
fG! @ ØxＯＰＯＳɆＣ

November 2024

Flare-On 2024 #5

Core dump forensics



Who am I



Today’s Agenda



Today’s Agenda

 Flare-On 2024, challenge #5 (out of 10)

 A Linux core dump forensics challenge

 99 slides only \o/ :PPPP

 Every RE presentation is a lie

 Different approaches to the same problem.





Initial Recon



Initial Recon

“Our server in the FLARE Intergalactic HQ has crashed! 


Now criminals are trying to tell sell me my own data!!! Do your 
part, random internet hacker, to help FLARE out and tell us what 
data they stole! 


We used the best forensic preservation technique of just copying all 
the files on the system for you.”



Initial Recon



Initial Recon

 Full file system copy of the hacked machine

 We need assumptions

 Where do we start searching

 Crash was probably the keyword to be noticed...




Initial Recon



Initial Recon



Initial Recon

 Logs appear empty

 Next candidates

 Persistence: systemd & friends

 Needle in a haystack problem

 Simple is better

 I like to verify potential file system usage anomalies.



Initial Recon



Initial Recon



Initial Recon



Initial Recon



Initial Recon



Initial Recon

 The server crashed..

 “Blue screen of death” or just a service

 Sshd core dump fits the story

 This should have been an immediate hint to go after core files 
before anything else

 Clearly, I’m a lame CTF player :P.




Initial Recon



It’s GDB time!



It’s GDB time!

 We want to understand why it crashed (or SIGQUIT)

 Full system copy so we have all the libraries, etc

 We don’t need the original machine

 But we need to fix paths to libraries otherwise it will try to 
use host versions.



It’s GDB time!



It’s GDB time!



It’s GDB time!



It’s GDB time!

 We want some kind of chroot, GDB already has it:


(gdb) help set solib-absolute-prefix


set sysroot, set solib-absolute-prefix


Set an alternate system root.


The system root is used to load absolute shared library symbol 
files.


For other (relative) files, you can add directories using


`set solib-search-path'.



It’s GDB time!



It’s GDB time!



It’s GDB time!

 Backtrace looks much better

 We have a NULL pointer deference crash

 Somewhere inside the liblzma.so.5 shared library.



It’s GDB time!



It’s GDB time!



It’s GDB time!

 We can observe the nearest code after the crash

 It’s not the instruction that lead to the crash

 Since it’s just dereferencing a memory address

 That happens to have the zero value in this case

 We can disassemble the previous instruction and find out 
what really happened.



It’s GDB time!



It’s GDB time!



It’s GDB time!



It’s GDB time!

 The crash is now clear, it’s a call to a NULL pointer

 We can try to use the shared library from the file system and 
hope it matches content

 Or we need to dump memory because this is memory only 
payload

 Additional recon: dump the stack contents.



It’s GDB time!



It’s GDB time!



It’s IDA time!



It’s IDA time!

 Shared libraries start at zero address

 We need to find the runtime library base address to compute 
the file location (or just search for the bytes)

 Use GDB “info shared” command to list loaded libraries 
addresses.



It’s IDA time!



It’s IDA time!



It’s IDA time!

 GDB is lying to us. The library start address isn’t “correct”

 We can dump the bytes at the library “from” address and 
search for them

 Found at the beginning of “.text” section

 Which is 0x4D40 bytes away from the on-disk zero address

 We need to add that value to our computed address.



It’s IDA time!



It’s IDA time!



It’s IDA time!



It’s IDA time!

 Easy to understand the reason for the crash

 The return value of dlsym isn’t validated

 If symbol lookup fails it will be NULL.



It’s IDA time!



It’s IDA time!



It’s IDA time!



It’s IDA time!

 Something interesting happens when running as root

 RWX memory usually means something fishy

 Whatever is copied, is executed after

 Visually confusing symbol name

 We can verify if this code was executed.



It’s IDA time!



It’s IDA time!

 The root path was indeed executed

 We need to understand what is going on inside

 Smells like encrypted/obfuscated payload

 Flare-On challenges usually not memory dump friendly

 Remember the stack string?



It’s IDA time!



It’s IDA time!

 Smells like Salsa20/Chacha20 initialization

 Most used ciphers in Flare-On, together with RC4.




It’s IDA time!

 Second argument should be the key (256 bits)

 Because distance is 32 bytes (0x20) between args

 Third argument should be the nonce (64 or 96 bits).



It’s IDA time!

 We can look inside the function to find out the nonce size.



It’s IDA time!

 Key and nonce aren’t cleared from memory

 Dump the key and nonce from core dump:



It’s IDA time!

 The other arguments we can easily find in the code

 Length: 0xF96 (3990) bytes

 Offset: 0x23960 (145760)

 They have direct cross references in the code (sub_9820)

 Extract the encrypted payload: 
dd if=liblzma.so.5.4.1 of=encryptedpayload.bin bs=1 
count=3990 skip=145760



It’s IDA time!



It’s IDA time!

 CyberChef to verify if everything is ok

 The decrypted payload looks fine: 55 48 is quite a common 
function prologue

 Most probably it’s shellcode since it will be executed next

 Be careful, been burnt a few times with CyberChef (lost 
almost a day in #8 because of it!).



It’s shellcode time!



It’s shellcode time!

 Loading the shellcode into the disassembler...



It’s shellcode time!



It’s shellcode time!



It’s shellcode time!



It’s shellcode time!



It’s shellcode time!

 Shellcode tries to connect to host 10.0.2.15 on port 1337

 Followed by 4 recvfrom (0x2D) syscalls

 The shellcode is receiving data from the remote host

 Strong hints about its contents.



It’s shellcode time!



It’s shellcode time!

 Remote host is the “C2”

 Sends key, nonce, and Chacha20 (?) encrypted payload

 Shellcode decrypts data

 And sends something back to the C2

 Can we recover the key, nonce and payload?



It’s shellcode time!

 We can’t talk to the C2

 But we have all the memory in the core dump

 No memory clean up code is found

 We just need to understand memory layout and have some 
“luck”.



It’s stack time!



It’s stack time!



It’s stack time!

 Crash happens at the v10 call

 Stack grows down (to lower addresses)

 Return address was pushed into the stack

 Current RSP contains the return address.



It’s stack time!

 We are interested in the shellcode v13() call

 Core dump is after this call so we don’t have decrypted code

 But we should have it encrypted!



It’s stack time!

 If we dump the pointer address we should have the same 
data.





It’s stack time!

 Return was already pushed to stack, so we were 8 bytes off

 Now the memory matches our expected values.



It’s stack time!

 Our stack layout at the crash address:



It’s stack time!

 Our goal is to try to recover shellcode memory.



It’s stack time!

 After we enter the 0xDC2 call:



It’s stack time!

 Five pushes into the stack: 
0x7FFCC6601E88 - 5 * 8 = 0x7FFCC6601E60



It’s stack time!

 RBP is now 0x7FFCC6601E60

 RSP loaded with the address of RSP-0x1688: 
0x7FFCC6601E60-0x1688=0x7FFCC66007D8



It’s stack time!

 The key buffer is located at RBP-0x1278

 There is a lot of stack space so it should be intact.



It’s stack time!

 Memory dump of the (potential) key and nonce:



It’s stack time!

 Size appears corrupt but filename is ok

 Not a problem because code NUL terminates the string.



It’s stack time!

 And file content:



It’s stack time!

 We have everything we need

 Key and nonce

 File contents

 Tried to use CyberChef again, didn’t work

 Not going to waste much time reversing the rest.



It’s stack time!

 Spoiler alert, can you spot the difference?



It’s Unicorn time!



It’s Unicorn time!

 Faster to write an emulator than reversing, since I didn’t spot 
the difference

 Can repurpose last year’s emulator

 The shellcode is quite simple

 There is no error verification

 We just need to emulate syscalls and inject data.



It’s Unicorn time!

 Source code @ https://github.com/gdbinit/flare-on

 Data we need to inject into memory

 Key

 Nonce

 File contents.



It’s Unicorn time!

 The Unicorn Engine syscall hook happens at the entry of the 
syscall

 We can check which syscall by looking at RAX.



It’s Unicorn time!



It’s Unicorn time!



It’s Unicorn time!



It’s Unicorn time!

 Emulation is pretty easy

 We just need to find addresses where to write data

 These will be constant (from stack address)

 Error checking wouldn’t be a problem, just additional code to 
set everything as expected

 We control memory and CPU, so h4x th3 w0rld!



It’s Unicorn time!



Conclusion



Conclusion

 A fun challenge

 Great introduction to memory forensics, memory and binary 
layouts

 And good target for practicing emulation

 Still chasing top 25. Maybe next year?



Contacts, etc

 Blog: https://reverse.put.a

 Code: https://github.com/gdbini

 Email: reverser@put.a

 IRC: #osxre @ irc.libera.cha

 Slack: 0xmadlabs.slack.co

 OpoSec: https://kommunity.com/0xoposec

 PGP key: https://reverse.put.as/E7CD23FD.asc



References

 Images from the internet. Credit due to their authors.



