
fG! @ ØxＯＰＯＳɆＣ

December 2023

Hardcore++ version

Where is the flag?

Who am I

Who am I

Who am I

Knowledge and code

 https://reverse.put.a

 https://github.com/gdbinit

If you like reading

 https://links.put.a

 https://one.adayfullofpossibilities.com

Today’s Agenda

Today’s Agenda

 Flare On 2023 - 10 year anniversary

 Challenge #12 (13 total)

 A cute virtual machine :-).

“This is the second smallest challenge this
year! If only that mattered.”

Today’s Agenda

 Reverse engineering is not a linear process

 Every RE presentation is rewritten history

 (Many) Different approaches to the same problem.

Initial Recon

Initial Recon

Initial Recon

Initial Recon

Initial Recon

Initial Recon

Initial Recon

 Code requires hypervisor capability

 If we patch this check it fails later when trying to create and
run a virtual machine

 My Windows VM is running under KVM/QEMU

 Nested hypervisor needs to be enabled.

Initial Recon

Initial Recon

Initial Recon

 We need to install Hyper-V (Pro or higher versions only)

 https://learn.microsoft.com/en-us/virtualization/hyper-v-on-
windows/quick-start/enable-hyper-v

Initial Recon

 And configure the host KVM hypervisor to allow nesting

 `virsh edit flare`:

Initial Recon

We love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

 Two arguments are required

 8 < strlen(argv[1]) < 48

 24 < strlen(argv[2]) < 65

 Second argument length must be a multiple of 4

 That’s an hint for its contents => Base64

 Only noticed it while writing this.

We Love NOPs not NOPEs

We Love NOPs not NOPEs

 Windows Hypervisor Platform API

 Sample code: https://github.com/utshina/WHP-simple.

We Love NOPs not NOPEs

We Love NOPs not NOPEs

 At this point we have

 VM Partition

 VM Memory

 Virtual CPU.

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

We Love NOPs not NOPEs

dd if=hvm.exe of=extracted.bin bs=1 skip=127072 count=4096

We Love NOPs not NOPEs

We Love NOPs not NOPEs

I’m a virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

 Reasonable guess that we extracted the virtual CPU code

 We need to start disassembling it at offset 0

 Nothing was set to a different address

 And start with 16-bit disassemble mode

 Since they still boot in 8088 16-bit real mode!

I’m a Virtual CPU, you can’t see me!

16-bit mode

I’m a Virtual CPU, you can’t see me!

32-bit mode

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

 All this code is dealing with CPU transition from reset to long
mode (64-bit)

 GDT, page tables, etc are irrelevant to us

 What we really want is the entrypoint

 Don’t forget we need to disassemble the different stages with
the correct instruction size

 IDA is confused with the far jump addresses.

I’m a Virtual CPU, you can’t see me!

64-bit mode

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

 The code looks a bit weird (can’t disassemble all the bytes)

 The IN instruction is I/O Port related and triggers a VM EXIT

 Host takes control (think of INT3 and debuggers)

 Used for communication between the host and guest

 Two bytes long (wait for it).

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

I’m a Virtual CPU, you can’t see me!

 The virtual CPU loop code deals with the I/O Port VM Exit

 Two break conditions

 First is the interesting one.

I’m a Virtual CPU, you can’t see me!

 Smells like multiple stage encryption/obfuscation

 Host must do something to guest RAM (since the original
payload stops making sense after the VM exit)

 Guest decrypts/decodes the flag buffer?

Ping? Pong!

Ping? Pong!

 We need to understand guest to host transition.

Ping? Pong!

Ping? Pong!

 The first function just reads the contents of the VM registers

 RIP, R8 and R9

 A reasonable guess would be a key (R8) and size (R9)

 Next function does something with those values.

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

 Much better when we rename the variables but remember it’s
an array.

Ping? Pong!

 We can easily test our hunch with a debugger

 Avoid reversing the decryption routine

 It’s RC4 (heavily used on Flare On)

 Breakpoint before the call to the function

 Step over

 Dump memory area.

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

Ping? Pong!

 Our hunch is correct, there is decryption

 Then execution resumes after the VM exit with RIP update.

Ping? Pong!

Ping? Pong!

 Pretty sure it’s multi stage decryption (that’s why the loop)

 Until the VM halts and a result is read

 If it’s the right result, “decrypt” and display the flag

 Reasonable to test if we can dump everything at once

 Breakpoint at the halt address and dump memory.

Ping? Pong!

Ping? Pong!

Ping? Pong!

 The OUT VM Exit prologue

 It encrypts again the block.

Ping? Pong!

 Solutions

 Reverse or reuse the encryption function and manually/
script decrypt each stage

 We know the format: MOV R8, MOV R9, IN/OUT

 Or manually trace each stage and dump it

 They don’t overlap

 Few stages so I copied and stitched everything.

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

Are we there yet?

 The decompiler is wrong on this function

 Lost some silly time here

 Too tired already, didn’t care about the warnings.

Are we there yet?

 Different call conventions (and compilers?) used in the binary
and the VM payload

 Binary uses Microsoft X64 calling convention: RCX RDX R8
R9 STACK

 Payload is using System V AMD64 ABI: RDI RSI RDX RCX R8
R9 STACK.

Are we there yet?

Are we there yet?

Are we there yet?

 Decompilation is much better now

 Return value must be 0x24 (36 chars)

 Easy to extract the valid string (simple XOR).

Are we there yet?

Are we there yet?

One more thing...

One more thing

One more thing

 Flag is just a XOR between argv[2] and a fixed array

 Array contents are unmodified (host data).

One more thing

One more thing

 Easy to verify the base64 decode function

 Let’s give a look to the decryption verification function

 It returns the value 1 that we want.

One more thing

One more thing

 Decompiler output looks like hard garbage to read.

One more thing

One more thing

 Much easier to read and understand

 Just comparing each byte and increasing counter when they
match

 All chars need to match

 We found out that the first argument was 36 chars so we
must pad to 48

 Not a problem in the original code because enough space in
RAM.

One more thing

One more thing

 We can identify hints of a possible Salsa20

 But it’s not a straightforward implementation

 I don’t want to reverse this stuff

 Too tired already

 Don’t like crypto that much (bad for CTFs)

 Annoyed I spent too much time reimplementing Blowfish
in a previous challenge.

One more thing

One more thing

 Unicorn Engine is great for these tasks

 All the code is self contained so it is easy to setup and run

 Learn and play with it. Be creative

 Other solutions such as MIASM.

One more thing

 We just need to map the payload into the Unicorn VM

 Copy the arguments to memory

 Setup registers and start emulation at the function

 Install code hooks to see what is going on

 Dump memory when it ends.

One more thing

 From the verification function we know that the decrypted
contents must be equal to the first argument

 The second argument is base64 encoded

 We want to find the valid encrypted value

 We can call the decryption routine with Unicorn to encrypt
everything, which is our goal.

One more thing

 Start with base64(argv[1]), padded to 48 bytes

 Run the emulated code and extract the result

 Check what is going on inside the verification function

 All bytes should be equal and return 1.

One more thing

One more thing

 It should work in theory

 Very dangerous state because now I get obsessed to make
it work or prove it doesn’t

 Something is wrong

 I still don’t want to reverse the crypto. It’s 4am or something

 All of a sudden I have a stupid idea

 Encrypt again the result!

One more thing

One more thing

 It works, don’t care

 Submit the flag and move on. Still 2 spots available for top 50

 Why was it failing?

Conclusions

Conclusions

 Significant amount of work but not that hard

 Lots of details and general knowledge

 Nothing that RTFM and some patience doesn’t solve

 Great learning experience. Practice makes perfection

 Hope to see you there next year. Goal is top 25!

Contacts, etc

 Blog: https://reverse.put.a

 Code: https://github.com/gdbini

 Email: reverser@put.a

 IRC: #osxre @ irc.libera.cha

 Slack: 0xmadlabs.slack.co

 OpoSec: www.meetup.com/0xoposec

 PGP key: https://reverse.put.as/E7CD23FD.asc

References

 Images from the internet. Credit due to their authors.

