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Where is the flag?




Who am I



Who am I



Who am I

Knowledge and code�

� https://reverse.put.a�

� https://github.com/gdbinit



If you like reading�

� https://links.put.a�

� https://one.adayfullofpossibilities.com



Today’s Agenda



Today’s Agenda

� Flare On 2023 - 10 year anniversary�

� Challenge #12 (13 total)�

� A cute virtual machine :-).



“This is the second smallest challenge this 
year! If only that mattered.”



Today’s Agenda

� Reverse engineering is not a linear process�

� Every RE presentation is rewritten history�

� (Many) Different approaches to the same problem.
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Initial Recon



Initial Recon

� Code requires hypervisor capability�

� If we patch this check it fails later when trying to create and 
run a virtual machine�

� My Windows VM is running under KVM/QEMU�

� Nested hypervisor needs to be enabled.



Initial Recon



Initial Recon



Initial Recon

� We need to install Hyper-V (Pro or higher versions only)�

� https://learn.microsoft.com/en-us/virtualization/hyper-v-on-
windows/quick-start/enable-hyper-v




Initial Recon

� And configure the host KVM hypervisor to allow nesting�

� `virsh edit flare`:




Initial Recon



We love NOPs not NOPEs
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We  Love NOPs not NOPEs

� Two arguments are required�

� 8 < strlen(argv[1]) < 48�

� 24 < strlen(argv[2]) < 65�

� Second argument length must be a multiple of 4�

� That’s an hint for its contents => Base64�

� Only noticed it while writing this.



We  Love NOPs not NOPEs



We  Love NOPs not NOPEs

� Windows Hypervisor Platform API�

� Sample code: https://github.com/utshina/WHP-simple.



We  Love NOPs not NOPEs



We  Love NOPs not NOPEs

� At this point we have�

� VM Partition�

� VM Memory�

� Virtual CPU.




We  Love NOPs not NOPEs
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We  Love NOPs not NOPEs
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We  Love NOPs not NOPEs

dd if=hvm.exe of=extracted.bin bs=1 skip=127072 count=4096



We  Love NOPs not NOPEs



We  Love NOPs not NOPEs



I’m a virtual CPU, you can’t see me!



I’m a Virtual CPU, you can’t see me!



I’m a Virtual CPU, you can’t see me!

� Reasonable guess that we extracted the virtual CPU code�

� We need to start disassembling it at offset 0�

� Nothing was set to a different address�

� And start with 16-bit disassemble mode�

� Since they still boot in 8088 16-bit real mode!




I’m a Virtual CPU, you can’t see me!

16-bit mode



I’m a Virtual CPU, you can’t see me!

32-bit mode



I’m a Virtual CPU, you can’t see me!



I’m a Virtual CPU, you can’t see me!

� All this code is dealing with CPU transition from reset to long 
mode (64-bit)�

� GDT, page tables, etc are irrelevant to us�

� What we really want is the entrypoint�

� Don’t forget we need to disassemble the different stages with 
the correct instruction size�

� IDA is confused with the far jump addresses.



I’m a Virtual CPU, you can’t see me!

64-bit mode



I’m a Virtual CPU, you can’t see me!



I’m a Virtual CPU, you can’t see me!

� The code looks a bit weird (can’t disassemble all the bytes)�

� The IN instruction is I/O Port related and triggers a VM EXIT�

� Host takes control (think of INT3 and debuggers)�

� Used for communication between the host and guest�

� Two bytes long (wait for it).



I’m a Virtual CPU, you can’t see me!



I’m a Virtual CPU, you can’t see me!



I’m a Virtual CPU, you can’t see me!

� The virtual CPU loop code deals with the I/O Port VM Exit�

� Two break conditions�

� First is the interesting one.



I’m a Virtual CPU, you can’t see me!

� Smells like multiple stage encryption/obfuscation�

� Host must do something to guest RAM (since the original 
payload stops making sense after the VM exit)�

� Guest decrypts/decodes the flag buffer?




Ping? Pong!



Ping? Pong!

� We need to understand guest to host transition.



Ping? Pong!



Ping? Pong!

� The first function just reads the contents of the VM registers�

� RIP, R8 and R9�

� A reasonable guess would be a key (R8) and size (R9)�

� Next function does something with those values.



Ping? Pong!
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Ping? Pong!



Ping? Pong!



Ping? Pong!

� Much better when we rename the variables but remember it’s 
an array.



Ping? Pong!

� We can easily test our hunch with a debugger�

� Avoid reversing the decryption routine�

� It’s RC4 (heavily used on Flare On)�

� Breakpoint before the call to the function�

� Step over�

� Dump memory area.
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Ping? Pong!



Ping? Pong!



Ping? Pong!

� Our hunch is correct, there is decryption�

� Then execution resumes after the VM exit with RIP update.



Ping? Pong!



Ping? Pong!

� Pretty sure it’s multi stage decryption (that’s why the loop)�

� Until the VM halts and a result is read�

� If it’s the right result, “decrypt” and display the flag�

� Reasonable to test if we can dump everything at once�

� Breakpoint at the halt address and dump memory.



Ping? Pong!



Ping? Pong!



Ping? Pong!

� The OUT VM Exit prologue�

� It encrypts again the block.




Ping? Pong!

� Solutions�

� Reverse or reuse the encryption function and manually/
script decrypt each stage�

� We know the format: MOV R8,  MOV R9, IN/OUT�

� Or manually trace each stage and dump it�

� They don’t overlap�

� Few stages so I copied and stitched everything.



Are we there yet?
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Are we there yet?

� The decompiler is wrong on this function�

� Lost some silly time here�

� Too tired already, didn’t care about the warnings.



Are we there yet?

� Different call conventions (and compilers?) used in the binary 
and the VM payload�

� Binary uses Microsoft X64 calling convention: RCX RDX R8 
R9 STACK�

� Payload is using System V AMD64 ABI: RDI RSI RDX RCX R8 
R9 STACK.



Are we there yet?
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Are we there yet?

� Decompilation is much better now�

� Return value must be 0x24 (36 chars)�

� Easy to extract the valid string (simple XOR).




Are we there yet?



Are we there yet?



One more thing...
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One more thing

� Flag is just a XOR between argv[2] and a fixed array�

� Array contents are unmodified (host data).



One more thing



One more thing

� Easy to verify the base64 decode function�

� Let’s give a look to the decryption verification function�

� It returns the value 1 that we want.



One more thing



One more thing

� Decompiler output looks like hard garbage to read.



One more thing



One more thing

� Much easier to read and understand�

� Just comparing each byte and increasing counter when they 
match�

� All chars need to match�

� We found out that the first argument was 36 chars so we 
must pad to 48�

� Not a problem in the original code because enough space in 
RAM.
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One more thing

� We can identify hints of a possible Salsa20�

� But it’s not a straightforward implementation�

� I don’t want to reverse this stuff�

� Too tired already�

� Don’t like crypto that much (bad for CTFs)�

� Annoyed I spent too much time reimplementing Blowfish 
in a previous challenge.



One more thing



One more thing

� Unicorn Engine is great for these tasks�

� All the code is self contained so it is easy to setup and run�

� Learn and play with it. Be creative�

� Other solutions such as MIASM.





One more thing

� We just need to map the payload into the Unicorn VM�

� Copy the arguments to memory�

� Setup registers and start emulation at the function�

� Install code hooks to see what is going on�

� Dump memory when it ends.



One more thing

� From the verification function we know that the decrypted 
contents must be equal to the first argument�

� The second argument is base64 encoded�

� We want to find the valid encrypted value�

� We can call the decryption routine with Unicorn to encrypt 
everything, which is our goal.



One more thing

� Start with base64(argv[1]), padded to 48 bytes�

� Run the emulated code and extract the result�

� Check what is going on inside the verification function�

� All bytes should be equal and return 1.



One more thing



One more thing

� It should work in theory�

� Very dangerous state because now I get obsessed to make 
it work or prove it doesn’t�

� Something is wrong�

� I still don’t want to reverse the crypto. It’s 4am or something�

� All of a sudden I have a stupid idea�

� Encrypt again the result!



One more thing



One more thing

� It works, don’t care�

� Submit the flag and move on. Still 2 spots available for top 50�

� Why was it failing?




Conclusions



Conclusions

� Significant amount of work but not that hard�

� Lots of details and general knowledge�

� Nothing that RTFM and some patience doesn’t solve�

� Great learning experience. Practice makes perfection�

� Hope to see you there next year. Goal is top 25!



Contacts, etc

� Blog: https://reverse.put.a�

� Code: https://github.com/gdbini�

� Email: reverser@put.a�

� IRC: #osxre @ irc.libera.cha�

� Slack: 0xmadlabs.slack.co�

� OpoSec: www.meetup.com/0xoposec�

� PGP key: https://reverse.put.as/E7CD23FD.asc
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