.

§ https://github.com/digiampietro/lzma-

uncramfs

§ You need to edit lzma-uncramfs.c and add 

#include <sys/sysmacros.h>.





Firmware dump

§ This cramfs contains all the main filesystem 

binaries.

§ The other just kernel modules.





Configuration file

§ openrg is the fundamental parent process of 

everything that matters.

§ Kind of replaces init.

§ Contains a default configuration file.









Configuration file

§ Immutable configuration file.

§ Restored if configuration gets corrupted.

§ Contains certificates J.



Configuration file

§ Where is the active configuration file?

§ Filesystem is read-only.

§ Must be somewhere in the flash.



Configuration file

§ Two hits in one of the flash dumps.

§ Kind of NVRAM flash partition that is 

writable.

§ Which one is active?

§ Modify config, dump flush and compare.

§ It’s the one at flash offset 0xF70098.





Privilege escalation

§ We can modify the configuration file and 

reflash.

§ Enable telnet access.

§ Add our user to more powerful 

administration group(s).



Privilege escalation

§ Configuration file contains different access 

groups:

§ home, power, admin, super, readonly, remote, 

remote2.







Privilege escalation

§ We need to compress again the modified 

configuration file.

§ zpipe.c from zlib.net works.

§ Replace the old file at offset 0xF70098 with 

our new copy.

§ Reflash the modified dump.





Privilege escalation

§ Didn’t work.

§ Modem reverted to a default configuration.

§ Auto recovery means we messed up 

somewhere.

§ Open firmware image and go to offset 

0xF70098.





Privilege escalation

§ 0xFEEDBABE looks like a magic constant.

§ We love magic constants in RE.

§ It means we have something to search for.

§ "0xFEEDBABE ("feed babe") is the magic 

number used to indicate the beginning of 

an OpenRG flash partition descriptor"



Privilege escalation

§ An OpenWRT patch explains our problem.



Privilege escalation

§ We need to update the OpenRG partition 

descriptor with the new checksum.

§ Modified openrg-image-parser.

§ https://git.zx2c4.com/openrg-image-

parser/

§ Another reflash…











Remote updates

§ Firmware updates are downloaded from 

jrms.zon.pt website.

§ Requires a client certificate.

§ Must be somewhere in the modem since it 

connects to the updates website.



Remote updates

§ Certificates are embedded in the 

configuration files.

§ We can extract them.

§ And now we are able to access the updates 

website and the ACS.

§ Had a chat with NOS and it’s fixed.



Remote updates

§ Just copy and paste the contents directly 

into an hex-editor (into the hex window not 

the text window).









Remote updates

§ Convert the private key and cert into pkcs12.

§ And now we can curl whatever we want.

§ And bruteforce different versions.



Remote updates

§ The same certificate can be used to access 

other ISPs.

§ Because it was issued by Jungo CA.

§ No further certificate checks.









Conclusions

§ We have full control of NOS/ZON modems.

§ Physical access == game over.

§ Secure bootchain is mandatory everywhere.

§ We need to demand more transparency 

from service providers.



Conclusions

§ IoT is a fucking mess.

§ Most customers are running a 13 years old 

Linux kernel.





Part II

§ The fun part: reverse engineering!

§ How to attach a debugger.

§ Understanding openrg.

§ How to decrypt all passwords.

§ Spoiler: symmetric key not hashed.

§ Understanding remote updates workflow and 

protections.



Greetings

§ 0xOPOSEC team.



https://reverse.put.as

https://github.com/gdbinit

reverser@put.as

@osxreverser

#osxre @ irc.freenode.net
PGP key

https://reverse.put.as/wp-content/uploads/2008/06/publickey.txt

PGP Fingerprint
7B05 44D1 A1D5 3078 7F4C E745 9BB7 2A44 ED41 BF05



References

§ Images from images.google.com. Credit due to all their authors.

§ http://www.devttys0.com/2012/11/reverse-engineering-serial-

ports/

§ http://jcjc-dev.com/2016/04/08/reversing-huawei-router-1-find-

uart/

§ https://wikidevi.com/wiki/Hitron

§ https://wikidevi.com/wiki/Hitron_BVW-3653

§ http://www.hitrontech.com/product/cve-30360/



References

§ https://www.zerodayinitiative.com/blog/2019/9/2/mindshare-

hardware-reversing-with-the-tp-link-tl-wr841n-router


