
fG! @ ØxＯＰＯＳɆＣ

December 2023

Hardcore++ version

Where is the flag?

Who am I

Who am I

Who am I

Knowledge and code�

� https://reverse.put.a�

� https://github.com/gdbinit

If you like reading�

� https://links.put.a�

� https://one.adayfullofpossibilities.com

Today’s Agenda

Today’s Agenda

� Flare On 2023 - 10 year anniversary�

� Challenge #12 (13 total)�

� A cute virtual machine :-).

“This is the second smallest challenge this
year! If only that mattered.”

Today’s Agenda

� Reverse engineering is not a linear process�

� Every RE presentation is rewritten history�

� (Many) Different approaches to the same problem.

Initial Recon

Initial Recon

Initial Recon

Initial Recon

Initial Recon

Initial Recon

Initial Recon

� Code requires hypervisor capability�

� If we patch this check it fails later when trying to create and
run a virtual machine�

� My Windows VM is running under KVM/QEMU�

� Nested hypervisor needs to be enabled.

Initial Recon

Initial Recon

Initial Recon

� We need to install Hyper-V (Pro or higher versions only)�

� https://learn.microsoft.com/en-us/virtualization/hyper-v-on-
windows/quick-start/enable-hyper-v

Initial Recon

� And configure the host KVM hypervisor to allow nesting�

� `virsh edit flare`:

Initial Recon

We love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

� Two arguments are required�

� 8 < strlen(argv[1]) < 48�

� 24 < strlen(argv[2]) < 65�

� Second argument length must be a multiple of 4�

� That’s an hint for its contents => Base64�

� Only noticed it while writing this.

We Love NOPs not NOPEs

We Love NOPs not NOPEs

� Windows Hypervisor Platform API�

� Sample code: https://github.com/utshina/WHP-simple.

We Love NOPs not NOPEs

We Love NOPs not NOPEs

� At this point we have�

� VM Partition�

� VM Memory�

� Virtual CPU.

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

dd if=hvm.exe of=extracted.bin bs=1 skip=127072 count=4096

We Love NOPs not NOPEs

We Love NOPs not NOPEs

I’m a virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

� Reasonable guess that we extracted the virtual CPU code�

� We need to start disassembling it at offset 0�

� Nothing was set to a different address�

� And start with 16-bit disassemble mode�

� Since they still boot in 8088 16-bit real mode!

I’m a Virtual CPU, you can’t see me!

16-bit mode

I’m a Virtual CPU, you can’t see me!

32-bit mode

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

� All this code is dealing with CPU transition from reset to long
mode (64-bit)�

� GDT, page tables, etc are irrelevant to us�

� What we really want is the entrypoint�

� Don’t forget we need to disassemble the different stages with
the correct instruction size�

� IDA is confused with the far jump addresses.

I’m a Virtual CPU, you can’t see me!

64-bit mode

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

� The code looks a bit weird (can’t disassemble all the bytes)�

� The IN instruction is I/O Port related and triggers a VM EXIT�

� Host takes control (think of INT3 and debuggers)�

� Used for communication between the host and guest�

� Two bytes long (wait for it).

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

� The virtual CPU loop code deals with the I/O Port VM Exit�

� Two break conditions�

� First is the interesting one.

I’m a Virtual CPU, you can’t see me!

� Smells like multiple stage encryption/obfuscation�

� Host must do something to guest RAM (since the original
payload stops making sense after the VM exit)�

� Guest decrypts/decodes the flag buffer?

Ping? Pong!

Ping? Pong!

� We need to understand guest to host transition.

Ping? Pong!

Ping? Pong!

� The first function just reads the contents of the VM registers�

� RIP, R8 and R9�

� A reasonable guess would be a key (R8) and size (R9)�

� Next function does something with those values.

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

� Much better when we rename the variables but remember it’s
an array.

Ping? Pong!

� We can easily test our hunch with a debugger�

� Avoid reversing the decryption routine�

� It’s RC4 (heavily used on Flare On)�

� Breakpoint before the call to the function�

� Step over�

� Dump memory area.

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

� Our hunch is correct, there is decryption�

� Then execution resumes after the VM exit with RIP update.

Ping? Pong!

Ping? Pong!

� Pretty sure it’s multi stage decryption (that’s why the loop)�

� Until the VM halts and a result is read�

� If it’s the right result, “decrypt” and display the flag�

� Reasonable to test if we can dump everything at once�

� Breakpoint at the halt address and dump memory.

Ping? Pong!

Ping? Pong!

Ping? Pong!

� The OUT VM Exit prologue�

� It encrypts again the block.

Ping? Pong!

� Solutions�

� Reverse or reuse the encryption function and manually/
script decrypt each stage�

� We know the format: MOV R8, MOV R9, IN/OUT�

� Or manually trace each stage and dump it�

� They don’t overlap�

� Few stages so I copied and stitched everything.

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

� The decompiler is wrong on this function�

� Lost some silly time here�

� Too tired already, didn’t care about the warnings.

Are we there yet?

� Different call conventions (and compilers?) used in the binary
and the VM payload�

� Binary uses Microsoft X64 calling convention: RCX RDX R8
R9 STACK�

� Payload is using System V AMD64 ABI: RDI RSI RDX RCX R8
R9 STACK.

Are we there yet?

Are we there yet?

Are we there yet?

� Decompilation is much better now�

� Return value must be 0x24 (36 chars)�

� Easy to extract the valid string (simple XOR).

Are we there yet?

Are we there yet?

One more thing...

One more thing

One more thing

� Flag is just a XOR between argv[2] and a fixed array�

� Array contents are unmodified (host data).

One more thing

One more thing

� Easy to verify the base64 decode function�

� Let’s give a look to the decryption verification function�

� It returns the value 1 that we want.

One more thing

One more thing

� Decompiler output looks like hard garbage to read.

One more thing

One more thing

� Much easier to read and understand�

� Just comparing each byte and increasing counter when they
match�

� All chars need to match�

� We found out that the first argument was 36 chars so we
must pad to 48�

� Not a problem in the original code because enough space in
RAM.

One more thing

One more thing

� We can identify hints of a possible Salsa20�

� But it’s not a straightforward implementation�

� I don’t want to reverse this stuff�

� Too tired already�

� Don’t like crypto that much (bad for CTFs)�

� Annoyed I spent too much time reimplementing Blowfish
in a previous challenge.

One more thing

One more thing

� Unicorn Engine is great for these tasks�

� All the code is self contained so it is easy to setup and run�

� Learn and play with it. Be creative�

� Other solutions such as MIASM.

One more thing

� We just need to map the payload into the Unicorn VM�

� Copy the arguments to memory�

� Setup registers and start emulation at the function�

� Install code hooks to see what is going on�

� Dump memory when it ends.

One more thing

� From the verification function we know that the decrypted
contents must be equal to the first argument�

� The second argument is base64 encoded�

� We want to find the valid encrypted value�

� We can call the decryption routine with Unicorn to encrypt
everything, which is our goal.

One more thing

� Start with base64(argv[1]), padded to 48 bytes�

� Run the emulated code and extract the result�

� Check what is going on inside the verification function�

� All bytes should be equal and return 1.

One more thing

One more thing

� It should work in theory�

� Very dangerous state because now I get obsessed to make
it work or prove it doesn’t�

� Something is wrong�

� I still don’t want to reverse the crypto. It’s 4am or something�

� All of a sudden I have a stupid idea�

� Encrypt again the result!

One more thing

One more thing

� It works, don’t care�

� Submit the flag and move on. Still 2 spots available for top 50�

� Why was it failing?

Conclusions

Conclusions

� Significant amount of work but not that hard�

� Lots of details and general knowledge�

� Nothing that RTFM and some patience doesn’t solve�

� Great learning experience. Practice makes perfection�

� Hope to see you there next year. Goal is top 25!

Contacts, etc

� Blog: https://reverse.put.a�

� Code: https://github.com/gdbini�

� Email: reverser@put.a�

� IRC: #osxre @ irc.libera.cha�

� Slack: 0xmadlabs.slack.co�

� OpoSec: www.meetup.com/0xoposec�

� PGP key: https://reverse.put.as/E7CD23FD.asc

References

� Images from the internet. Credit due to their authors.

